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Abstract
The promyelocytic leukemia (PML) protein is the core component of nuclear substructures that
host more than 70 proteins, termed nuclear domains 10 or PML-nuclear bodies. PML was first
identified as the gene participating in the translocation responsible for the pathogenesis of acute
promyelocytic leukemia (APL). The notion that PML is a tumor suppressor gene was soon
extrapolated from leukemia to solid tumors. The last decade has radically changed the view of
how this tumor suppressor is regulated, how it can be therapeutically targeted, and how it
functions. Notably, one of the most recent and striking features uncovered is how PML regulates
cellular homeostasis outside its original niche in the nucleus. These new findings open an exciting
new area of research in extra-nuclear PML functions.

The identification of PML and the APL saga
The 90s started with a breakthrough discovery from several groups that would change the
research of the deadly acute promyelocytic leukemia (APL): the mapping of the breakpoint
of the reciprocal translocation with chromosome 17 [1]. Soon after, the promyelocytic
leukemia gene (PML, MYL, RNF71, PP8675, and TRIM19) was identified as the most
frequent translocation partner of the retinoic acid receptor alpha (RARα in APL) [2–5]
(Figure 1).

Since its discovery and for the next five years, the tumor suppressive activity of PML was
restricted to leukemia, but was soon extrapolated to solid tumors [6,7]. This led to the
current notion that PML is a tumor suppressor lost in cancers from multiple origins [8].

One of the most relevant breakthroughs in PML research was the discovery of two drugs
which would target PML and/or the PML–RARα fusion oncoprotein. On the one hand, All-
Trans Retinoic Acid (ATRA), produced in Shangai and used to treat patients with APL [9],
was found to promote the rapid degradation of the fusion protein [10]. On the other hand,
two groups described that same year the potential mechanism of arsenic trioxide (ATO), an
ancient Chinese medicine used for the treatment of APL [11–13], inducing apoptosis with
the concomitant regulation of PML localization and stability [14,15]. This phenomenon
would be, a decade later, shown to depend on the binding of the arsenic molecule to PML to
promote its SUMOylation-dependent ubiquitin- mediated degradation by RNF4 [16••,17••,
18••].
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The notion that the PML–RARα fusion oncoprotein is sufficient to drive APL was
recapitulated in the mouse by several groups [19–21], in turn generating preclinical tools
which would later become key in the discovery of an effective therapy for APL. These
preclinical efforts in faithful mouse models of APL proved definitive game changer in the
treatment of this deadly disease. Genetic mouse models of APL were critical for the formal
demonstration of the combined efficacy of ATRA and ATO in APL [22,23]. In turn, these
seminal studies would transform a devastating disease in a curable one.

PML nuclear functions
PML is the essential component of a macromolecular nuclear substructure, the PML-nuclear
bodies (PML-NB [24]). Indeed, PML functions as the scaffold of this structure allowing
other proteins to shuttle in and out, a process which is regulated by SUMO-mediated
modifications and interactions [25,26•]. PML has multiple splicing variants, giving rise to a
wide variety of isoforms, whose differential expression and function is yet poorly
understood [27,28]. These PML isoforms move dynamically between NBs at a different rate,
thus suggesting that the PML-NB composition might be heterogeneous and functionally
different [29].

Among the recently discovered nuclear functions of PML, we will focus on the control of
gene expression and protein modification, which have become of great interest.

PML and transcription
PML-NBs host a wide variety of transcriptional regulators, including transcriptional
activators, repressors, and histone modifiers. Moreover, PML-NBs have been shown to
localize adjacent to transcriptionally active chromatin regions, to Major Histocompatibility
Class 1 and p53 loci [30–33]. Furthermore, PML colocalizes with the histone
acetyltransferase Creb Binding Protein (CBP) and with RNA Pol II in a cell cycle-dependent
manner [34]. On the other hand, PML can repress transcription through the interaction with
histone deacetylases and heterochromatin protein 1 (HP1) [35,36] and through the regulation
of heterochromatin recondensation in satellite DNA [37]. The transcriptional regulation and
heterochromatin remodeling induced by PML have highlighted the importance of this tumor
suppressor in the induction of cellular senescence [38,39], with recent evidence pointing at a
role for PML in regulating this process through the Rb-E2F pathway [40].

PML and post-translational modifications
PML-NBs are a factory for protein modifications. It has been shown that PML regulates
protein acetylation, phosphorylation, ubiquitination, and SUMOylation among others,
through the correct formation of the PML-NBs. These structures host all kinds of protein
modifiers, from acetyltransferases to deacetylases, E3 ligases, deubiquitinases,
phosphatases, kinases, and more. These regulatory processes have been shown to be of
critical importance for cell homeostasis, and in turn, loss of PML results in deregulated
modulation of protein function.

Firstly, PML is found to modulate the activity of both protein phosphatases and kinases. On
the one hand, PML tunes the function of the protein phosphatases 1A and 2A (PP1A and
PP2A). Loss of Pml results in increased proliferation and reduced differentiation of neural
progenitors [41•], an event that arises from the delocalization of PP1A and reduced activity
towards pRb. On the other hand, PML positively regulates the activity of PP2A towards
AKT in the PML-NBs, and, as a result, Pml-loss exacerbates the phenotype of Pten
heterozygous mice and leads to more aggressive forms of cancer [42]. Furthermore, PML
regulates the activity of several kinases to promote protein phosphorylation. As an example,
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PML promotes the phosphorylation of p53 by HIPK2, which increases the rate of
acetylation of p53 and its transcriptional activation [43].

Secondly, PML regulates protein stability and function by affecting the activity of E3-
ligases and deubiquitinases (DUBs). PML inhibits KLHL2 through its recruitment to the
PML-NBs and the physical separation from its target, DAPK, which results in apoptosis and
autophagy [44]. Also, PML has been shown to recruitMDM2 to a distinct subnuclear
structure, the nucleolus, hence preventing p53 ubiquitination and proteosomal degradation
[45]. Conversely, PML negatively regulates the DUB HAUSP/USP7, thus opposing PTEN
deubiquitination and cytoplasmic translocation. This molecular framework is found altered
in APL, where PML–RARα disrupts the PML-NBs, increases PTEN deubiquitination by
HAUSP, and leads to PTEN nuclear exclusion [46].

Lastly, the PML nuclear bodies have a predominant role in the regulation of protein
acetylation. PML activates p53-dependent gene expression during oncogene-induced
senescence by promoting its acetylation by CBP in the PML-NBs [47]. The regulation of
p53 by PML is a balance between the acetylation by CBP and the deacetylation by SIRT1,
which also resides in the PML-NBs. Indeed, SIRT1 overexpression tilts the equilibrium
towards p53 deacetylation and transcriptional repression, which results in the impairment of
the cellular senescence program [48]. Interestingly, PML–RARα exerts the opposite activity
on p53, by promoting its deacetylation by a different family of deacetylases, HDACs [49].

The numerous functions described for PML in the control of post-translational modifications
raise the question of whether the nuclear bodies serve the main function of providing a
microenvironment where these reactions can occur. It remains to be clarified whether other
activities of PML attributed to a scaffolding function (e.g., regulation of mTOR by PML
[50,51•]) are also the result of the modulation of post-translational modification pathways.

PML cytoplasmic functions
As we mentioned above, a nuclear localization signal (NLS) located in exon 6 of PML
isoforms restricts the localization of the majority of PML protein to the nucleus. However,
nucleo-cytoplasmic fractionation reveals that a fraction of PML resides in the cytoplasm
[28,52,53••], a 10% of total PML in asynchronously growing primary mouse cells, and
probably a higher percentage in other cell types (A.C. and P.P.P., unpublished observations).
Of note, a PML isoform, namely PML-VII, lacks the fraction encoding for the NLS and it is
therefore purely cytoplasmic (reviewed in [54]).

Functions of PML-VII in the cytoplasm
The first report to unveil a cytoplasmic function of PML came upon the study of the activity
of PML-VII [52]. PML-VII or PMLc (cytoplasmic) was found to be essential for the proper
activation of the cytokine transforming growth factor beta (TGFβ) signaling. In the absence
of PML (using Pml knockout mouse embryonic fibroblasts) the intracellular signaling
elicited by TGFβ receptor activation was diminished, and in line with this notion, these cells
were refractory to the induction of growth arrest, senescence, and apoptosis by the cytokine.
This effect was shown to be mediated by the interaction of PMLc with SMAD2/3 and Smad
anchor for receptor activation (SARA), and the regulation of their cytoplasmic
compartmentalization. In addition, the activation of TGFβ signaling by PMLc is negatively
regulated by the homeodomain protein TGIF (TG-interacting factor), which disrupts its
association with SARA in concert with c-Jun [55]. Further research will be needed in order
to determine whether this activity of PMLc is also exerted by other PML isoforms in the
cytoplasm (Figure 2).
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Although most of the research related to cytoplasmic PML has been linked to the use of
PML-VII, in the recent years, more data have been brought up to light regarding the function
of other PML isoforms and mutants in this compartment.

Tumor suppressive activities of cytoplasmic PML
As we mentioned before, all PML isoforms can be found in the cytoplasm upon subcellular
fractionation analysis. One of the most exciting new roles of this cytosolic PML pool was
unveiled when carefully evaluating the precise localization of cytoplasmic PML fraction
[53••]. Surprisingly, PML was found to localize to specific membrane structures termed
mitochondria-associated membranes, or MAMs for short, which connect the endoplasmic
reticulum (ER) and the mitochondria. The MAMs play a central role in apoptosis through
the regulation of calcium influx from the ER to the mitochondria. Indeed, Pml-deficient cells
exhibited impaired calcium influx to the mitochondria and resistance to ER-stress-induced
cell death. In line with the notion that PML in the cytoplasm could form structures that host
proteins also found in the PML-NB [56], PML was found to exert this proapoptotic activity
through the regulation of a large complex involving PP2A, AKT, and the inositol
triphosphate receptor (IP3R), which ultimately controls calcium flux to the mitochondria. To
formally demonstrate the relevance of cytoplasmic PML fraction in this activity, the
resistance to apoptosis of Pml-deficient cells was reverted upon expression of an ER-
targeted PML construct. These results provide an exciting new potential mechanism
whereby cytoplasmic PML could regulate apoptosis from MAM in parallel with the
modulation of proapoptotic factors by nuclear PML [57].

Oncogenic activities of cytoplasmic PML mutants
The localization of PML to the nucleus requires a functional NLS located within exon 6. In
this sense, genetic mutations affecting this domain might result in dysfunctional PML.
Indeed, two independent studies described that mutations in PML leading to NLS-less PML
mutants have oncogenic consequences. On the one hand, in a plasmacytoma cell linePML
was found to be mutated in exon 3, which resulted in the expression of a truncated protein
confined to the cytoplasm [58]. Surprisingly, this cytoplasmic PML functions as a dominant
negative, oncogenic form of the tumor suppressor. On the other hand, in two aggressive
forms of PML–RARα APL, the nontranslocated moiety of PML was found mutated [59].
Both mutations led to the expression of a cytoplasmic PML mutant. Interestingly, these
mutants form cytoplasmic PML bodies (PML-CB) and host some of the components found
in the PML-NB. Indeed, PML-CB was able to bind PML–RARα, sequester it in the
cytoplasm, further inhibit RA-dependent transcription, and potentiate the block in
differentiation in APL [56]. These reports raise the interesting possibility that an aberrant
PML in the cytoplasm could function as an oncogenic cue. However, it remains to be
determined whether an aberrant cytoplasmic PML is oncogenic through its activity on
nuclear or cytoplasmic PML physiological functions.

Cytoplasmic PML: what next?
The view of how this multitasking protein operates has dramatically changed with the most
recent developments, attributing to PML extra-nuclear oncogenic and tumor suppressive
activities. However, the field is just in its infancy. As an example, a recent interesting study
analyzed systematically the sites of PML cytoplasmic localization by expressing all PML
isoforms harboring mutations in the NLS. Surprisingly, many of PML mutant isoforms
localized to endosomes and lysosomes [60••]. This study, along with the various mentioned
in this review raises new and exciting questions in need of answers: Where else does PML
localize in the cytoplasm and what does it do there? The notion that PML could reside or
shuttle between these compartments opens the possibility that, as in the MAMs and the
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nucleus, this protein could be regulating the localization, post-translational modification, and
function of residents of ‘PML-related bodies’. How is PML nucleocytoplasmic shuttling
regulated? PML presents multiple phosphorylation and acetylation sites surrounding the
NLS [61,62] and it is therefore plausible that these modifications alter the accessibility to the
NLS and in turn the compartmentalization of PML. Two decades of PML research has
therefore identified multiple new unexpected lines of research to be pursued. On the basis of
this premise, the next decade of research will certainly change further our view of this
mysterious and exciting protein.
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Figure 1.
Milestones in PML research from its discovery in the beginning of the 90s.
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Figure 2.
Current view of PML compartmentalization in the cell. Nuclear PML in PML-NBs (with
suggested shapes and forms) and cytoplasmic PML localization.
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