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Serial Analysis of Gene Expression (SAGE) is an innovative technique that offers the potential of cataloging
both the identity and relative frequencies of mRNA transcripts in a given poly(A+) RNA preparation. Although
it is a very effective approach for determining the expression of mRNA populations, there are significant biases
in the observed results that are inherent in the experimental process. These are caused by sampling error,
sequencing error, nonuniqueness, and nonrandomness of tag sequences. The quantitative information desired
from SAGE experiments consists of estimates of the number of genes and the frequency distribution of
transcript copy numbers. Of additional concern is the extent to which a given tag sequence can be assumed to
be unique to its gene. The present study takes these mathematical biases into account and presents a basis for
maximum likelihood estimation of gene number and transcript copy frequencies given a set of experimental
results. These estimates of the true state of genomic expression are markedly different from those based directly
on the observations from the underlying experiments. It also is shown that while in many cases it is probable
that a given tag sequence is unique within the genome, in larger genomes this cannot be safely assumed.

It is well known that the pathobiology of heritable and
acquired disease is associated with the altered expres-
sion of at least one, but usually many different genes
(Dietz and Pyeritz 1995; Fisher et al. 1996). Until re-
cently, traditional approaches to understanding the
causal relationship between altered gene expression
and a clinical phenotype have included the identifica-
tion and characterization of mutations affecting indi-
vidual genes and a detailed study of how these muta-
tions influence their expression (Kadler 1993; Cleary
and Gibson 1996). While this approach has yielded
critical information regarding the pathogenetics of a
wide variety of diseases, it is clear that the overall in-
fluence of single gene mutations is far more complex
and involves more than the altered expression of a mu-
tant allele or a limited number of mutant alleles. More-
over, in acquired disorders that do not involve heri-
table or somatic mutations as the initiating events that
lead to a phenotype, studies of the functional relation-
ship between altered gene expression and tissue dys-
function are limited (Fisher et al. 1996). Essentially,
most of these studies involve the selection of candidate
genes and an analysis of the altered expression of these
genes associated with the development of a pheno-
type. Recently, however, functional genomic ap-
proaches have permitted the analysis of the altered ex-
pression of hundreds, and in some cases thousands, of
genes simultaneously. These novel approaches, which
include the use of DNA microarrays (Schena et al.
1995, 1996, 1998; Heller et al. 1997) and Serial Analysis
of Gene Expression (SAGE) (Velculescu et al. 1995,
1997; Madden et al. 1997; Zhang et al. 1997), have
permitted, for the first time, the analysis of entire

mRNA populations in cells or tissues as indicators of
global transcription profiles.

SAGE is based on the generation of short (9–10 bp)
nucleotide sequences (tags) from a unique position
within each species of mRNA. To obtain the tags,
poly(A+)RNA is extracted and transcribed into double-
stranded cDNA (Fig. 1A) , using biotinylated oligo(dT)
as a primer. Digestion with a type II restriction enzyme
(Anchoring Enzyme) results in cDNA fragments with
an average length of 256 bp. The biotinylated 3�-most
fragments then are isolated using paramagnetic strep-
tavidin beads (Fig. 1B). The isolation step provides tags
from a defined position within each cDNA, which is
important for the ultimate identification of the corre-
sponding genes.

The fragments subsequently are divided in half
and ligated to two different linkers (Fig. 1C). Each
linker contains a restriction site for the Tagging En-
zyme (a type IIS restriction endonuclease), the Anchor-
ing Enzyme overhang and a priming site for polymer-
ase chain reaction (PCR) amplification. By digesting
these bound linker-cDNA sequences with the Tagging
Enzyme, fragments consisting of linker and an adher-
ing short cDNA sequence (tag) are released from the
streptavidin beads. The isolated linker tags are blunt-
ended with the Klenow fragment of DNA polymerase I
(Fig. 1D). The two sets of linker tags then are ligated to
linker-ditag-linker constructs and amplified by PCR us-
ing primers specific to the linkers (Fig. 1E). Digesting
these constructs with the Anchoring Enzyme finally
releases the ditags, which are isolated, ligated to con-
catamers (Fig. 1F), cloned, and sequenced. The se-
quences obtained are compared to different genome
databases in order to identify the tags.

Ditag sequence analysis using SAGE provides the
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potential to identify all the unique mRNAs in any par-
ticular poly(A+) RNA preparation — and therefore the
active genes — as well as the copy numbers of these
mRNAs. The approach is elegant and already has been
widely used, both to characterize transcriptomes (Vel-
culescu et al. 1995, 1997) and to study the differences
between them (Madden et al. 1997; Zhang et al. 1997;
Chen et al. 1998). However, there exist several subtle-
ties in the interpretation of SAGE results that bias the
observations in ways that have not been explored pre-
viously. In this manuscript, we address these issues and
provide a maximum likelihood approach to the esti-
mation of the number of unique transcripts and their
frequency distribution. We also provide cautionary es-
timates of the probability that a given tag sequence is
unique to one gene.

RESULTS

Simulations of the SAGE Process
The results of the simulation processes outlined above
are summarized in Table 1. Tables 1A and 1B show the
results of the simulations described above for a genome
of size 15,720, sampled with 62,168 tags. These num-
bers were chosen to correspond to those published in a
study of colonic epithelial cells (Zhang et al. 1997).
Table 1A represents the outcomes for 9-base tags, and is
presented only for comparison purposes. Table 1B (10-

base tags) corresponds more completely to the cited
study. Table 1C presents the same basic assumptions as
in Table 1B except that both the assumed number of
genes and the number of tag sequences generated to
sample them have been scaled up by a factor of five.
This is presented to correspond to a larger experiment
encompassing multiple cell types, and to convey a
sense of how interpretation problems change with the
experimental scale.

In each case the presumed number and copy dis-
tribution of unique transcripts is given (assumed). The
subsequent columns predict the observations to be ex-
pected given the four sets of assumptions outlined in
Methods. We follow previous convention (Zhang et al.
1997) in presenting the data in terms of estimated tran-
script copy number per cell, and also have tabulated
the percentage of erroneously sequenced tags that are
novel, i.e., not present (elsewhere) in the active ge-
nome. Finally, we have listed the percentage of genes
with unique tag sequences.

In general, the results show that two processes
within the SAGE experiments are in opposition, fortu-
itously reducing some of the bias in observations. First
and most significantly, the sampling error leads to a
large under-estimate of the number of genes and the
percentage of low copy numbers (Table 1, Assumed vs.
Unique, No Err). These values are in very good agree-
ment with those predicted from equation 2, which
serves as a verification of the technical soundness of
the simulation approach. When sequencing error is
taken into account, a significant number of novel tag
sequences are generated which increase both the num-
ber of unique sequences found and the percentage of
low copy numbers (Table 1, Unique, No Err vs.
Unique). In moving to the Random condition, we see
a small decrease in the observed number of genes and
the percentage of low copy numbers in the 9-base sce-
nario (Table 1A). This is because of the overlap or
nonuniqueness of gene tag sequences. This effect is
greatly reduced in Tables 1B and 1C, which involve
10-base tags. The Non-Random condition, however,
enhances the trend to decreased gene number and frac-
tion of low copy transcripts in all cases (Table 1, Ran-
dom vs. Non-Random). This is because the effective
population of tag sequences is reduced in this most
realistic case, leading to a smaller percentage of erro-
neous tags being novel (i.e., not present in the ge-
nome).

The Extent of Tag Sequence Uniqueness
The expected fraction of unique tag sequences, and
the expected variability, are shown more clearly in
Figure 2. This shows the distribution of the frac-
tion of unique tag sequences for both random (right-
most) and nonrandom (leftmost) DNA sequences (A, 9-

Figure 1 Schematic illustration of the SAGE process. (A) Poly(A
+)RNA is extracted and transcribed into double-stranded cDNA,
primed by biotinylated oligo (dT) (black circles), and digested
with the Anchoring Enzyme. (B) The 3�-most fragments are iso-
lated by binding them to streptavidin beads (gray ellipses). (C)
The fragments are divided and ligated to different linkers (L1, L2).
(D) The isolated linker-tags are blunt-ended. (E) The linker-tags
are ligated to linker-ditag-linker constructs and amplified by PCR
(E). (F) The ditags are isolated, ligated to concatamers, cloned,
and sequenced. This figure is an adaptation of Figure 1 from
Velculescu, V.E. et al. (1995).
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base tags from 15,720 genes; B, 10-base tags from
15,720 genes; C, 10-base tags from 78,600 genes). The
arrows in each panel indicate the expected value for
random sequences as predicted by equation 4. Not
surprisingly, a 10-base tag protocol gives significantly
more uniqueness than a 9-base protocol (Fig. 2B vs.
Fig. 2A). However, even with 10-base tags, a signifi-
cant fraction of the tag sequences found are not
unique, particularly when the nonrandom nature of
DNA sequences is partially accounted for (Fig. 2B, left-
most distribution). In fact, even the limited nonran-
dom ness incorporated into this model renders 10-base
tags ∼ as nonunique as 9-base tags under the assump-
tion of randomness (Fig. 2A, right vs. Fig. 2B, left).
Finally, the problem of nonuniqueness is exacerbated
further by a large genome (Fig. 2C). These results indi-
cate that caution must be exercised before assuming
that a particular SAGE tag sequence is unique to its
gene. It also is useful to notice the relatively small
variation shown in these distributions — this renders
it quite unlikely that statistical coincidence could

lead to significantly worse outcomes than those pre-
sented here.

Quantitative Evaluation of SAGE Results
We have seen that sampling error, sequencing error,
nonunique tag sequences, and nonrandom DNA se-
quences all contribute to biases in the observations
arising from SAGE experiments. The most direct solu-
tion to this problem would be to use the simulations to
find the actual parameters (the number of genes and
the distribution of transcript copy numbers) that
would result in the observations made in the labora-
tory. Although technically complex, this can in fact be
achieved by treating the simulation as a function, the
observations as data to be matched, and the true pa-
rameters as variables with which to fit function to data
(see Methods). A maximum likelihood approach based
on the Levenberg-Marquardt method has been used for
this purpose in application to the published observa-
tions we have cited (Zhang et al. 1997); the results are
shown in Table 2.

Table 1. Simulated Results Assuming the Genome Given by Observations

Model -> Assumed
Unique,

no errors Unique Random Non-random

A. 9 Base sequences

Unique tags 15,720 7994 � 5 11,029 � 6 10,930 � 6 10,427 � 5
% 1–5 64.16 38.86 � 0.02 53.63 � 0.02 53.33 � 0.02 51.26 � 0.02
% 5–50 31.0373 52.21 � 0.02 40.67 � 0.02 40.26 � 0.02 41.88 � 0.02
% 50–500 4.3815 8.17 � 0.01 5.77 � 0.007 5.87 � 0.007 6.28 � 0.007
% 500–5000 0.4212 0.76 � 0.003 0.54 � 0.002 0.54 � 0.002 0.57 � 0.002
% Errors novel – – 94.0 � 0.01 94.2 � 0.01 84.6 � 0.3

% Unique genes – 100 � 0 100 � 0 94.2 � 0.01 81.6 � 0.01
B. 10 Base sequences

Unique tags 15,720 8,003 � 5 11,460 � 6 11,428 � 6 11,268 � 5
% 1–5 64.16 38.86 � 0.02 55.44 � 0.02 55.43 � 0.02 54.65 � 0.02
% 5–50 31.0373 52.23 � 0.02 38.51 � 0.02 38.50 � 0.02 39.15 � 0.02
% 50–500 4.3815 8.16 � 0.01 5.53 � 0.006 5.54 � 0.006 5.68 � 0.006
% 500–5000 0.4212 0.75 � 0.003 0.52 � 0.002 0.52 � 0.002 0.52 � 0.002
% Errors novel – – 98.5 � 0.007 98.5 � 0.007 95.0 � 0.01
% Unique genes – 100 � 0 100 � 0 98.5 � 0.004 94.0 � 0.008

C. 10 Base sequences (five times larger genome)

Unique tags 78,600 47,086 � 10 64,364 � 10 63,407 � 10 58,573 � 8
% 1–5 64.16 43.35 � 0.01 58.24 � 0.009 57.77 � 0.009 53.94 � 0.009
% 6–50 31.0373 48.71 � 0.01 36.07 � 0.01 36.46 � 0.01 39.77 � 0.01
% 51–500 4.3815 7.23 � 0.004 5.26 � 0.003 5.34 � 0.003 5.80 � 0.003
% 501–5000 0.4212 0.71 � 0.001 0.43 � 0.0009 0.44 � 0.0009 0.48 � 0.001
% Errors novel – – 92.5 � 0.007 92.8 � 0.006 79.4 � 0.01
% Unique genes – 100 � 0 100 � 0 92.8 � 0.004 75.4 � 0.006

Simulated results of SAGE experiments. In all cases, the genome is assumed to be as represented in the column “Assumed.” The
columns “Unique, no errors,” “Unique,” “Random,” and “Non-random,” represent the assumptions outlined in this order in Methods.
The row headings “Unique tags” and % copy numbers represent the assumed or detected number of unique tag sequences and their
copy numbers. “% Errors novel,” the percentage of erroneously sequenced tags that are novel (not present on some other mRNA).
“% Unique genes,” the percentage of actively transcribed genes that have unique tag sequences. A and B, 9- and 10-base tag
sequences, respectively, assuming published findings for SAGE experiments. C, 10-base tags assuming a genome with 5 times the
number of unique tags and 5 times the number of tags. The remaining columns represent increasingly realistic assumptions about the
SAGE process as detailed in Methods. In all cases, the number of unique genes detected is significantly underestimated, as is the
fraction of low copy number transcripts. Confidence values are standard errors of the mean for 1000 simulations.
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The parameters inferred from a numerical analysis
of the data are quite different from the data themselves
(compare Observed Data to Inferred Parameters). In
general, it is seen that the actual number of genespre-
sent must be substantially larger than the number
found (see Discussion), and that the actual frequency
distribution favors more transcripts present at low
copy numbers than those observed from the data.
These inferred parameters can be checked by use as the
starting point for the simulations presented previously
(assuming nonrandom tag sequences with sequencing

error). This provides an estimate of what would have
been observed given that these inferred parameters ac-
curately reflect the experimental transcriptome. The
close similarity of these predicted data to the observed
data gives credence to the inferred parameters.

DISCUSSION
Recent advances have led to dramatic increases in the
amount of DNA sequence information available for
several genomes. The sequencing efforts of the Human
Genome Project have resulted in sequence database en-
tries for thousands of genes and expressed sequence
tags (Aaronson et al. 1996; Hillier et al. 1996). In the
very near future, the Human Genome Organization
(HUGO) will have achieved the goal of a complete se-
quence of the entire human genome. Current esti-
mates are that the human genome contains some
50,000–80,000 genes, with many of the genes thus far
sequenced assigned to a functional class, but fewer
than 7000 having a known or putative function (Fields
1997). With so little current knowledge about the func-
tions of these genes, it is important to sort out the
developmental, temporal, topographical, histological,
and physiological patterns in which genes are ex-
pressed. Thus the assessment of expression profiles for
hundreds, if not thousands, of genes by quick and re-
liable means is crucial to provide the information es-
sential to functional genomics. Only with this knowl-
edge will it be possible to elucidate the cause for dis-
eases at the level of gene expression and to find new
methods for treatment.

In the past, several approaches have been used to
compare levels of gene expression, e.g., reverse tran-
scription-polymerase chain reaction and northern-blot
analysis. These approaches are limited to analysis of
one gene at a time, whereas other methods like sub-
tractive hybridization or variations of the differential
display technique (Liang and Pardee 1992) can deter-

Table 2. Interpretation of Genome from Observations

Model->
Observed

data
Inferred

parameters
Predicted

data

Unique tags 15,720 25,336 15,651 � 58
% 1–5 64.16 80.56 63.64 � 0.31
% 6–50 31.0373 16.51 31.74 � 0.40
% 51–500 4.3815 2.72 4.33 � 0.098
% 501–5000 0.4212 0.215 0.29 � 0.01

Interpretation of the true state of the genome based on SAGE
observations using 10-base tag sequences. Observed data,
the published values for unique tags and distribution of copy
numbers. Inferred parameters, the true genomic values esti-
mated to correspond to these observations. Predicted data,
the simulated observational outcome assuming the genome
given in inferred parameters. Note the close correspondence
between observed and predicted data. Confidence values are
standard errors of the mean for 1000 simulations.

Figure 2 The probabilities that a given gene will have a unique
tag sequence under various conditions. In each plot, the right-
most distribution arises from random DNA sequences, and the
arrows indicate the expected outcome. The left-most distribution
in each plot is the probability given nonrandom DNA sequences.
(A) 9-base tags and 15,720 genes (the assumptions of Table 1A).
(B) 10-base tags and 15,720 genes (the assumptions of Table 1B).
(C) 10-base tags and 78,600 genes (the assumptions of Table
1C).
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mine multiple expression patterns of predetermined
sequences (Fischer et al. 1995), with the latter tech-
nique being very sensitive but not quantitative. Large
numbers of expressed genes also can be investigated
using nucleic acid microarrays. These arrays make use
of the fact that DNA strands hybridize to their comple-
mentary sequences, which can be applied to inert sur-
faces (Schena et al. 1995). Thousands of short nucleo-
tide sequences can be affixed to those membranes, and
thus the expression of hundreds of different genes can
be assessed. Recently developed DNA chips can contain
up to 100,000 different DNA sequences, 20 nucleotides
in length, “printed” on their glass surface, enabling rapid
and accurate scanning (Hacia et al. 1996). While quite
powerful, all of these techniques have the relative disad-
vantage of being suitable only for analysis of a fixed
number of predetermined gene sequences.

Presently, SAGE is the only technique that prom-
ises a quantitative characterization of the complete
transcriptome for a cell type or tissue (Velculescu et al.
1997). It is because of the quantitative potential of the
approach that it is imperative to consider aspects of
SAGE experiments that bias the observed outcomes.
Four of these have been considered in the present
work: (1) sampling errors in tag selection; (2) sequenc-
ing errors; (3) nonuniqueness of tag sequences; and (4)
nonrandomness of DNA sequences. Taken together,
they lead to a significant under-estimation of the num-
ber of active genes in a preparation and in the fraction
of genes expressed at low copy numbers. This biasing
can be overcome to arrive at maximum likelihood es-
timates for gene number and transcript copy number
distribution if certain assumptions are made. Among
these are several that merit more discussion.

The form of the distribution of copy numbers is
one assumption that must be made to analyze the ex-
periments quantitatively. Note that the relative fre-
quencies of copy number classes are not assumed.
Rather, the assumption deals with whether or not the
distribution is continuous or a step function, and
whether the mode of the distribution is at one copy per
cell or some other number. The latter question appears
to have very little impact on the outcome; construct-
ing a distribution with the mode at three copies per
cell, for example, produces results almost identical to
those presented here.

The choice of a continuous function was based on
two unrealistic aspects of the step function. First, it
makes for abrupt discontinuities, so that, for example,
the likelihood of finding a copy number of 501 could
be 10 times less than that of finding 500 copies per cell.
There may or may not be true “abundance classes” in
the transcriptome (Quinlan et al. 1978), but clearly it is
unrealistic to impose that sharp a boundary. The sec-
ond problem is that the use of a step function forces
one to assume that all probabilities within a range are

equal, i.e., that copy numbers of 5000 are equally prob-
able as 501. For these reasons, a continuous approxi-
mation to the step function was assumed; the choice of
the double exponential function was a matter of con-
venience and should not be taken as a claim that this
is the true form of the distribution. Although the major
points of this study are borne out even when the step
function is used, the best estimates of actual gene num-
ber and copy number distribution are changed to some
extent. Thus it will be important in future work to as-
sess the shape of the distribution to more accurately
apply the analysis presented here.

A second assumption is inherent in the imposition
of dinucleotide mutation. As noted in Methods, this
cannot be expected to fully capture the extent of non-
randomness within DNA sequences. It is therefore to
be expected that the extent of the changes seen be-
tween random and nonrandom simulations are under-
estimated. In particular, this means that the probabil-
ity that a given tag sequence is unique to its gene is
probably overstated in the present work. However, it is
important to note that various additional sources of
nonrandomness (dinucleotide mutation, selective
pressure, evolution of genes from a common ancestor,
repetitive sequences, etc.) will not, in general, add in
an algebraic sense. For example, a coding region tag
sequence may be constrained from dinucleotide muta-
tion owing to selective pressure. Statistical analysis of
full mRNA tag sequences following terminal restriction
enzyme sites may permit a better estimate of nonran-
domness. Another approach, requiring that both total
(active) gene number and copy number distribution
are well characterized, would be to compare predicted
rates at which new tags are generated as tag number
increases with the observed rates (Madden et al. 1997;
Velculescu et al. 1999).

In addition to sequence nonrandomness, there are
other aspects of actual SAGE experiments that are not
accounted for in this analysis. These include, but are
not limited to, sample contamination, differential RNA
splicing, DNA polymorphism, and failure to map tags
to correct genes because of incomplete sequence data.
While these are beyond the scope of the present analy-
sis, which is focused on inherently mathematical as-
pects of SAGE, most of them could be incorporated
into the SAGE model if (1) the probability of occur-
rence is well known, and (2) that probability is high
enough to be of concern.

The most significant aspect of the nonuniqueness
of gene tags is the identification of these tags using
genetic databases. As shown in Figure 2C, under real-
istic assumptions for a complete genome the probabil-
ity that a given tag sequence is found on only one gene
is ∼76% — even for 10-base tag sequences. If the entire
genome is represented in the databases, it is straight-
forward to check whether the tag is found on multiple

A Quantitative Evaluation of SAGE

Genome Research 1245
www.genome.org



genes; if not, caution must be exercised in the identi-
fication of a tag sequence with a particular gene. This
potential nonuniqueness of tags has important impli-
cations for the design of SAGE experiments. As shown
by the simulations, a smaller genome size will signifi-
cantly reduce the frequency of nonunique tags. In this
vein, it should be noted that the actual genome size is
significantly larger than that estimated directly from
SAGE results — this, along with limitations in the cap-
ture of sequence nonrandomness (above), exacerbates
the problem. Thus, applications of SAGE directed at
specific cell types, or of tissues with limited cell diver-
sity, clearly will have significant advantages over stud-
ies of complex tissues or whole organisms.

While the nonuniqueness of tags raises substantial
problems in the identification of genes with tags, it is
the sampling error that most profoundly affects the
transcript frequency distribution and the number of
unique transcripts. The results reported here with re-
spect to the latter are in agreement with experimental
findings in which the number of unique transcripts
found was still increasing past 15,000 as the tags in-
creased to 60,000 (Madden et al. 1997). Recently, an
extensive study was released in which it was found that
∼650,000 tags were needed to adequately sample a
transcriptome of ∼56,000 (detection was estimated at
83% for single copy transcripts: Velculescu et al. 1999).
Clearly, the sampling of tag sequences will have to be
increased if the SAGE approach is to adequately char-
acterize the entire set of cellular transcripts. In the ab-
sence of such comprehensive sampling, the quantita-
tive approach reported here represents the best way to
find unbiased estimates of the size and frequency dis-
tribution of the transcriptome, and to determine sam-
pling adequacy in differential studies.

METHODS
The goal of this work is to present quantitative methods by
which data from SAGE experiments can be interpreted. Spe-
cifically, one would like to have maximum likelihood esti-
mates for (1) the probability that a given tag sequence is
unique to one gene; (2) the number of unique genes in the
experimental system; and (3) the distribution of transcript
copy numbers. There are four aspects of SAGE experiments
that render the best estimates of these parameters consider-
ably different from the values actually detected in the experi-
ments. These are (1) sampling errors in tag selection; (2) se-
quencing errors; (3) nonuniqueness of tag sequences; and (4)
nonrandomness of DNA sequences. These complications will
be taken up in order, as they represent a sequential layering of
complexity in the quantitative evaluation of SAGE data.

Sampling Errors in Tag Selection
We start with the unrealistic assumptions that the tag se-
quence of each gene is unique and that there are no sequenc-
ing errors (these assumptions will be relaxed below). In this
case, the only complication that separates SAGE observations
from the actual situation is sampling error — most signifi-

cantly, the under counting of transcripts present in low copy
number. This potential problem has been addressed via sto-
chastic simulation (Zhang et al. 1997), but under the present
simplifying assumptions it has an analytical solution. Con-
sider the case where there are “t” transcripts (in total — not
unique transcript species) in a preparation, “c ” copies of a
particular transcript, and “s” tags sampled. In general, “t” is
very large compared to “s” (e.g., 5 µg or ∼1018 transcripts), so
the selection of tag sequences can be well approximated as
sampling with replacement. The probability that “r” copies of
the particular transcript will be found within the set of “s”
tags is then the binomial distribution, where the more famil-
iar “p” (the probability of detection) is here represented as c/t
(the fraction of total transcripts represented by the given spe-
cies). Following this notation, the probability that a transcript
will be detected in copy numbers between r1 and r2 (inclusive) is:

p �r1 � r � r2 � c,t,s� = �
r=r1

r2 �s
r� • �c

t�r

• �1 −
c
t��s−r�

(1)

The binomial distribution of tag sampling provides a simple
assessment of the significance of the difference detected in
SAGE experiments directed at differential gene expression.
When the number of detected tags is five or more, the normal
approximation is valid with the mean equal to s. c/t and vari-
ance s. c/t. (1-c/t) (Harshbarger 1971). If fewer tags are de-
tected, approximate confidence intervals can be obtained by a
test for proportions (Winkler and Hays 1975).

To make use of this equation and to carry out the simu-
lations discussed below, a frequency distribution of transcript
copy numbers must be assumed. In much of this study pub-
lished data (Zhang et al. 1997) for colonic epithelial cells will
be used, in which the frequency ranges for transcript copy
numbers per cell were 1 to 5, 64.16%; 6 to 50, 31.04%; 51 to
500, 4.38%; and >501, 0.42%. For quantitative purposes, the
final range must have an ending point, for which 5000 seems
a reasonable choice. It remains to specify the actual form of
this distribution, for which the simplest choice is a step func-
tion over the four ranges (Fig. 3). For reasons discussed later,
we chose instead a double exponential function selected to
match the numerical integrals for the corresponding step
function over the four ranges (Fig. 3). Preliminary analysis
using the step function shown in Figure 3 reveals some dif-
ferences in relative frequencies observed, but the main points
of this study are borne out using either the step or the con-
tinuous distribution.

Sequencing Errors
The second complication in the assessment of SAGE experi-
ments is the presence of sequencing errors. As noted in pre-
vious work (Zhang et al. 1997), the number of sequencing
errors can be calculated readily from the estimated error rate
of ∼ 0.7%/base. However, the impact of these errors on data
interpretation is less clear: some of these errors will introduce
novel tags not represented in the genome, while some will
artificially increase the copy numbers of tag sequences that
are in fact in the genome. Sequencing error presents some-
what of a dilemma for the experimenter: the probability that
a tag sequence is unique to a particular gene increases with tag
length, but sequencing errors also are increased.

Nonuniqueness of Tag Sequences
Clearly the 49 or 410 possible tag sequences exceeds the num-
ber of genes typically probed, but this is no guarantee that
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each tag sequence will be present on only one gene.* The
simplest assumption is that tag sequences are random in the
sense that all 4x possible tag sequences are equally probable
(where x is the number of variable bases within the tag se-
quence). One way of posing the question is to ask for the
probability that the entire set of tag sequences for (g) genes
are unique. This can be found in the product sequence

p �x,g� =
4x !

�4x − g�!��4x� g (2)

This expression evaluates to vanishingly small numbers for a
significant number of genes: 1.26 x 10–84 (x = 9, g = 10,000)
and 1.69 x 10–21 (x = 10, g = 10,000). Clearly there will be du-
plicated tag sequences in most genomes of interest.

It is perhaps more useful to pose the following question:
given a particular tag of interest, what is the probability that
its sequence is unique to one gene? If it is again assumed that
tag sequences are random, the expression for the stated prob-
lem is

p �x,g� = ��4x − 1�

4x �g−1

(3)

For a g of 15,720 (from published results [Zhang et al. 1997];
see below) this yields 94.2% and 98.5% for 9– and 10-base
sequences, respectively. In other words, there is a ∼ 5.8%
chance (g =15,720, x = 9) that the tag of interest is not unique
— that the same tag sequence is found on one or more other
genes. For a genome 5 times that size, the probabilities fall to
74.1% and 92.8%. Because of the presumed independence
and uniform randomness of tag sequences, the above expres-
sion also represents the expected value for the fraction of tag

sequences that will be unique. That is, it is expected that on
average 94.2% of the genes will have unique tag sequences
(g = 15,720, x = 9).

A more complete formulation of the situation can be
formed from equation 4, which gives the probability that a
tag sequence in the genome is present exactly once in the
genome. Equation 5 expresses the probability that the tag
sequence will be present r times:

p �r,x,g� = ��4x − 1�

4x �g−r

� � 1

4x�r−1

�� g
r − 1� (4)

Evaluation of this shows that as one would expect, the num-
ber of tag sequences found on r different genes drops drasti-
cally as r increases (e.g., p[r = 2] = 5.65%, p[r = 3] = 0.169%;
g = 15,720, x = 9).

In summary, these equations show the possibility that a
tag sequence represents multiple genes is a significant poten-
tial problem in the interpretation of SAGE results, although
less so in the more recent applications (Velculescu et al. 1997;
Zhang et al. 1997), which have made use of 10-base tags in-
stead of the 9-base tags used in the original study (Velculescu
et al. 1995). As will be seen, the nonrandomness of DNA se-
quences further exacerbates this problem.

Nonrandomness of DNA Sequences
DNA sequences are in fact known to be nonrandom. Because
some sequences will therefore be more probable, a smaller
fraction of genes with unique tag sequences is to be expected.
To take a simple approximation that captures some of the
deviation from random sequences, we assume nucleotide pair
ratios based on differential mutation rates as found in pseu-
dogenes (Bulmer 1986). As these are presumably not subject
to selective forces, while an individual tag sequence may or
may not be, this should represent a conservative estimate of
the actual nonrandomness involved. To incorporate this and
other complications discussed above requires stochastic or
Monte Carlo simulations of the SAGE process.

Mapping Experiment to Simulation
To take all of these factors into account, we have constructed
a stochastic model of the SAGE process. The model begins
with the assumption that the experimental results — unique
tag sequences found, and their relative abundances — repre-
sent an estimate of the true number of unique transcripts and
their abundances. Taking the results as a starting place, the
SAGE process is simulated to produce an outcome that would
be observed if the assumption were true. In general, this will
produce a set of simulated results that are substantially differ-
ent from the experimental results. The nature of this differ-
ence then can be used to find the actual number of unique
transcripts and their abundances, which would in fact have
led to the experimental observations.

Four sets of simulations†, incorporating the progression
of assumptions outlined above, were undertaken. Common
to all are the following steps. (1) Tag sequences are generated
for the assumed number of genes using uniform random de-
viates (1 � n � 4x)‡. (2) Random deviates from the assumed

*Note that the four-base restriction enzyme sequence by which
tags are manipulated does not enter into this calculation. As the
sequence is by experimental design unvarying, it does not con-
tribute to the number of possible tag sequences or to the simu-
lations presented below.

†The program performing these simulations is available free of
charge for noncommercial use. Contact the corresponding au-
thor for information regarding this software.
‡Note that many standard language random number generators
are inadequate for this large a task, and care should be taken in
the algorithm used. (Press et al. 1998)

Figure 3 Two possible forms of copy number distribution. The
simplest construction is a step function (solid line). Thus, for ex-
ample, if there is a 64% chance that a gene is expressed in 1 to
5 transcripts per cell, the first step extends from 1 to 5 at a height
of 12.8 (64/5)%. A more plausible assumption is that the distri-
bution is continuous. This has been implemented here by finding
a double exponential function with the same integral over each
copy number range (dashed line). The graph is truncated at 50 +
copies per cell for visual clarity — in fact, both distributions ex-
tend out to 5000 (see Methods).

A Quantitative Evaluation of SAGE

Genome Research 1247
www.genome.org



distribution of copy numbers are used to assign each gene a
copy number. (3) A list of transcripts is assembled reflecting
the various copy numbers. (4) The list is sampled randomly
(with replacement) and “sequenced” to produce the equiva-
lent of an experimental result.

To match the first assumptions introduced, the algo-
rithm ensures tag uniqueness and a lack of sequencing errors.
Under the second and subsequent sets of assumptions, the
estimated sequencing error is introduced (0.7% per nucleo-
tide). In the third set of simulations, the tag sequences are
truly random — not forced to be unique. In the fourth and
final approach, the tag sequences are subjected to neighbor-
based substitutions until the sequences are at equilibrium
(Bulmer 1986, 1987), in order to reflect at least some of the
nonrandomness found in DNA sequences.

In the final part of the analysis, the fourth simulation
algorithm (nonrandom sequences with sequencing error) is
treated as a function in order to calculate back to the condi-
tions that must have existed in the mRNA preparation. This is
accomplished by inputting the observed number and fre-
quencies of mRNAs (Table 2, Observed Data) and using a fit-
ting approach to find the inferred number and frequencies
under which the observations are most likely (Table 2, In-
ferred Parameters). As a check on the fitting algorithm, these
inferred parameters then are fed into the original simulation
to confirm a good match between these predicted data (Table
2) and the originally observed data.
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