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Abstract
Causal mediation analysis is considered for time-to-event outcomes and survival analysis models.
Different possible effect decompositions are discussed for the survival function, hazard, mean
survival time and median survival scales. Approaches to mediation analysis in the social sciences
are related to counterfactual approaches using additive hazard, proportional hazard and accelerated
failure time models. The product-coefficient method from the social sciences gives mediated
effects on the hazard difference scale for additive hazard models, on the log mean survival time
difference scale for accelerated failure time models, and on the log hazard scale for the
proportional hazards model but only if the outcome is rare. With the proportional hazards model
and a common outcome, the product-coefficient method can provide a valid test for the presence
of a mediator effect but does not provide a measure. When additive hazard, accelerated failure
time, or the rare-outcome proportional hazards models are employed and combined with the
counterfactual approach, exposure-mediator interactions can be accommodated in a relatively
straightforward manner.

Introduction
In the last few years there have been a number of papers developing methods for mediation
analysis from a counterfactual perspective, building on some of the original insights of
Robins and Greenland1 and Pearl.2 Until the paper by Lange and Hansen,3 in this issue of
Epidemiology, there has not, however, been any work addressing the survival-analysis
setting from the perspective of causal inference. Using an additive hazard model, Lange and
Hansen3 have provided a useful flexible method to analyze direct and indirect effects for
time-to-event data. Here, I would like to discuss different effect measures of interest when
direct and indirect effects in survival analysis are in view, show how an approach similar to
that of Lange and Hansen3 is possible for a proportional hazards with a rare outcome or
accelerated failure time models generally, and relate these ideas to previous work on
mediation with survival data published in the social science literature.4

Concepts and Definitions
We will let A denote an exposure of interest, T a time-to-event outcome, M a mediator and C
a set of covariates. We will let Ta denote the counterfactual event time if A had been set to a;
likewise we let Tam denote the counterfactual event time if A had been set to a and M had
been set to m. We let Ma be the counterfactual value of the mediator if A had been set to a.
We restrict our attention here to the setting of a single event, rather than considering
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multiple events as in Lange and Hansen.3 With these definitions we can also consider nested
counterfactual event times. For example, TaMa* is an individual's event time if the exposure
had been set to a and the mediator had been set to the level it would have been had exposure
been a*. We assume composition,5 that Ta = TaMa. For an arbitrary time-to-event variable V
we will let SV(t) denote the survival function at time t, that is SV (t) = P(V > t); the survival
function conditional on covariates C = c can likewise be defined as SV (t|c) = P(V > t|c). We
will use λV(t) and λV(t|c) for the hazard or conditional hazard at time t, that is the
instantaneous rate of the event conditional on V ≥ t.

An interesting feature of survival data within the context of mediation analysis is that there
are multiple ways or scales by which we might decompose a total effect comparing exposure
levels a and a* into direct and indirect effects. For example, if we were to consider the
survival functions, we could decompose a comparison of the survival functions STa(t) and
STa*(t) as follows:

where the first expression in brackets is the natural indirect effect on the survival function
scale and the second is the natural direct effect on the survival function scale. We could
alternatively but similarly decompose the overall difference in hazards as the sum of natural
indirect and direct effects on the hazard scale:

Both of these measures, along with a cumulative hazard effect decomposition, were
considered by Lange and Hansen.3 We could, however, also consider other effect
decompositions. We could, for example, consider a decomposition in terms of mean survival
times:

Or if we let let Qa and Qam denote the median counterfactual survival time if A had been set
to a or if A had been set to a and M had been set to m, respectively, then we have the
decomposition:

One could also consider using the difference in log-survival function, or log-hazards, or log-
expected survival times, etc. For example, with log-hazard one has the decomposition:

which exponentiating can also be written:

VanderWeele Page 2

Epidemiology. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



so that the hazard ratio is the product of the natural indirect and direct effect hazard ratios.
All of the above measures could also be considered conditional on strata of covariates C = c.
With each of these potential decompositions on the difference scale, one could calculate
a ”proportion mediated” by taking a ratio of the natural indirect effect to the sum of the
natural direct and indirect effects (i.e. the total effect). These measures of the proportion
mediated may vary across scales. Also, depending on the specific survival model, the natural
direct and indirect effects may be analytically tractable on certain scales but not on others.

Irrespective of the decomposition chosen, however, certain fairly strong no-unmeasured-
confounding assumptions need to be made. Following an identification approach initiated by
Pearl2 and used by subsequent authors on mediation,5−8 Lange and Hansen3 make four
assumptions about no confounding conditional on the covariates. These can essentially be
stated as that, conditional on covariates, there is (i) no confounding for the exposure-
outcome relationship, (ii) no confounding for the mediator-outcome relationship, (iii) no
confounding for the exposure-mediator relationship, and (iv) no mediator-outcome
confounder that is an effect of the exposure. These are assumptions (A.1)-(A.4) in Lange
and Hansen, and we likewise assume that they hold here. Sensitivity analysis techniques for
direct and indirect effects can be useful when these assumptions do not hold.9,10

Mediation with an Additive Hazard Model
Lange and Hansen3 present an approach to mediation analysis with survival data using an
additive hazard model. In the most basic form they consider, the model can be written as:

(1)

They propose a linear regression model for the mediator, when it is continuous, with
normally distributed error:

(2)

They proceed to show that on the hazard scale, natural direct and indirect effects are given
by:

where the first expression is the indirect effect and the second the direct effect on the hazard
scale.

The use of the coefficient λ1 for the exposure in the model for the outcome as the direct
effect, and the product of the coefficient for the exposure in the model for the mediator times
the coefficient for the mediator in the model for the outcome (λ3β1) as a measure of the
indirect effect, has a long history in the social sciences.11,12 The causal inference literature
has clarified the assumptions needed to interpret these measures as causal direct and indirect

VanderWeele Page 3

Epidemiology. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



effects,2,5,8 e.g. assumptions (i)-(iv) above. The causal inference literature has also given
formal counterfactual definitions of these effects, and has extended the notions of direct and
indirect effects to much more general settings. Lange and Hansen3 have shown how these
notions extend further to survival data and have provided a model - the additive hazards
models - under which the traditional social science direct and indirect coefficient measures
hold.

However, the paper of Lange and Hansen3 goes much further than this. Their approach
allows the hazard functions to vary over time, allows for the possibility of multiple types of
events, and could be extended to incorporate exposure-mediator interactions as well. The
generality of the approach proposed is impressive, and the methodology and software
provided will certainly be of use for causal mediation analysis within a survival context.
Additive hazard models are not employed with great frequency in the epidemiologic
literature, but the paper by Lange and Hansen demonstrates their potential utility and
perhaps should give epidemiologists reason to rethink their choice of survival analysis
models.

Mediation with Accelerated Failure Time and Proportional Hazards Models
The survival analysis models most frequently employed in the epidemiologic and social
science literatures are probably, first, the proportional hazards model, and, second,
accelerated failure time models. The possibility of conducting mediation analysis with
survival data under both models was in fact considered in a paper by Tein and MacKinnon4

in the social science literature some years ago. There have traditionally been two methods
for undertaking mediation analysis. The ”difference method”,13 which is more common in
epidemiology, considers an outcome model both with and without the mediator, and takes
the difference in the coefficients for the exposure as the measure of the indirect or mediated
effect. The ”product method”,11 more common in the social sciences, takes as a measure of
the indirect effect the product of the coefficient for the exposure in the model for the
mediator (i.e. β1 in model (2)) and the coefficient for the mediator in the model for the
outcome. If the outcome and mediator are continuous and there are no interactions in the
model for the outcome, then the two methods coincide.8,14 However, with binary outcomes
the two methods may diverge8,15; they will approximately coincide when the binary
outcome is rare.8

Tein and MacKinnon4 consider whether the two approaches coincide with proportional
hazards and accelerated failure time models. They effectively use model (2) for the mediator
and use

(3)

for the proportional hazard model and

(4)

for the accelerated failure time model where ε is a random variable following an extreme
value distribution and ν is a scale parameter so that T follows a Weibull distribution. Using
simulations, Tein and MacKinnon find that the difference-method and product-method give
different results for the proportional hazards model but the same results for the accelerated
failure time model. Their results raise the question of whether either of these methods for
either of the models has a clear causal interpretation. Lange and Hansen3 have given a
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rigorous causal interpretation for the parameters of an additive hazard model. Do similar
results hold for the proportional hazards or accelerated failure time models?

Let us first consider the accelerated failure time model. We note first that it is no
coincidence that the product- and difference- methods coincide for the accelerated failure
time model in (4). In the eAppendix (http://links.lww.com) we give an analytic proof that
this is so, provided that the models are correctly specified and that there are no interactions
in model (4); the result holds for arbitrary distributions of ε in model (4) i.e. not just Weibull
models. We moreover show in the eAppendix that the measures of direct and indirect effects
obtained by these methods are the natural direct and indirect effects on the mean survival
time scale. That is, the natural direct effect log{E(TaMa*)} − log{E(Ta*Ma*)} is equal to θ1(a
− a*) and the natural indirect effect log{E(TaMa)} − log{E(TaMa*)} is equal to β1θ2(a − a*).
In other words, we once again obtain the result that exposure-coefficient in model (4) for the
outcome is a measure of the direct effect, and the product of the exposure-coefficient in
model (2) for the mediator times the mediator-coefficient in model (4) for the outcome is a
measure of the indirect effect. In fact, for the accelerated failure time model, these analytic
expressions can be extended so as to allow for exposure-mediator interaction in model (4).
Suppose we extended model (4) to allow for such interaction:

(5)

If model (5) holds for the outcome and model (2) holds for the mediator, then natural direct
and indirect effects on the log mean survival time scale conditional on C = c are given by:

where the first expression is the natural indirect effect and the second expression is the
natural direct effect, and where σ2 is the variance of the error term in regression model (2)
for the mediator. These results hold for arbitrary distributions for ε in model (5) but do
require a normally distributed mediator in model (2). Note that when there is no interaction
(θ3 = 0), the expressions reduce to those given above and considered by Tein and
MacKinnon.4 The expressions given here for the accelerated failure time model are
analogous to those given by VanderWeele and Vansteelandt8 for odds ratios for mediation
analysis for a dichotomous outcome. Expressions for standard errors for these direct and
indirect effects could likewise be adapted from VanderWeele and Vansteelandt.8

Let us now turn to the proportional hazards model in (3). With the proportional hazards
model, somewhat analogous results can be obtained, but only when the outcome is rare.
Specifically, consider an extension to model (3) which allows for exposure-mediator
interaction:

(6)

If model (6) holds for the outcome and model (2) holds for the mediator then we show in the
eAppendix (http://links.lww.com), using arguments similar to those in Lin et al.,16 that,
provided the outcome is rare, natural direct and indirect effects on the log hazard ratio
difference scale are given by:
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where σ2 is again the variance of the error term in regression model (2) for the mediator. The
expressions are likewise analogous to those obtained by VanderWeele and Vansteelandt8 for
a dichotomous outcome, but these expressions only apply for a rare outcome. Natural
indirect and direct effect hazard ratios can be obtained by exponentiating the right hand side
of the equalities. We moreover show in the eAppendix that when there is no exposure-
mediator interaction as in model (3), and when the outcome is rare, then the product- and
difference- methods will coincide approximately.

In the general setting (with non-rare outcome), unfortunately, neither the product-method or
the difference-method for the proportional hazards model have any sort of clear causal
interpretation as a measure of effect. Tein and MacKinnon4 show that the product- and
difference- methods can diverge, and that they may even be of opposite signs! Lange and
Hansen3 noted that in the general setting (i.e. common outcome) with the proportional
hazards model, natural direct and indirect effects do not have any simple analytic
expression. We do nevertheless show in the eAppendix that even if the outcome is common,
the product method using models (2) and (3) at least provides a valid test for whether there
is any mediated effect, provided the models are correctly specified and that assumptions (i)-
(iv) hold. With the proportional hazards model and a common outcome, the product method
can thus be useful at least in testing the hypothesis of any mediated effect. But neither the
product- nor the difference- method should in general be used as a measure of an indirect
effect. Indeed, Hafeman17 has recently demonstrated the danger of using such measures in
non-linear models; they can result in weighted averages of causal effects in which the
weights do not in fact sum to one.

Conclusion
The discussion above has provided expressions for natural direct and indirect effects for the
accelerated failure time model and for the proportional hazards model when the outcome is
rare. A major contribution of the counterfactual approach to causal mediation analysis has
been to clarify the no-confounding assumptions required for the identification of direct and
indirect effects. Within the context of survival data, the counterfactual approach also
clarifies when different methods for direct and indirect effects can be interpreted as
measures of effect rather than simply as a test for a mediated effect. The causal inference
approach clarifies further on what scale these measures apply when they can be so
interpreted. The observations of Tein and MacKinnon4 have been given a more rigorous
formulation and the approach has been extended to allow for exposure-mediator
interactions.

Because the proportional hazards model is commonly used in epidemiologic research, the
development of methodology and causal direct and indirect effect measures that can be used
in conjunction with the model when the outcome is common may be an important direction
for future research. However, the additive hazard model employed by Lange and Hansen3

constitutes an important and very general alternative to mediation analysis with survival
data.
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eAppendix for “Causal mediation analysis with survival data” by TJ
VanderWeele

Equivalence of Product and Difference Method for the Accelerated Failure
Time Model with No Exposure-Mediator Interaction

Suppose that the model (2) in the text for the mediator is correctly specified:

(2)

along with model (4) for the outcome with the exposure and mediator so that:

(4)

Suppose also a model is fit for the outcome with just the exposure, not the mediator:

The difference method uses ϕ1 – θ1 as a measure of the indirect effect; the product method
uses β1θ2. We show that if all of the models are correctly specified these two are equal. This
is because by the model for the outcome without the mediator we have:

and by model (4) we have:

Because this holds for all a, we must have ϕ1 = {θ1 + θ2β1} and thus ϕ1 – θ1 = θ2β1.

Formulas for Natural Direct and Indirect Effects for the Accelerated Failure
Time Model with An Exposure-Mediator Interaction

Under model (2) for the mediator and model (5) for the outcome:

(5)

we have that
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where the first equality follows by the law of iterated expectations, the second by
assumption (iv), the third by assumptions (i)-(iii), the fourth by the acclerated failure time
model, and the final one by the fact that M is normally distributed and has constant variance
σ2. Thus,

and so

Formulas for Natural Direct and Indirect Effects for the Proportional
Hazards Model with Exposure-Mediator Interaction and a Rare Outcome

Under model (2) for the mediator and model (6) for the outcome:

(6)

we have that

where fTaMa* (t|c) and STaMa* (t|c) denote the conditional density and survival functions
respectively for TaMa*. We have that

where . Likewise,
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Thus,

where

Since M is normally distributed we have that (cf. Lin et al.16):

which can be approximated by  if ΛT(t|0, 0, 0) is small (i.e. if
the outcome is relatively rare). Thus

and

From this it follows that,

Equivalence of Product and Difference Method for the Proportional Hazards
Model with No Exposure-Mediator Interaction and a Rare Outcome

Suppose that the model (2) in the text for the mediator is correctly specified:
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(2)

along with proportional hazards model (3):

(3)

Suppose also a proportional hazards model is also fit without the mediator:

The difference method uses ϕ1 – γ1 as a measure of the indirect effect; the product method
uses β1γ2. We show that if all of the models are correctly specified and the outcome is rare
these two are approximately equal. This is because by the proportional hazards model
without the mediator:

and by model (3)

where

As in the previous proof, since M is normally distributed we have that (cf. Lin et al.16):

which can be approximated by  if ΛT(t|0, 0, 0) is small (i.e. if the
outcome is relatively rare). Thus
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Because this holds for all a, we must have ϕ1 ≈ {γ1 + γ2β1} and thus ϕ1 – γ1 ≈ γ2β1.

The Product Method for the Proportional Hazards Model with Common
Outcome Yields a Valid Test of the Presence of Any Mediated Effect

We assume models (2) and (3) are correctly specified and that assumptions (i)-(iv) hold. In
counterfactual notation, these are that for all a, a*, m, (i) , (ii) , (iii)

 and (iv)  where  denotes that X is independent of Y conditional
on Z. On any causal diagram for which (iv) holds, it also follows that

. If in models (2) and (3) we have that γ2β1 ≠ 0 then from this it
follows that γ2 ≠ 0 and β1 ≠ 0. If β1 ≠ 0 then by assumption (iii) it follows that A has an
effect on M in the sense that for some a and a* there are individuals  such that, Ma(ω)
– Ma*(ω) ≠ 0. Let m = Ma(ω) and m* = Ma*(ω). If γ2 ≠ 0 then by assumptions (i) and (ii) it
follows that M has an effect on Y with A fixed at a in the sense that there are individuals

 such that Tam(ω) – Tam*(ω) ≠ 0. Since , it follows that
there are individuals  and thus for , 0 ≠ Tam(ω) – Tam*(ω) =
TaMa(ω) – TaMa*(ω) i.e. TaMa(ω) ≠ TaMa*(ω) so there are some individuals for whom the
natural indirect effect is non-zero.
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