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1. Introduction
Although the majority of applications of gene therapy for human diseases have relied upon
direct administration into the target tissue, systemic administration is generally thought to be
more reliable, easy, and more appealing, particularly for diseases that affect multiple tissues.
This is especially true for cancers. However, when one considers systemic routes with gene
therapy vectors, multiple challenges exist, related to tropism/targeting and effects of the
circulating humoral and cellular host defenses against such vectors. One exciting avenue that
has been exploited by multiple groups recently has employed mammalian cells as a carrier
for such gene therapy vectors [1-3]. Such carrier cells possess the advantage of hiding the
vector from circulating humoral and cellular defense mediators, and, in some cases, have
been shown to be targetable to the tissue of interest, particularly in the case of tumors [4-6].
In this chapter, we plan to review the current state of the art in cell-mediated delivery of
such vectors to tumors, especially focusing on adenovirus and herpes simplex virus type 1
(HSV-1), where mesenchymal and neural stem cells have been shown to be engineered to
act as carriers.

2. Carrier cell types
The innate and adaptive immune system can be an efficient host defense, largely responsible
for eliminating circulating naked virions before they reach a tumor. It is widely accepted that
a more efficient delivery system for naked virions is needed to improve their therapeutic
efficacy, especially against metastatic or diffusely infiltrating tumors. Attempts to use cells
to deliver anti-cancer agents date back nearly two decades [7]. Autologous host mammalian
cells would not be recognized as foreign by host immunity, and thus hiding an oncolytic
virus (OV) within them could provide a solution to the elimination of systemically delivered
OVs. Ideally, the carrier cells should be able to target or home to the tumor. Interestingly,
mounting evidence shows that stem and progenitor cells, immune cells, and cancer cells
themselves possess such tumor-homing characteristics [3,6,8,9]. While this homing by
immune cells and cancer cells does not seem surprising, more remarkable has been the
discovery that multipotent tissue cells, such as mesenchymal and neural stem cells, are
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attracted to microenvironments that possess abnormal vascular structures, necrotic hypoxia
and/or inflammation, possibly through the sensing of chemoattractive molecules (Fig. 1)
[10]. Since this environmental milieu is often found in malignant tumors, stem cell-based
delivery of genes and viruses is becoming a widely used strategy for experimental cancer
therapy. In the next sections, we will discuss the different types of stem cells employed for
such strategies.

a. Mesenchymal Stem Cells (MSCs)
Mesenchymal stem cells (MSCs) are non-hematopoietic adult multipotent stem cells that can
be isolated from many sources including the bone marrow (BM), adipose tissue, peripheral
blood (PB), umbilical cord blood (UCB), bone, muscle and cartilage, and expanded with
relative ease on plastic tissue culture dishes [11]. In the presence of specific induction
factors, MSCs differentiate into mesodermal cells such as adipocytes, chondrocytes and
osteoblasts. Their hypo-immunogenic status combined with their ability to regenerate
damaged tissue has been exploited through transplantation of allogeneic MSCs to treat
several degenerative diseases [12].

Interest in MSCs for cell-mediated cancer gene therapy was spawned by showing that they
can home to tumors. Studeny M et al. demonstrated tumor tropism of human MSCs in a
metastatic melanoma to murine lungs model, where interferon (INF)-β gene-loaded hMSCs
generated an inhibitory effect on tumor growth and improvement of animal survival [3]. In
addition to intravenous administration, adoptively transferred MSCs, derived from the bone
marrow, adipose or umbilical cord tissue, have also been shown to possess a natural
propensity for migration into engrafted tumors in mice [10]. This homing ability of MSC
toward tumors is thought to be due to chemotactic mediators (cytokines and chemokines,
etc.) that are also secreted by wounded tissues. Suggestive evidence for this chemotaxis
comes from the finding that MSCs express receptors for these mediators on their surface
[13].

Paradoxically, in the sites of increased angiogenesis most solid tumors are also characterized
by poor vascular perfusion and hypoxia. Interestingly, these regions of hypoxia in tumors
are also thought to harbor cells resistant to both chemotherapy and radiotherapy [14]. Low
oxygen conditions activate hypoxia-inducible factors (HIF)-mediated gene transcription that
can further increase the secretion of proangiogenic and inflammatory cytokines involved in
MSC recruitment [15]. In addition, hypoxia is also known to increase MSC proliferation and
diminish their differentiation capacity. It also has been found that co-injection of MSCs with
tumor cells supported MSC proliferation in s.c. melanoma xenograft [16]. Collectively,
these findings suggest that exogenously delivered MSC could home to solid tumors and, if
MSCs carry a transgene or virus, these findings also imply that such therapeutic transgenes
or viruses would also target the tumor microenvironments. In fact, the feasibility of this
delivery approach for OVs has been validated by several investigators, utilizing oncolytic
adenovirus and myxoma virus in metastatic breast carcinomas, ovarian cancer and malignant
glioma in mice (Table 1) [4,5,17-20].

Although the aforementioned studies have reported success in the capacity of homing MSC
to tumors and also in delivery of MSCs loaded with viral and anticancer agents to
neoplasms, this capacity has also been called into question by others. In fact, intravenous
delivery of MSCs has been reported to home to a broad range of organs without evidence of
specificity toward tumors in mice, rat or human [21]. Hakkarainen et al. have reported that
intravenously injected OV-loaded MSCs homed rapidly to tumor-bearing lungs followed by
delayed virus accumulation to the animal hepatic system [4]. Notwithstanding this lack of
specificity, they were still able to detect a significant survival advantage by intravenous
administration of OV-loaded MSCs in tumor-bearing mice when compared with naked OVs
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or replication-deficient Ad. They suggested that the OV-loaded MSCs might be releasing
OVs from circulation into tumors even if they were not directly homing to tumors. In a brain
tumor model, MSCs were also reported to have a lack of tropism toward intracranially
grafted tumors via tail vein injection [22]. However, to bypass this lack of specificity, Yong
et al. showed that GFP-labeled MSCs loaded with a replication-deficient Ad could localize
into intracranially grafted human glioma after administration through the carotid artery in
mice, leading to a significant improvement in the survival of brain tumor-bearing mice after
OV-loaded MSC administration [5]. Therefore, the lack of specificity of tumor homing
might be circumvented by directly administering MSCs into the arterial system of the
targeted organ. In fact, a decade ago, we and others were able to show that naked OV
administration to brain tumors was more efficacious after direct carotid administration than
after intravenous administration [23-25]. Obviously, one could circumvent concerns about
non-specific homing of MSCs by direct injection into the target tumor or organ: in fact,
stereotactic intracranial injection of MSCs has been reported to lead to migration of the
MSCs even into xenografted gliomas located a distance away from the site of injection [18].
Another concern voiced about MSCs has been that they could possibly change the kinetics
of tumor growth because of cytokine/growth factor release, potential provision of a
supportive microenvironment for tumor cells and/or potential induction of neo-angiogenesis
[21]. In summary, it seems that additional work is needed to characterize the issue of carrier
cell homing and delivery of biologic products, as well as possible effects that the carrier cell
may have on tumor biology.

b. Neural stem cells (NSC)
Neural stem cells (NSCs), by definition, are characterized by their ability to differentiate
into cells of the nervous system (neurons, astrocytes or oligodendrocytes) and by their
capacity to self-renew [26]. In the adult brain, the dentate gyrus of the hippocampus and the
subventricular zone (SVZ) of the lateral ventricle define the locations for neural stem or
progenitor cells, where neurons are born. A recent study also suggests that neural progenitor
cells also lie in neocortical layers [27].

NSCs can not only migrate throughout the brain during development, but can also migrate
toward acute lesions, such as stroke, and areas of neurodegenerative damage. Based on the
findings by several groups that NSCs also displayed tumor tropism, therapeutic applications
of NSCs have also focused on cancer [1,2,8]. It has been reported that tumor
microenvironments, where hypoxia is common and where there can be promotion of neo-
angiogenesis, release cytokines, growth factors and proangiogenic factors (such as SDF-1,
FGF2, VGEF and HGF) that can enhance NSC mobilization [14,28]. In addition, endothelial
cells, but not vascular smooth muscle cells, have been reported to directly enhance the self-
renewal of NSCs in vitro [29]. Similar to what has been reported with MSCs, lower oxygen
tension can promote NSC proliferation and suppress its differentiation. Thus, the tropism
toward the hypoxic regions of neoplasms may likely result from NSCs’ attempts in response
to ischemic injury to be neuroprotective and to migrate towards such areas in order to induce
neurogenesis and effectuate neural repair [30,31]. NSC can also down-regulate effector
functions of inflammatory T cells and macrophages, in response to pro-inflammatory
cytokines such as TNFα, IL-1β and IFNν, and can promote neuroprotection in CNS regions
exposed to inflammation through expression of death receptor ligands (such as FasL, TRAIL
and APO3L) that induce apoptosis of inflammatory T lymphocytes [33]. NSC
transplantation studies also suggest that most implanted cells express markers of an
undifferentiated state (such as nestin), thus suggesting that they may not actually be
replacing injured local cells through a differentiation process but may rather be delaying
neurodegeneration and suppressing inflammation through release of neural growth and
immunomodulatory factors [34].
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In addition to this reported capacity for migration towards tumor and/or areas of neural
damage, NSCs have also been documented to actually suppress tumor growth. Glass et al.
reported that endogenous neural precursor cells from the SVZ displayed tropism toward
glioblastomas grafted in animal cortex [32]. Interestingly, they discovered that there was
increased aggressiveness of glioblastomas with older rats that correlated with the decline of
neural precursors and their ability to migrate towards the tumors, again suggestive of a
tumor-suppressive effect mediated by neural precursors. Intravenously administered NSCs
can also form perivascular niches, reside for up to three month in the mice CNS and move
out toward regions of the brain that are affected by pathology [33]. Experiments have shown
that brain tumor stem cells also reside within perivascular niches, thus implying that
intravascular delivery of NSCs may target them. Therefore, intravascular administration of
NSCs may also be an attractive route of delivery to target brain tumors [35]. Interestingly,
tumor tropism of NSCs has also been reported for other cancer models (melanoma and
breast carcinoma) [36,37]. A number of investigators have reported that genetically armed
NSCs have delivered anticancer agents such as prodrug-activating enzymes and suicide
genes to implanted tumors after intravenous or intracranial administration routes [28].

Few investigators have explored the use of NSCs to carry OVs to cancer targets (Table 1).
Herrlinger et al. utilized herpes simplex virus type 1 (HSV-1) loaded into v-myc
immortalized mouse neural precursors (NPCs). When these loaded NPCs were implanted
into mouse brains they reported NPC migration towards xenografted gliomas [2]. More
recently, Tyler et al. demonstrated that c-myc immortalized human NSCs loaded with a
conditionally replicative adenovirus (CRAd) migrated towards the site of implanted tumors
and improved the survival of tumor-bearing mice [38].

The notion of an eventual clinical use for NSCs is challenged by the limited source of
primary cells. NSCs, immortalized by introducing oncogenes such as v-myc and c-myc,
remain a safety concern because of potential degeneration into tumors. It may be that well-
characterized allogeneic cell lines could be of sufficient safety to be considered for future
clinical use [28], and NSCs derived from cultured pluripotent stem cells (embryonic stem
cells- ES-, and induced pluripotent stem cells-iPSC) may become the most readily accessible
and accepted source for future clinical trials [39].

3. Improving the transduction of carrier cells
The process of loading carrier cells with OVs or gene therapy vectors has received relatively
limited attention. Efficiency in this process would greatly improve the development of large
preclinical and clinical batches of such cells for trials in humans. In this section, we will
focus on the areas where such efficiency has been investigated.

a. Cellular tropism
Oncolytic viruses need to be internalized into carrier cells and thus require the presence of
surface binding receptors. Adenovirus serotype5 (Ad5) is the most widely used
conditionally replication-competent adenovirus (CRAd). It requires the binding of the
cellular coxsackie-adenovirus receptor (CAR) to its knob portion of the fiber protein [40].
The attachment of the Ad fiber protein to CAR on the cell surface is an important first step
in infection. Although naked Ad5-based gene delivery and oncolysis has been widely used,
most potential cell carriers and malignant tumors express low levels of CAR [18,41].
Chemical and genetic modifications of adenovirus have been researched to overcome Ad5's
limited entry into carrier cells. In the following paragraphs, such viral modifications will be
addressed and reviewed (Fig. 1).
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a) PEGylated adenovirus—Chemical conjugation with polyethylene glycol (PEG), a
hydrophilic and nonimmunogenic polymer, was initially developed in order to shield virions
from neutralizing antibodies and also permits dose reduction to limit virus-induced host
inflammatory responses. Because PEGylation of adenovirus also interfered with CAR
binding, there was reduced infection of off-target hepatic cells, upon systemic delivery in
vivo [41]. Recently, attaching peptides and ligands to the ends of PEG chains has yielded
tissue-specific gene transfer. The Arg-Gly-Asp (RGD) peptide motif binds specifically to αv
integrins, which are frequently over-expressed on the cell surface of tumor and tumor-
associated endothelium. This approach has also been exploited to modify PEGylated Ad to
achieve targeting of integrins ανβ3 on endothelial and tumor cells [41]. In addition to small
peptides such as RGD, PEG conjugation to larger ligands such as epidermal growth factor
(EGF) has been demonstrated to enhance Ad gene transfer to EGFR-positive cells [42]. In
this study, EGF protein conjugated to biotin-PEG, complexed with avidin on the surface of
Ad, and enhanced gene transduction in EGF Receptor (EGFR)-expressing epithelial
carcinoma cells. This gene transfer was suppressed by the presence of free EGF or, in
EGFR-negative cells, indicating the specificity of EGFR targeting. Such peptides conjugated
to PEGylated Ads might potentially be exploited to deliver various viruses to different
carrier cells based on their receptor expression.

b) Polycation mediated internalization to increase viral transduction—Viral
gene transfer efficiency is influenced by electrostatic repulsion between the negatively
charged cell surface and the net negatively charged virion. Hence, neutralization of
membrane charges to bridge virion and cell surface should augment gene transduction.
Polybrene, one of the polycation agents, is used to improve retrovirus and lentivirus-
mediated gene transductions in vitro. This strategy has also been used in adenovirus-
mediated gene transfer. The use of a polycation-based transfection reagent has also been
shown to significantly improve viral entry in cultured MSC without affecting their viability
[43,44]. This simple method can achieve efficient gene transduction and viral progeny
without having to undergo complex genetic modifications.

c) Fiber-modified Adenoviruses—Although chemical modification to increase viral
transduction efficiency is promising, the expansion to large-scale production is cumbersome
and may make quality control at each step of conjugation and production of subsequent
reagent batches a challenging process for clinical use. Therefore, virus retargeting strategies
by genetic modification of the Ad capsid have been investigated extensively.

Early studies showed that the external peptides at the carboxy terminus of the Ad fiber
protein can change their tropism against targeting cells, while a HI loop exposed to the
outside of the fiber knob domain can flexibly incorporate the target ligands without
disturbing the intramolecular interactions of the knob during trimerization process, which is
required for Ad entry [45]. These results suggested possible retargeting constructions of the
oncolytic Ad. Integrin ανβ3 retargeting of Ad5-delta24RGD is one such tropism-modified
CRAd which is currently being evaluated in human patients for safety and efficacy
(http://www.clinicaltrials.gov/ct2/show/NCT00562003). Ad-RGD can improve gene
transduction in MSCs that express negligible CAR. Recently, intravenous administration of
human MSC loaded with Ad-RGD was found to be able to efficiently deliver and release
virus particles to intracerebral orthotopic glioma and lead to improved survival of the tumor-
bearing mice [5,46].

Similarly, a stretch of seven lysine residues [K7 (KKKKKKK) peptide] that possess heparan
sulfate targeting motif have been incorporated in the HI-loop of fiber protein of adenovirus
(Ad-p7k). This Ad-p7k also achieved high gene transduction and increased therapeutic
efficacy in several cancer models in mice [47-49]. This fiber-modified virus also displayed a
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more than 400-fold increase of gene transduction in MSC compared to Ad5, and a 16-fold
increased gene transduction relative to Ad-RGD [17]. Neural stem cells are known to
express modest levels of CAR on their cell surface: Ad-p7k was able to significantly
improve gene transduction in these cells [38]. In addition, malignant glioma cells decreased
CAR expression level, and treatment with CRAd-p7k enhanced therapeutic efficacy [49].
Collectively, these studies indicate the potential for utilizing fiber-modified viruses to
increase transduction efficacy of carrier cells.

d) Chimeric fiber protein with other serotypes—More than 100 different Ads have
been isolated and categorized into six subgroups (A to F). Among these, subgroup B Ads
(e.g. Ad3, 7, 11 and 35) can utilize CD46 that is ubiquitously expressed on cell surfaces, and
other as yet unidentified proteins as receptors for entry into host cells. To increase
transduction efficiency of subgroup C Ad5 vectors, genetic engineering has been utilized to
replace subgroup C knob domain or shaft/knob domains with that of subgroup B Ad fibers,
in order to achieve infection in a broad range of cell types. In addition to improving
internalization, chimeric capsids can also reduce liver tropism, reducing the risk of
hepatotoxicity, and may also increase circulation time when compared to unmodified Ad5
[50,51]. Thus, capsid-modified Ad vectors overcome the limitation of natural Ad5 in entry
into carrier cells.

Ad5 vectors containing chimeric Ad5 tail and Ad3 shaft/knob (Ad5/3) or Ad35 shaft/knob
(Ad5F35) have been thus loaded into carrier cells to target tumors. For ovarian and breast
cancers, oncolytic Ad5/3 enhanced the lytic effects more than Ad-RGD and Ad5.
Intravenous delivery of Ad5F35-loaded MSCs improved the survival of mice from their
metastatic cancers [17,19].

Surprisingly, MSCs, which express relatively low levels of CD46, were also found to be
permissive to Ad5F35 infection, suggesting that other unidentified receptors were involved
in Ad5F35 entry [52]. Apart from these carrier cells, Ad5F35 also exhibited advanced gene
transduction and oncolysis for malignant gliomas, when compared to Ad5-RGD and Ad5/3,
bolstering the potential for using chimeric viruses for carrier cell-mediated tumor therapy
[53].

e) Cellular retargeting for HSV-1—Unlike adenoviruses, HSV-1 has not been
extensively studied for cellular retargeting. Only recently have there been studies
investigating HSV1 retargeting. HSV-1 entry is initiated first by its attachment to the host
cell through viral envelope proteins glycoprotein B (gB) or glycoprotein C (gC) to heparan-
sulphate chains on cell-surface heparin sulfate proteoglycans. This is subsequently followed
by more specific binding of gD and gB to specific cell-surface receptors, such as
immunoglobulin-like type 2 receptor-α (PILRα) (for gB) and nectin-1, -2, HVEM and
heparan sulphate produced by several 3-O-sulphotransferases (for gD) resulting in viral
envelope and cell membrane fusion [54,55]. HSV-1 gD has been modified to create
retargeted recombinant viruses. Zhou and Roizman genetically engineered the viral gD
receptor to create a chimeric gD with IL-13 or urokinase plasminogen activator (uPA)
proteins to retarget HSV-1 infection to IL13 or uPA-expressing tumor cells [56]. More
recently Menotti et al. created HER2 (human epidermal growth factor receptor 2)-retargeted
HSV-1 vectors by conjugation of a single-chain antibody (scFv) to HER2 [57]. This scFv
approach would be an attractive candidate to rapidly expand the engineering of retargeted
viruses for cancer gene therapy.
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b. Conditional replication in tumor and carrier cells
After entry into cells, OVs will initiate the process of replication that leads to progeny virion
production and release with ensuing death of the infected cell. This process could be
relatively short (12-18 hours for HSV1) or long (24-48 hours for adenovirus or vaccinia
virus). In addition, the carrier cell should be able to unload progeny viruses at the desired
tumor site. In the ensuing paragraphs, we will briefly review how replication could affect the
efficiency of OV loading into carrier cells and unloading into tumors (Fig. 1).

a) Tumor-selective adenovirus—Natural viruses, such as adenoviruses, drive quiescent
normal cells to enter the cell cycle in order to replicate. Upon Ad infection, the E1 region
gene products bind to Rb or p53 protein to disrupt their G1-S phase regulation. To de-target
normal cells, oncolytic Ads have been genetically engineered to restrict viral replication
based on the functionality of these pathways [116]. In fact, Ad-Δ24 and dl922-947 viruses
with mutated pRB-binding region of E1A have been investigated to target cancers [58,59].
In addition, some papers reported the use of Ad-Δ24 in MSC-mediated delivery with
subsequent Ad-Δ24 release into tumors [4,5,17].

To increase the tumor-specific potency of oncolytic viruses, tissue-specific promoters have
been exploited to drive viral gene expressions. While several exciting strategies using tissue
or cancer-specific promoters have been used to drive viral replication, detailed descriptions
of all these promoters are beyond the scope of this article and are reviewed elsewhere
[60,61]. Briefly, using bispecific promoters in carrier cells and targeting cancers, Hamada et
al. employed an ovarian cancer cell-derived carrier cell loaded with an IAI.3B promoter
driven CRAd and demonstrated cancer cell-mediated OV delivery with a therapeutic effect
in ovarian tumors established in the flanks of Ad immunized mice [62]. In an analogous
approach using normal carrier cells, the C-X-C chemokine receptor 4 (CXCR4) promoter-
driven Ad was tested to be delivered by MSC to target breast and malignant glioma tumors
in mice. Compared with wild-type E1A promoter, CXCR4 promoter-driven Ad replication
was many times higher in both hMSCs and human glioma cell lines [18]. In a murine model
of metastatic breast carcinoma, hMSC-mediated Ad-CXCR4 intravenous delivery increased
survival rate compared to naked Ad injection [17]. Therefore, several approaches exist to
ensure OV replication and release from carrier cells to tumor sites.

b) Oncolytic HSV-1 vectors—Attenuation of HSV-1 to de-target normal cells was
initially achieved by mutants with defects in nucleic acid metabolism functions. One of the
earliest developed mutants (hrR3 is an HSV-1 with a lacZ insertional mutation in the ICP6
locus of the UL39 gene product) lacked the large subunit of HSV-1 ribonuleotide reductase
(RR), whose activity is required for efficient viral replication in normal non-dividing cells
(but not in tumor cells [93]), and more recently was shown to replicate selectively in cells
with p16 tumor suppressor gene defects regardless of cell cycle status [63]. Because NPCs
divide and self-renew, they have been shown to be relatively permissive in allowing hrR3 to
replicate [2]. An additional common deletion in HSV-1 has been to remove ICP34.5 (the γ2
34.5 gene product), responsible both for binding cellular protein phosphatase 1α (PP1α) that
allows for protein synthesis, and beclin-1 that allows for cellular autophagy. This mutated
HSV-1 has also been shown to lead to additional attenuation and prevention of
neurovirulence [64,65]. Thus, a double-mutant HSV-1 virus (in both ICP6 and ICP34.5)
could be delivered into a xenograft epithelial ovarian cancer (EOC) in mice by using
irradiated teratocarcinoma cells as carriers [9].

While tumor-specific oncolytic HSV-1 viruses have been created, the efficacy of loading
them up in carrier cells utilizing chemical modification with PEG has not yet been
investigated [66,67]. In addition, future development of bispecific promoter-driven viruses,
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able to target both the carrier cells and the cancer cells, may improve the release of progeny
OVs and therapeutic efficacy.

4. Extending the life span of virus-loaded carrier cells
Although oncolytic viruses are attenuated by a variety of stratagems to restrict replication in
normal tissues, most cells utilized as carriers are relatively permissive for viral replication,
partly due to the fact that they self-renew and cycle (MSCs and NSCs). Therefore, the
survival time of a virus-loaded carrier cell is limited [2,18,20]. It is difficult to reliably
regulate viral replication in the carrier cells so that timely release of the OV load occurs in
the tumor, rather than at other sites trafficked by the loaded carrier before, during or after
administration. Intravenous administrations of virus-loaded carrier cells reach the
neovasculature in tumors, yet have been reported to not deliver the OV load as efficiently as
hoped [4]. The poor prognosis of patients with malignant tumors such as glioblastoma
multiforme, advanced pancreatic adenocarcinoma and diffuse-type gastric carcinoma is also
due to tumor cells located relatively far from vessels, further impeding the effect of an OV
released by carrier cells in blood vessels [68,69]. This problem is also illustrated by the
anticancer failures of conventional drug delivery. In addition, abnormal blood flow by
contorted and abnormally leaky tumor vessels causes heterogeneous distribution of carrier
cells [14]. Therefore, the half-life of a loaded carrier cell may be a very critical factor for the
success of this type of therapy.

To avoid cell lysis during delivery, Qiao et al researched whether membrane attachment of
vesicular stomatitis virus (VSV) to carrier T cells, instead of cellular internalization, with
low doses of VSV led to lack of replication in the carrier cell and allowed gradual release of
the oncolytic VSV [6]. In fact, the surface-attached VSV seemed to reduce carrier cell lysis,
but there was still some shielding of the adhered viruses from host immune responses during
intravascular delivery in preimmune mice. Willmon et al. recently reviewed this method in
detail [70].

Another published approach has been to employ an inhibitor of DNA synthesis to suppress
virus replication after carrier cell loading [2]. Herrlinger et al. used mimosine to arrest the
replication of the mutant HSV-1, rRp450, in loaded NPC carrier cells temporarily. This
allowed time for neural precursor cell (NPC) migration to tumors in the brain. With
mimosine, they reported that the loaded rRp450 virus was retained in the carrier NPCs for
more than 2 weeks with restriction of viral replication until mimosine was removed. These
NPCs were still able to migrate to the intracerebral glioma after intratumoral injection in
mouse brains.

While these methods appear to work relatively well in the experimental systems, additional
permutations may be even more effective. It is possible, in fact, that additional genetic
engineering of loaded OVs could be attempted in order to achieve a virus whose replication
would be restricted in the carrier cell until it reached its tumor target.

5. Conclusion
Carrier cell-based delivery of OVs and genes requires the integration of multiple types of
expertise, from viral design to carrier cell preparation, from kinetics of cell and viral life
cycles to pharmacokinetics. Future efforts in improving all of these research areas may lead
to efficient clinical applications of this technology.
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Fig. 1.
Schematic overviews of the carrier cell-based oncolytic virus (OV) delivery to tumors.
Cellular tropism (purple shaded region): Cellular internalization of Adenovirus serotype 5
(Ad5) and herpes simplex viruses type 1 (HSV-1) depends on cellular receptor expressions:
Coxsackie and Adenovirus Receptor (CAR) for Ad5 fiber and nectin-1, 2, HVEM and
several 3-O-sulphotransferase-modified heparan sulphates for HSV-1 gD . Cellular
retargeting is achieved by viral ligand modifications by means of covalent linkage to
peptides that can target cellular receptors, by using chimeras with other adenoviral serotype
proteins or by using single-chain antibodies (scFv) to link adenoviral entry to a specific
cellular receptor. Conditional replication (green shaded region): Ad5 E1A mutation and
transcriptional regulation by tissue-specific promoter (e.g. CXCR4) achieve conditional viral
replication. Tumor-specific HSV-1 replication is based on the deletions of UL39 gene
(ICP6) and/or γ34.5 genes (ICP34.5), and conditional γ34.5 gene transcription by tumor-
specific promoters (e.g. nestin). Carrier cells (blue shaded region): mesenchymal/neural
stem cells (MSC, NSC), immune cells (T cells), or cancer cells themselves have been used
as carrier cells to deliver Ovs, usually through intravascular (intravenous and carotid artery)
or local (e.g. intracranial) administration. Carrier cells can migrate to tumor beds attracted
by chemotactic mediators secreted from the tumor microenvironment. Carrier cells allow
OV replication to release progeny OVs toward tumors.
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