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Abstract
A dedicated, non-symbolic, system yielding imprecise representations of large quantities
(Approximate Number System, or ANS) has been shown to support arithmetic calculations of
addition and subtraction. In the present study, 5–7-year-old children without formal schooling in
multiplication and division were given a task requiring a scalar transformation of large
approximate numerosities, presented as arrays of objects. In different conditions, the required
calculation was doubling, quadrupling, or increasing by a fractional factor (2.5). In all conditions,
participants were able to represent the outcome of the transformation at above-chance levels, even
on the earliest training trials. Their performance could not be explained by processes of repeated
addition, and it showed the critical ratio signature of the ANS. These findings provide evidence for
an untrained, intuitive process of calculating multiplicative numerical relationships, providing a
further foundation for formal arithmetic instruction.
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Adults possess an intuitive mathematical system for representing magnitudes in an
approximate, abstract fashion (Barth, Kanwisher, & Spelke, 2003; Cordes, Gelman, Gallistel
& Whalen, 2001). This approximate number system (ANS) is shared by many other species,
including rats, pigeons, and non-human primates (Brannon, Wusthoff, Gallistel & Gibbon,
2001; Cantlon & Brannon, 2006; Capaldi & Miller, 1998). The discriminability of two
numbers represented by the ANS is determined by their ratio and not their absolute
difference; 10 and 20 are as discriminable as 100 and 200. There is evidence that young
infants and unschooled children possess this same system, for they readily discriminate
between different numerosities from early in development (Brannon, 2002; McCrink &
Wynn, 2007; Xu & Spelke, 2000), and perhaps even at birth (Izard, Sann, Spelke, & Streri,
2009), with a characteristic ratio limit (Barth, LaMont, Lipton & Spelke, 2005; Lipton &
Spelke, 2004). The ANS is very noisy in neonates who detect numerical differences in a 3:1
ratio (Izard et al., 2009), sharpens rapidly during infancy (Lipton & Spelke, 2004), and
gradually reaches adult-like levels of ∼1.15:1 (Halberda & Feigenson, 2008; Izard &
Dehaene, 2008; Pica, Lemer, Izard & Dehaene, 2004).

These ANS representations can be used in the arithmetic operations of ordering (Brannon,
2002), addition, and subtraction (Barth et al., 2005, 2006; Cordes, Gallistel, Gelman &
Latham, 2007; McCrink, Dehaene, & Dehaene-Lambertz, 2007; McCrink & Wynn, 2004,
2009). Children demonstrate early informal understanding of certain types of arithmetic
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logic, including inversion and commutativity (Baroody, 1999; Gilmore & Spelke, 2008) that
are likely supported by this core numerical system. Nevertheless, the origins of other
mathematical operations, particularly multiplication and division, are unknown. There is
mixed theoretical and empirical evidence as to whether the ANS can support these
operations.

Although symbolic multiplication is taught to school children on the basis of addition (by
the operation of repeated addition), its formal and conceptual definitions in mathematics are
independent of repeated addition and apply to any real numbers. Multiplication involves a
scalar transformation of one magnitude into another (James & James, 1976). Thus, in order
to determine whether this scaling process we term core multiplication is present as an
additional untrained numerical operation, we must look for two key features. First, children
must be able to perform a multiplicative scaling directly, without relying on repeated
addition as a heuristic. Second, children must do so by relying on their core system of
number- the ANS- and scale over number per se, not over perceptual variables commonly
confounded with number, such as area.

The fact that core multiplication can be defined independently of addition does not imply
that the two operations are psychologically distinct or equally primitive. Indeed, both studies
of adults and studies of children suggest that addition and subtraction are more accessible
than multiplication. Many studies of adults show a dissociation in the neural systems
underlying multiplication, relative to subtraction. Subtraction problems, such as 13–5, likely
involve non-verbal quantitative processing of magnitudes, for they are supported bilaterally
by the intraparietal sulcus (Chochon, Cohen, van de Moortele, & Dehaene, 1999; Simon,
Cohen, Mangin, Bihan, & Dehaene, 2002). Multiplication, as it is studied in the
neuropsychology literature, likely involves automatic retrieval of verbally encoded facts, for
it is is supported by the left angular gyrus (Delazer, Domahs, Lochy, Bartha, Brenneis, &
Trieb, 2004; Lee, 2000). Neuropsychological studies reveal a double dissociation between
impairments in subtraction and multiplication (Dagenbach & McCloskey, 1992; Dehaene &
Cohen, 1997; Lampl, Eshel, Gilad, & Sarova-Pinas, 1994; Lee, 2000), and case studies on
semantic dementia find impaired multiplication performance (on rote, exact problems such
as 4 × 5) but spared non-verbal subtraction abilities (Lemer, Dehaene, Spelke, & Cohen,
2003; Zamarian, Karner, Benke, Donnemiller, & Delazer, 2006). All these findings suggest
that the ANS directly supports subtraction but provide no evidence that it supports
multiplication. Because these studies are conducted on adults who have rote-learned their
multiplication tables, however, it is possible that a core multiplicative process exists but is
overshadowed by later-learned verbal processes.

Studies of infants’ sensitivity to ratios, and of preschool children's proportional reasoning,
suggest that a scaling process could very well exist in children. These studies have probed
children's extraction of a scaling factor to determine proportional equivalence. To our
knowledge, only one study has found such scaling in the purely numerical realm (McCrink
& Wynn, 2007). In this study, six-month-old infants were habituated to a series of slides
displaying large numbers of objects of two types in a constant ratio. The infants
subsequently looked longer at slides that presented the object types in a different numerical
ratio, relative to slides that contained the familiar ratio, even though the absolute numbers of
objects varied across trials and their novelty was equated at test (McCrink & Wynn, 2007).
A number of other researchers have also observed sensitivity to proportional relationships in
preschoolers and young children, but only under conditions in which continuous variables
such as area vary (Goswami, 1992; Jeong, Levine, & Huttenlocher, 2007; Mix, Levine, &
Huttenlocher, 1999; Park & Nunes, 2001; Singer-Freeman & Goswami, 2001; Sophian,
2000; Spinillo & Bryant, 1991, Vasilyeva & Huttenlocher, 2004). In all of these successful
studies, the children intuited a common invariant relationship between two continuous
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variables, and used this relationship to guide their performance. The extraction of this
invariant is inherently multiplicative: The only way to know that the relationship between 4
and 8 is somehow similar to the relationship between 10 and 20 is to have a mental tag of
“twice as much.” Piaget (1965) (followed by Vergnaud, 1988), termed this a schema of
correspondence, in which participants detect the scaling invariant of a one-to-many
relationship (for example, a distribution of x flowers per vase) and make inferences from
that invariant detection.

In a recent study, Barth, Baron, Spelke and Carey (2009) investigated whether young
children can perform multiplicative scalar transformations over numerical and continuous
values prior to instruction on these operations. In one condition, the authors presented
children with a set of dots, occluded the stimuli, and performed a “magic” transformation
with musical notes that resulted in a doubled amount. Children were asked to compare this
represented amount to a separate, visible array of dots. The children performed at above-
chance levels on this task, but subsequent analyses cast doubt on the thesis that children
engaged in genuine multiplication. As the authors noted, children's performance on the
multiplication task was consistent with learning of a response strategy that was independent
of multiplication and depended only on the range of numerical magnitudes presented in the
comparison array. Children reliably judged that the comparison array was larger than the
product when it was especially large and smaller than the product when it was especially
small, irrespective of the actual size of the product. On critical trials when the comparison
array was intermediate in size but differed from the product by the same ratio as on the other
trials, however, children performed at chance. Barth et al. (2009) therefore provided little
evidence that children were capable of the simplest multiplicative scale transformation:
doubling. Nevertheless, it is possible that children are able to perform this operation but
were led, by training, to pursue an alternative, range-based comparison strategy.
Accordingly, Experiment 1 uses a different training procedure to test whether children are
sensitive to doubling. Unlike Barth et al. (2009), we tested children's sensitivity to doubling
not only after training but on every training trial including the first, so as to investigate
whether children spontaneously evoke a scaling process.

Even if evidence for sensitivity to doubling were to be obtained, it would be difficult to draw
conclusions about multiplication from such evidence, because a doubling operation can be
effected by a process of repeated addition. Instead of extracting a multiplicative factor,
children could have mentally duplicated the set and then added the original set and its
duplicate together (e.g., Barth et al., 2005). As a more direct test of sensitivity to scale
transformations, Barth et al. (2009) ran a halving condition and found that children were
able to halve the occluded array successfully, without relying on range-based strategies. This
finding leaves open the question whether children can perform scalar transformations on
numerical quantities, however, because number was confounded in this condition with
continuous quantitative variables. In Barth et al's (2009) halving experiments, children were
presented on each trial with an array of elements that was constant not only in number but
also in element size and display area. They subsequently compared half of that array to a
second array on the basis of number, because the comparison array presented elements at
different sizes and densities, specifically chosen so as to control for non-numerical
quantitative variables. Nevertheless, the halving operation itself was performed on the
original, unchanging array, whose numerical and non-numerical properties therefore were
confounded. Although children's performance on the halving test indicated that they were
able to mentally bisect this array, it does not reveal whether the quantity on which they
based their bisection was number, display area, summed surface area, or some other
continuous variable. Barth et al.'s (2009) experiments therefore reveal that children are
capable of halving arrays of discrete elements, but they do not reveal whether the process by
which they do so involves a numerical scale transformation.
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These initial findings open the door to a systematic exploration of the multiplication abilities
of the ANS. Using a method adapted from Barth et al. (2009), we tested whether children
with no formal education in multiplication or division were able to transform arrays by a
multiplicative factor of 2 (Experiment 1), 4 (Experiment 2), or 2.5 (Experiment 3). Children
first were introduced to a magic wand that effected a single doubling or quadrupling
operation on a single visible object, or that transformed 2 simultaneously visible objects into
5 objects. Crucially, each of the objects in the array continuously changed in size,
orientation and position, so that none of these factors or the continuous quantitative
variables to which they give rise were correlated with number. On each of a series of trials,
we then presented children with a numerical array, occluded the array, waved the wand
while the array remained occluded, presented a visible comparison array, and asked children
to judge which array was more numerous: the occluded product or the new visible array.
The comparison arrays were either distant from, or near to, the correct product. If children
can detect an invariant multiplicative factor across arrays, then they should learn this
transformation and generalize it across arrays. If this process builds on representations of
approximate number, then their performance should show the signature ratio limit of the
ANS.

EXPERIMENT 1: TIMES 2
Method

Participants—Sixteen 5–7-year-old children (8 females, 8 males; age range of 60 months
8 days to 83 months 25 days, mean age of 71 months) were recruited via a large mailing
database in the greater Boston area. Participants were divided into older (72–84 months) and
younger (60–72 months) age groups. None of the participants in the final sample had formal
education in multiplication or division. One additional child was excluded from the final
dataset for attending a school that had already started teaching multiplication, and two
additional children refused to complete the experiment.

Displays & Procedure
Multiplicative factor introduction—The child and experimenter were seated together in
a quiet testing room at a large table, and watched the videos on a Macintosh laptop. The
children first viewed a video consisting of a single blue rectangle, which grew and shrank
for several seconds before becoming stationary. As the rectangle remained on the screen, an
animated wand appeared from off-screen left and waved over the rectangle while making a
“magical” twinkling sound. After several seconds of waving, the rectangle broke into two
pieces, and the experimenter exclaimed “Look! It’s our magic multiplying wand. It made
more. There used to be one blue rectangle, and now there are two. It doesn’t matter if the
rectangles are big or small. The wand takes one rectangle, and makes it two.” 1 After this
video, the child saw a follow-up transformation video that was identical to the previous
video, but now the rectangle was occluded during the waving of the wand. The experimenter
paused the movie after the wand waved, and asked the child how many rectangles there
were behind the screen. Once the child was able to answer this question correctly (on the
first trial for 12/16 children and on the second trial for the rest), the experiment moved onto
the training trials.

1In devising these events, we aimed to present a process akin to the growth of cell colonies: like multiplying bacteria, the rectangle
divided into two, but the subsequent independent size and movement of the outcome rectangles established the existence of two
distinct entities- double the initial array. Although most children were not familiar with the term “multiply” prior to the experiment,
children accepted our terminology.
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Training block—In the training videos, children saw an array of blue rectangles on the left
side of the screen. During the first training video, the experimenter pointed to this array, and
said “Now we have this many rectangles. There’s too many to count, so we’re going to
concentrate, and use our imagination. So it’s not a counting game, it’s an imagination game,
and we just have to think really hard.” After five seconds, an occluder came up from off-
screen and occluded the initial array. The multiplying wand then came out and waved over
the occluded array, while the experimenter exclaimed “Look! They’re getting multiplied.” A
comparison array composed of pink rectangles came down on the right side of the screen.
These rectangles were of identical size (1 cm2) and density (∼15 objects per 25 cm2) across
all training trials. The children were asked to choose where they thought there were more
rectangles. To control for experimenter bias, the experimenter a) sat slightly behind the child
and several feet from the screen, b) phrased the question neutrally (“Where do you think
there are more?”, “Which side of the screen do you think has more?”), and c) looked at the
child, and not the screen, until he or she provided an answer. After answering left/right, or
pointing to the right or left side of the screen, the experimenter recorded the child’s answer,
pressed a button to drop the occluder and reveal the transformed array, and provided
feedback to the children as to whether his or her response was correct or incorrect. The
outcome array had identical area to that of the initial array and was created by carving each
initially-presented rectangle into two rectangles. In this way, the children received evidence
that the relevant multiplicative variable was number (which was now greater by a factor of
two), and not summed area (which remained the same.) The next training movie was then
presented. After 12 training trials were completed, children had a small break in which they
stretched and moved around the room. After this break, the experiment moved on to the test
trials.

Testing block—The 16 test trials were similar to the training trials: an array was
presented, occluded, transformed by a stroke of the wand, and then a comparison array came
down from offscreen. The child made the ‘more’ judgment just as in training. However,
there are three differences between training and testing. First, the children did not see the
final product of the multiplication behind the occluder (it remained covered even after the
child answered) and they were not told whether they answered correctly or incorrectly;
instead, the experimenter provided uniformly positive feedback on each trial (“Great job!
You’re doing so well. Let’s do another!”). Second, the comparison arrays, which had
previously been controlled for density and item size, now were controlled for area and
contour length. If children had come to rely on area and contour length during the training
trials as the sole cues to numerosity of the comparison array (higher area and contour length
equaled higher number), they would perform at chance on the test trials. Additionally, the
overall area and contour length were equidistant from both the very large and very small
visualized outcome arrays. Even though the children never saw the outcome arrays, this
control discourages a strategy of comparing the area or contour length of the imagined
outcome array to the comparison array. Thus, children must attend to numerical values, and
not perceptual variables that co-vary with number, to succeed on the task. Third, new
numerical values were used in testing so that children's performance could not reflect rote
learning of the values in the training trials. Figure 1 presents a schematic of the procedure
and stimuli.

Design—There were 12 training trials and 16 test trials. On equal numbers of trials in each
category, the comparison array differed from the outcome by a Distance factor of /2 (i.e., the
correct outcome to the multiplication problem divided by 2), /1.5, *1.5, or *2. For the exact
values used in this experiment and the other experiments in this paper, see Table 1.
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Results
Each participant was given an average score composed of their performance on trials whose
comparison arrays were a particular distance from the correct outcome (/ 2, / 1.5, *1.5, or
*2.) Overall performance during the training block (85%) and testing block (79%) was
significantly above chance (one-sample t-tests; ts (15) = 18.26, 10.00, both ps < .001, two-
tailed.) (See Figure 2.) There was no difference between performance during training and
testing (t (15) = 1.99, p = .07, two-tailed.) Using a test proportion of 67.8% (19/28 trials
with an alpha level of .05), we also calculated the number of children whose individual
performance was above chance; 16 of 16 children met this criteria (16 observed successes
with a total N of 16, binomial sign test with an alpha of .05, p<.001). An ANOVA with
block (training block, testing block) and distance (/2, /1.5, *1.5, and *2) as within-subject
factors and gender (male, female) and age (old, young) as between-subject factors revealed
no main effects of block (F (1,12) = 4.10, p = .07), gender (F (1,12) = .03, p = .87), or age
(F (1,12) = .01, p = .97). There was a main effect of distance (F (3,36) = 7.18, p = .001);
follow-up Bonferroni-corrected pairwise comparisons revealed significantly lower
performance in the *1.5 Distance trials (67%), which differed from the /2 (89%) and *2
Distance trials (91%; both ps < .05), but not the /1.5 trials (79%; p = .78). There was a
significant interaction between block and distance (F (3,36) = 5.98, p = .002); performance
“dipped” at slightly different Distance trials for the training block (worst performance at
Distance *1.5) and testing block (worst performance at Distance /1.5.) With the exception of
the Distance *1.5 training trials (58% correct), children performed significantly better than
chance on all testing and training trial types (one-sample t-tests, all ps<.05). This may be
due to a tendency to overestimate outcomes during training trials.

To determine if children needed a good deal of practice before learning this multiplicative
relationship, we tabulated separately each participant’s percentage correct for the very first
and last trials at each Distance trial type (correct/2, /1.5, *1.5, *2) during the training block.
Performance was above chance for both the first and the last trials (84% and 89%
respectively; one-sample t-tests against chance yield ts (15) = 8.88, 9.93, both ps < .001,
two-tailed). There is no evidence that children required much training to understand this
concept; on the first training trial they performed at 84%, and on the last training trial 89%
(paired-sample t-test t (15) = −.76, p = .46, two-tailed.)

Discussion
The results from this experiment indicate that children are able to double a represented
numerical amount. They do so using only their core approximate number system, and do not
require formal schooling or knowledge about multiplication to perform this calculation.
Furthermore, this multiplicative relationship seems to be relatively transparent; children
were able to perform this core multiplication after seeing just one simple introductory movie
in which a single rectangle turned into two rectangles. In accord with other research on the
ANS (Pica et al., 2004; Barth et al., 2005; Lipton & Spelke, 2004), children's performance in
discriminating the outcome of the operation from the comparison array was modulated not
by the absolute difference of two amounts, but rather by their ratio; children performed
significantly better when the comparison array differed from the product by a larger ratio
(2:1) compared to a smaller ratio (1.5:1).

How did children perform this doubling operation: by multiplication or by repeated
addition? Repeated addition is a heuristic used by many elementary mathematics textbooks
in their initial lessons on multiplication (Watanabe, 2003), and it is seen as a first step to
reasoning about multiplication in many educational settings (e.g., Fischbein, Deri, Nello, &
Marino, 1985; Greer, 1988). Further, both children and infants are able to add and subtract
using only the ANS (Barth et al., 2005, 2006; McCrink & Wynn, 2004, 2009.) The capacity
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for repeated addition, however, is not the focus of this paper. Rather, we are interested in
determining if children can draw on an intuitive, core scaling function from one set of
representations from the ANS into a second set of such representations, without any
intermediate operations of addition.

To address this question, we conducted a new experiment involving a Times 4
transformation. This simple change from doubling to quadrupling makes the repeated-
addition strategy hard to achieve, because it requires the creation and maintenance of at least
five distinct numerical magnitudes: the four subsets and the superset that they combine to
form. Even educated adults find it difficult to maintain and update representations of four
numerical magnitudes during a single task (Halberda, Sires, & Feigenson, 2006). Halberda
et al. (2006) found that most adults can encode the numerosity of only three sets of objects
(two subsets, plus the larger superset), and their performance declines steeply if additional
sets must be encoded. If children were using a repeated addition strategy in Experiment 1,
therefore, they should fail to learn the quadrupling relation in Experiment 2.

EXPERIMENT 2: TIMES 4
Participants

Sixteen 5–7-year-old children (8 females, 8 males; age range of 60 months 23 days to 81
months 16 days, mean age of 69 months) were included in the final sample, and were
recruited from the same database as in Experiment 1. None of the participants had formal
education in multiplication or division. Two additional children showed a side bias and
selected the same array on every trial; they were replaced by children of the same gender
and age.

Procedure, Stimuli and Design
This experiment was identical to Experiment 1, except that the introduction movie, training
block, and testing block all portrayed or tested a Times 4 relationship instead of a Times 2
relationship. During the multiplicative factor introduction movie, the participants saw one
rectangle break into 4 rectangles. As in Experiment 1, the comparison arrays were equated
for item size and density during training, and area and contour length during testing. For the
particular values used in this Experiment, see Table 1.

Results
Again, each participant was given an average score composed of their performance on trials
whose comparison arrays were a particular distance from the correct outcome (/ 2, / 1.5,
*1.5, or *2.). Two participants (5-year-old males) had what appeared to be response biases
and answered “Right” for all the trials. In all of the following analyses, these children were
replaced by two children of the same age and gender who did not show a perseverative side
bias. 2

Overall performance in the unbiased dataset during training (72%) was similar to
performance during testing (66%; paired-sample t-test, t (15) = 1.49, p =.16, two-tailed), and
both sessions were significantly above chance (ts (15) = 5.89 and 4.69, respectively; both ps
<.001, two-tailed). (See Figure 3.) As in Experiment 1, using a test proportion of 67.8%
(19/28 trials with an alpha level of .05), we also calculated the number of children whose
individual performance was above chance; 9 of 16 children met this criteria (9 observed

2Overall performance during training (76%) and testing (63%) was significantly above chance even with those subjects whose
responses were biased (one-sample t-tests; ts (15)= 6.18, 3.85, both ps <.01, one-tailed). Thus, overall performance by the group was
significant even with the inclusion of these inattentive children.
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successes with a total N of 16, binomial sign test with an alpha of .05, p<.001). An ANOVA
was conducted with block (training block, testing block) and distance (/2, /1.5, *1.5, and *2)
as within-subject factors and gender (male, female) and age (60–72 months, 72–84 months)
as between-subject factors. There were no main effects of block (F (1,12) = 2.57, p = .14),
gender (F (1,12) = .63, p = .45), or age (F (1,12) =.22, p = .65). Surprisingly, there was also
no main effect of distance (F (3,36) = .91, p = .45), but distance interacted with other
variables. There was a significant interaction of distance and age (F (3,36) = 2.90, p = .04);
younger children were better on Distance trials /1.5 and /2 (69% and 73%, respectively)
compared to Distance trials *1.5 and *2 (64% and 64%.) Older children, on the other hand,
were better at Distance trials *1.5 and *2 (72% and 75%, respectively) than Distance trials /
1.5 and /2 (53% and 64%). This pattern suggests that the younger children were
overestimating the outcome of the multiplying operation, and older children were
underestimating the outcome. There also was a significant interaction between session and
distance (F (3,36) = 3.01, p = .04). Just as in the Times 2 condition, performance “dipped” at
slightly different Distance trials for the training (worst performance at Distance *1.5) and
testing (worst performance at Distance /1.5) sessions. With the exception of the Distance /
1.5 testing trials, children performed significantly better than chance on all testing and
training trial types (one-sample t-tests, all ps<.05). As noted above, this may be due to a
tendency by the older children to underestimate outcomes during testing trials.

To test whether children needed extensive practice before learning this multiplicative
relationship, we tabulated each participant’s percentage correct for the very first and last
trials at each Distance trial type (correct/2, /1.5, *1.5, *2) during the training block, as in
Experiment 1. Performance was above chance for both the first and last trials (64% and 71%
respectively; one-sample t-tests against chance yield ts (15) = 2.06, 4.34, both ps < .05, one-
tailed). There is no evidence that children required much training to understand this concept;
on the first training trial they performed at 64%, and on the last training trial 71% (paired-
sample t-test t (15) = −.92, p =.37, two-tailed.)

Discussion
The children in this experiment were able to infer the outcome of a non-symbolic
quadrupling problem. These results reveal that core multiplying abilities extend beyond the
case of simple doubling. Because of the difficulty of maintaining four separate arrays in
memory (Halberda et al., 2006), they suggest that the use of a repeated-addition strategy
does not drive the performance of children in this task.

Children's overall quadrupling performance resembled their doubling performance in
Experiment 1, but also differed in important ways. Just as in Experiment 1, children learned
the quadrupling calculation rapidly; they were able to infer the invariant multiplicative
factor after seeing a single example of one rectangle turning into four rectangles, and they
generalized this relationship to a large array of rectangles on the first training trials. In
contrast to Experiment 1, however, this transformation was, overall, more difficult for the
children. This is unsurprising when one considers that these numerical transformations of
Times 4 would introduce significantly more variance to the outcome than numerical
transformations of Times 2, with double the variance in the scaling factor. Also in contrast
to Experiment 1, the impact of the distance of the comparison array from the correct
outcome on performance was negligible. Children did not perform significantly better when
the ratio of comparison array to the correct outcome was larger (2:1) than when it was
smaller (1.5:1), as would be predicted by previous work on the nature of the ANS (e.g, Pica
et al., 2004). Instead, the variability in performance came mainly from what appears to be
over- or under-estimation of the outcomes depending on the block and the child’s age.
Overall, the children tended to overestimate outcomes during training and underestimate
during testing, perhaps overcompensating after receiving feedback during training. Younger
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children (< 6 years old) tended to overestimate the outcomes to the problems, and older
children tended to underestimate outcomes. Regardless of difficulty relative to Experiment
1, we still see a pattern of overall above-chance performance during both training and testing
that reflects an underlying core multiplication calculation.

Thus far, we have evidence for a process of multiplication that operates over number per se
and is independent from formal schooling and repeated-addition processes. However, the
strongest test of this ability would come from a task in which repeated addition is not even a
logically possible strategy: the task of multiplying by a factor that is not a whole number.
Some findings in the literature on preschool mathematics suggest that fractions are more
difficult for children to grasp than whole numbers (Behr, Wachsmuth, Post, & Lesh, 1984;
Gelman, 1991; Mack, 1995). This difficulty likely occurs because children cannot rely upon
their knowledge of counting, on the repeated-addition heuristic that is initially taught to
solve multiplication, or on rote-memorized multiplication table. In this next experiment, we
extended the design of Experiments 1 and 2 to test whether the observed non-symbolic
multiplication can be performed with a fractional multiplicative factor. If this process is
truly multiplicative, and distinct from one that capitalizes on repeated addition, we should
see above-chance performance and similar patterns of competency in this experiment as in
Experiments 1 and 2.

EXPERIMENT 3: TIMES 2.5
Participants

Sixteen 5–7-year-old children (8 females, 8 males; age range of 60 months 15 days to 84
months 5 days, mean age of 70 months) were included in the final sample, and were
recruited from the same database as in Experiments 1 and 2. None of the participants had
formal education in multiplication or division, and all participants fully completed both
testing and training.

Procedure, Stimuli and Design
This experiment was identical to Experiments 1 and 2, except that the introduction movie,
training block, and testing block all portrayed or tested a Times 2.5 relationship. During the
multiplicative factor introduction movie, the participants saw two rectangles turn into five
rectangles (one rectangle became two, and the other rectangle became three.) As in the
Experiments 1 and 2, the comparison arrays were equated for item size and density during
training, and area and contour length during testing. For the particular values used in this
experiment, see Table 1.

Results
As in the previous analyses, each participant was given an average score composed of their
performance on trials whose comparison arrays were a particular distance from the correct
outcome (/ 2, / 1.5, *1.5, or *2.) Overall performance during training (77%) and testing
(73%) was significantly above chance (one-sample t-tests; ts (15) = 10.99, 6.90, both ps < .
001, two-tailed) (See Figure 4.) Using a test proportion of 67.8% (19/28 trials with an alpha
level of .05), we also calculated the number of children whose individual performance was
above chance; 12 of 16 children met this criterion (12 observed successes with a total N of
16, binomial sign test with an alpha of .05, p<.001). An ANOVA with block (training block,
testing block) and distance (/2, /1.5, *1.5, and *2) as within-subject factors and gender
(male, female) and age (60–72 months, 72–84 months) as between-subject factors was
performed over these scores. There were no main effects of block (F (1,12) = .86, p = .37),
gender (F (1,12) = 1.14, p = .31), or age (F (1,12) = .80, p = .39). There was a main effect of
distance (F (3,36) = 4.81, p = .006). Follow-up Bonferroni-corrected pairwise comparisons
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suggest this was due to significantly lower performance in the *1.5 Distance trials (63%),
which differed from the *2 Distance trials (83%; p <.05), but not the /1.5 or /2 trials (72%
and 85%, respectively; ps = .99 and .16). There was a significant interaction between session
and distance (F (3,36) = 12.99, p < .001). Just as in the other conditions, performance
“dipped” at slightly different Distance trials for the training (worst performance at Distance
*1.5) and testing (worst performance at Distance /1.5) sessions, indicating a shift from
overestimation of the outcome during training to underestimation of the outcome during
testing. With the exception of the Distance *1.5 training, and the Distance /1.5 testing trials,
children performed significantly better than chance on all testing and training trial types
(one-sample t-tests, all ps<.05).

To test whether children learned this multiplicative relationship by watching a single
introductory movie, we tabulated each participant’s percentage correct for the first and last
trials at each Distance trial type (correct/2, /1.5, *1.5, *2) during the training block.
Performance was above chance for both the first and the last trials (73% and 78%
respectively; one-sample t-tests against chance yield ts (15) = 4.39, 7.27, both ps < .001,
one-tailed). There is no evidence that children required much training to understand this
concept as they did not perform reliably better on the last than on the first training trial
(paired-sample t-test t (15) = −.64, p = .53, two-tailed.)

Discussion
The results from Experiment 3 indicate that children are able to compute outcomes to
complex multiplication problems with a fractional factor (2.5) as the multiplicand. As in the
previous experiments, this core multiplication utilizes approximate magnitudes from the
ANS, operates independently from non-numerical perceptual variables, and is present before
formal schooling. The results of this experiment are especially convincing as to the
existence of a core scaling process because it is impossible to effect this transformation
through a process of counting or repeated addition.

Might children have performed this task in some other way? First, perhaps children literally
applied the mechanics of the introduction movie to the training and testing trials, and instead
of scaling by a multiplicative factor they doubled half the objects via repeated addition,
tripled the other half of the objects via repeated addition, and then summed together the two
intermediate sums to arrive at the correct outcome. One challenge to this explanation is that
the process of initially halving the array is fundamentally related (via inversion) to the
multiplicative doubling observed in Experiment 1; because the elements in this initial array
were continuously changing in size, orientation and position, moreover, halving in this
experiment would occur on the basis of number. But the other challenge comes from
research on the limits of working memory for numerical sets (Halberda et al., 2006). The
process described above would require a mental grasp of at least 8 arrays and their
accompanying updating: one half the initial array, the other half of the initial array, the twin
array of one half the initial array, two twin arrays of the other half of the initial array, the
intermediate outcomes of each of these addition problems, and the final outcome of both the
transformed-via-repeated-addition arrays. Since adults can represent only 3–4 sets at any
given time, this strategy would impose impossible demands on children's working memory.

Second, perhaps the children in the current experiment used the heuristic of simply doubling
the initial amount, or doubling and then and adding a bit more after this process. One
version of this account is circular: if children were doubling and then adding half of the
original array afterwards to arrive at an outcome, then they would be drawing on a process
that calculates a multiplicative invariant. Two other versions, however, are testable in our
data. First, if children were just implementing a process of roughly doubling, some of the
Distance trials (/2 and /1.5) should be more difficult, yielding significantly worse
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performance at these Distances compared to identical Distance trial types in the Times 2
condition. Moreover, some of the Distance trials (*1.5 and *2) should be easier, yielding
significantly better performance in present experiment. Contrary to these predictions,
children performed non-significantly better in the doubling experiment for all types of trials
(for distance /1.5, 80% in the Times 2 condition compared to 71% in the Times 2.5
condition; t (15) = 1.46, p = .16, two-tailed; for Distance /2, 90% vs. 85%; t (15)=1.28, p =.
22, two-tailed; for Distance 1.5, 66% vs 63% (t (15) = .63, p = .54, two-tailed; for
Distance2: 91% vs. 83% (t (15) = 1.95, p = .07, two-tailed.) children's performance did not
vary with Distance trial type in the manner that would be predicted if they solved the Times
2.5 task by simple doubling. Second, if children were doubling and then adding a small
amount more, with the latter amount independent of the size of the initial amount, then
performance in the Times 2.5 condition should be lower than that in the other two
conditions, because of the error inherent in this addition strategy. This prediction can be
tested by comparing children's accuracy across the three experiments, analyses to which we
now turn.

Extended Analyses
A final series of analyses were conducted across the data from the three experiments to
address five questions. First, did children truly compute the results of these transformations,
or did their success depend on an alternative strategy of range-based comparison? Second,
insofar as children truly engaged in multiplicative operations, were they aided by verbal
counting? Third, was there an overall effect of ratio of comparison array: outcome, due to
the approximate nature of the ANS? Fourth, did the three operations of doubling,
multiplying by 2.5, and quadrupling differ in difficulty for children in a manner consistent
with the Weber signature of the ANS? Finally, did these operations differ in difficulty in a
manner consistent with a whole-number approximation strategy in the Times 2.5 condition?
We consider each question in turn.

Range-based strategies
Before we can conclude that children are truly multiplying, we must examine whether the
children were using alternative strategies to solve these problems. Barth et al. (2009) found
that children who performed doubling were sensitive to the relative extremity of comparison
values, consistent with the use of a range-based strategy of judging that the comparison
array was larger when it was especially large and smaller when it was especially small. That
is, if children were tabulating the range of comparison arrays they see for the first few trials
and, using the feedback given, they could infer that comparison arrays that are on the high
end of the range are always the correct answer and comparison arrays on the low end are
always the incorrect answer. This initial feedback could tip the children off that comparison
arrays with extreme values, irrespective of what happened to the transformed initial value,
are the correct or incorrect answer. To test whether the children in the present studies used
this range-based strategy, we performed four sets of analyses.

First, children who followed a range-based strategy should perform at chance on the very
first training trials, since they have not had experience with the range of values to be
presented as comparison arrays. Moreover, children's performance should improve over the
course of the training session. As seen in the sections above, neither prediction was
confirmed since children in all experiments exhibited above-chance performance on the first
set of training trials (84%, 64%, and 73%, respectively for Experiments 1, 2, and 3), and
they showed no improvement over trials.

Second, a range strategy predicts chance performance on trials with comparison array values
that lie in the middle of the range. To test this prediction, participants’ scores were averaged
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for their performance on test trial types in the middle of the range (the 8 comparison array
values which were not especially large or small). Performance at midrange was 72% for
Experiment 1, (one-sample t (15) = 5.03, p <.001, two-tailed), 64% for Experiment 2 (one-
sample t (15) = 3.44, p < .005, two-tailed), and 61% for Experiment 3 (one-sample t (15) =
2.21, p < .05, two-tailed). The above-chance performance observed on the early trials and
the midrange trials in each of these experiments reveals that range-based strategies cannot
entirely account for children's success on the multiplication task.

Third, if children are using range information only, there will be two specific problems per
Experiment in which their performance should be significantly below chance. These
problems are 4×2 vs. 12 and 4×2 vs. 16 (for Times 2), 4×4 vs. 24 and 4×4 vs. 32 (for Times
4), and 4×2.5 vs. 15 and 4×2.5 vs. 20 (for Times 2.5.) In all of these problems, the range-
based strategy will result in the children choosing the incorrect answer. This did not happen
in any of the critical cells; even when aggregated, performance on these trials is not below
chance (x2 (1, N= 96) = .26, p = .31, one-tailed.)

Finally, children who used a range-based strategy should perform identically for identical
comparison arrays: their performance should not be modulated by the distance of the
comparison array from the correct outcome. To test this prediction, we analyzed
performance for two ‘yoked’ comparison arrays during testing in which the numerical
magnitude of the comparison array is the same (and therefore lies at the same point in the
range of presented values) but the distance from the correct outcome differs. For example, in
Experiment 1, the comparison array values of 12 and 48 each have one problem type where
they differ from the correct outcome by a Distance factor of 1.5, and one problem where
they differ from the correct outcome by a Distance factor of 2.0. Children were assigned a
score for their overall performance across these two comparison array values for each factor
(Distance 1.5, Distance 2.0.) A range-based strategy would result in no modulation in this
score as a function of Distance, while a multiplicative process grounded in the approximate
number system predicts poorer performance for the smaller Distance factor. Performance
was higher overall for the comparison arrays which differed from the correct outcome by a
factor of 2.0 (84%) than 1.5 (69%). In all three experiments, children performed better at the
larger Distance factor (+25% for Experiment 1, +9% for Experiment 2, and +13% for
Experiment 3.) As predicted from the core multiplication model, a repeated-measures
ANOVA with Distance (Distance 1.5, Distance 2.0) as the within-subjects factor and
multiplicative factor (Times 2, Times 4, or Times 2.5) as the between-subjects factor
revealed a significant main effect of distance (F (1,45) = 5.09, p = .029), and no significant
interaction with multiplicative factor (F (2,45) = .48, p = .63.)

Counting strategies
Through preschool and parental involvement, children have come to rely upon counting
processes as a way to “get the right number.” In the present experiments, we explicitly
instructed children not to count, and their counting at this age is relatively slow, effortful,
and obvious. Moreover, it is unclear how counting could help children in this task, because
there is no countable magnitude that forms the multiplicative factor. Regardless, if counting
was somehow helping the children in some way, children should perform better on trials
with smaller initial arrays, which are more likely to be exactly enumerated via counting. To
test this prediction, we compared each child’s scores for test trials with different initial
operands. An ANOVA with initial operand (4, 8, 12, or 16) as the within-subject factor and
experiment as the between-subject factor revealed a linear trend (F (1,45) = 5.92, p = .019),
in the opposite direction to the counting hypothesis. Children performed the worst on
problems that had the smallest initial operand (4; 66%) compared to operands of 8 (74%), 12
(78%), or 16 (73%). If anything, counting may have been detrimental to children's
performance.
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Ratio-dependent performance
If children are utilizing their ANS representations during this task, their performance will
decrease as the ratio between the comparison array and outcome decreases. To test for a
main overall effect of ratio of comparison array: outcome, we collapsed performance across
blocks and across the *2 and /2 trials and *1.5 and /1.5 trial types, yielding scores for each
child on Factor 2 problems and Factor 1.5 problems. A paired-comparison t-test revealed a
significant main effect of ratio (t(47)=6.03, p<.001); children responded correctly 82% of
the time on Factor 2 trials and 69% of the time on Factor 1.5 trials. This pattern is also
significant for both training and testing blocks individually (training: 84% Factor 2, 75%
Factor 1.5, p<.001; testing: 80% Factor 2, 66% Factor 1.5, p<.001.)

Testing for the Weber signature of multiplication
A core process of numerical scaling over ANS representations would yield increased error
and, subsequently, poorer performance, as the multiplicative factor increased in magnitude,
from 2 to 2.5 to 4. A linear contrast analysis over percentage correct in each experiment,
entered with the increasing scalar factor of Times 2, Times 2.5, and Times 4 reveals a
significant linear trend: children perform at 82% overall in Times 2, 75% overall in Times
2.5, and 69% overall in Times 4 (F(1,44)=14.77, p<.001, MSe=.13). This performance
profile provides further evidence for a core scaling process that operates over
representations of approximate numerical magnitudes.

Testing for strategies of repeated addition and whole-number approximation
An account of the present findings which roots children's performance in processes of
repeated addition and whole-number approximation predicts that performance should be
lowest in the Times 2.5 condition, intermediate in the Times 4 condition, and highest in the
Times 2 condition. To test this account, we performed a second linear contrast analysis,
entered with the increasing repeated addition factor of Times 2, Times 4, and Times 2.5.
This analysis revealed no significant linear trend (F(1,44) = 3.66, p = n.s., MSe =.03). Thus,
children's performance profile across the three experiments was consistent with a process of
direct scaling but not with processes of repeated addition and whole-number approximation.

General Discussion
The results from these experiments converge upon one central conclusion. Children possess
a core multiplication ability that allows them to extract the invariant proportional
relationship between two numerical magnitudes and then apply this relationship to new
magnitudes. This ability depended on children's approximate number system, for children's
performance was modulated by the ratio between the product and the comparison array, and
by the numerical magnitude of the scaling factor: two signatures of the ANS in a wealth of
research on the approximate number system (Barth et al., 2005; Lipton & Spelke, 2004; Pica
et al., 2004). Core multiplication came easily to the children, who inferred the correct
outcome of a multiplicative transformation after seeing just a single exemplar of that
transformation. Finally, children's multiplicative abilities were quite general: children
learned fractional as well as whole number multiplicative factors, and they applied these
factors to new numerical problems.

Because the children were 5–7 years of age, many experiences could have contributed to the
abilities that they exhibited. Nevertheless, certain accounts of the development of
multiplicative operations can be ruled out by the present findings. First, none of the children
in the present experiments had received any formal instruction in multiplication. The
intuitive multiplicative abilities that they exhibited therefore did not reflect direct instruction
in the operation. Second, all of the children had learned to count and some had begun to
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receive instruction in addition, but several aspects of the data suggest that these experiences
did not account for their success. Children performed as well in Experiment 3 as in
Experiment 1. Because a strategy of repeated addition could not be applied to Experiments 2
or 3, their success provides evidence that their multiplication was not based on addition.
Further, children performed better on problems with operands that were too large for
counting than with operands that were small enough to be countable. Because counting-
based strategies predict the opposite relationship, this finding suggests that counting had no
positive effect on children's multiplication performance. We conclude that children's
performance depended on an intuitive grasp of numerical proportion.

The success of children on these experiments cannot be explained by a process of repeated
addition. First, the children were able to successfully multiply by a factor of 2.5 and a factor
of 4.0. In order to use repeated addition, children would need to mentally represent 8 arrays
(for Times 2.5) and 5 arrays (for Times 4); both of these amounts exceed the number of
arrays even adults can hold in working memory (Halberda et al., 2006). Second, even if they
were somehow able to use repeated addition with this many arrays, this account predicts that
performance would be lowest on the Times 2.5 condition, which is not the case.

Our data instead point to an account of multiplicative scaling of numerical variables
represented by the approximate number system. This is clearly demonstrated by the presence
of two signature Weber properties in the data. First, overall performance was better for trials
in which the ratio between the outcome and comparison array was larger. Second, as the
scaling factor increased from 2 to 2.5 to 4, so did the error (as indicated by poorer overall
performance). Children performed best in Times 2, at an intermediate level in Times 2.5,
and worst in Times 4. The fact that children are not performing repeated addition, but are
dependent on a scaling function when mapping one ANS representation to another, is
evidence for an operation that should be added to the canon of addition, subtraction, and
ordering: core multiplication. This core multiplication process speaks directly to the
conceptual definition as noted by mathematicians (James & James, 1976).

Our findings help to shed light on the conflicting literature on multiplication, and serve to
highlight the distinction between the core multiplication process as it is formulated in
mathematics and tested here and the constructed process of repeated addition emphasized in
many elementary mathematics curricula. As noted in the introduction, previous work with
infants and young children provides evidence for an intuitive, unlearned process of scalar
multiplication (Barth et al., 2009; McCrink & Wynn, 2007; Nunes, Schliemann, & Carraher,
1993), whereas previous work with adults often suggests that multiplication depends entirely
on rote-learned symbolic knowledge (e.g., Lee, 2000; Lemer et al., 2003). This discrepancy
is likely due both to the way that multiplication is taught in schools, and to the particular
nature of the administered tasks.

The core multiplicative process revealed by these experiments contrasts markedly with the
multiplication processes that children are taught in school. Starting in early primary school,
children are drilled with multiplication tables to learn their single-digit multiplication facts,
and then they move to procedural strategies for solving multi-digit multiplication problems.
Neither of these techniques encourages the use of children's intuitive sense of numerical
magnitudes. Even if children initially use their ANS and core multiplication abilities to
reason about multiplicative relationships, the problems likely become stored as facts over
the course of arithmetic instruction, and are then accessed via a cognitive pathway that is not
reliant upon this quantity-based processing. Consistent with this suggestion, a recent study
of adults’ learning of new multiplication facts has shown such a process happening in real
time during a short fMRI session. At the start of training on the multiplication problems, the
intraparietal sulcus showed greater activation, indicating that the core magnitude estimation
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system was at work. Later in training, however, the left angular gyrus showed greater
activation- a signature of the use of verbal retrieval processes (Delazer et al., 2004).

In addition, the experiments showing use of verbal processes in multiplication generally use
designs which push the subjects towards the verbal, automatic, and procedural strategies
they learned in school. For example, Dehaene and Cohen (1997) tested their patients with
multiplication facts involving single-digit operands, which comprise the bulk of the rote
multiplication table. This is an understandable design feature; after all, part of being an
educated adult is learning to automatize useful arithmetic facts, store and retrieve them in an
exact fashion, and apply effective procedures that will yield exact answers. It is undoubtedly
critical to have knowledge about these processes. However, the tendency of adults to rely
upon rote multiplication in these studies may obscure their core multiplicative abilities. In
support of this idea, there are patients who have impaired multiplication abilities on small-
number multiplication problems such as 5 * 4, but who respond correctly to division
problems such as 20 / 5 (Dehaene & Cohen, 1997). Adults may recruit their core number
knowledge in division problems to detect the relationship between the two amounts, because
they have minimal stored verbal knowledge of these problems compared to the
multiplication problems. To test this interpretation, one could administer the present task to
patients who have shown impaired symbolic multiplication in the neuropsychological work
on arithmetic operations (Dagenbach & McCloskey, 1992; Dehaene & Cohen, 1997; Lampl,
Eshel, Gilad, Sarova-Pinas, 1994; Lee, 2000). We predict that such patients will be able to
perform this task, because it uses nonsymbolic numerical arrays that bypass the symbolic,
fact-based, verbal multiplication system.

Core multiplication, as assessed in the present experiments, differs in other ways from
symbolic multiplication as taught in school. Symbolic multiplication problems involve three
explicitly represented numerical values: the two operands and the product. In our
experiments, like those of Barth et al. (2009), only two numerical magnitudes are presented
on each trial. When a child sees that 16 objects are covered and transformed into 32 objects,
she may encode the cardinal value ‘2’ and then combine 16 and 2 multiplicatively.
Alternatively, she may represent the outcome array as ‘twice as much’ as the input array, an
inherently relational representation. The present experiments do not distinguish between
these alternative interpretations of children's performance. Within-subject designs, providing
cardinal values on some trials and proportional numerical relationships on other trials, may
help to reveal the types of representations that children form.

The present findings accord with research on infants, providing evidence for sensitivity to
proportional relationships in arrays with two types of elements (McCrink & Wynn, 2007).
They also speak to research on non-human animals, who apportion their foraging time
between distinct locations in accordance with their relative expected rate of payoff,
suggesting that animals can multiply continuous quantities such as volume of foodstuff (e.g.,
Harper, 1982; Leon & Gallistel, 1998; see Gallistel, 1990, for review). In one relevant study,
Harper (1982) found that foraging ducks apportion their time between two food sources
thrown onto a lake in accord with the volume of food that appears per unit time, not the
number of food items. Because past research on animals examines the role of continuous
quantitative variables, such as the magnitude of foodstuff or the rate of food distribution, it
would be interesting to conduct the present experiments with a non- human species to see if
number per se contributes to foraging calculations above and beyond overall amount, when
these cues are not in conflict.

Finally, the present findings accord with research on humans living in diverse cultures. In
one set of studies, Nunes et al. (1993) found that Brazilian fishermen without formal
education were able to calculate proportions by establishing the correspondence (the number
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of objects per reference unit) between pairs of variables, and then manipulate these variables
while keeping the correspondence between them constant, an ability very similar to the one
utilized in the present study. Again, it would be interesting to test this population with the
present experimental controls for alternative strategies and non-numerical quantitative
variables.

The present findings diverge, however, from those of Barth et al. (2009), who found that in
some instances children used range-based strategies as an alternative to the multiplicative
operation of doubling, and Jeong et al. (2007), who found that children were unable to
perform proportional analogies when given discrete units. There are two reasons as to why
we observed above-chance performance in the current study, with no apparent evidence of
range-based strategy and using discrete stimuli. First, Barth et al. (2009) presented practice
trials that established a range of values for the comparison arrays that was perfectly
translatable to the experimental portion of the study; they suggest that this design may have
obscured the children's ability to respond appropriately to the doubling transformations,
because the range information was so salient and useful. Second, a procedural change
between previous studies (Barth et al., 2009; Jeong et al., 2007) and the current study may
have had major conceptual ramifications. Although Barth et al. (2009) presented children
with many pairs of initial and doubled arrays, they never showed children the splitting of
one object into two. Jeong et al. (2007) also did not appeal to a splitting relationship
between discrete units. In the current studies, in contrast, we used the introduction movie to
show the actual, literal, splitting of a rectangle into parts. Thus, we explicitly provided
children with what Confrey (1994) calls the “basic conceptual primitive” of splitting.
Confrey (1994) suggests that the emphasis on counting and repeated addition for learning
multiplication shifts much-needed attention away from what is a very natural way for
children to reason about invariant, multiplicative, relationships like the ones tested in the
present study. The authors advocate for an emphasis during early primary school on this
conceptual primitive, and say it “can establish a more adequate and robust approach to such
traditionally thorny topics as ratio and proportion, multiplicative rate of change, [and]
exponential functions.” (Confrey, 1994, p. 298)

As Confrey’s argument suggests, an exploration of core multiplication may have wide
practical utility for elementary instruction in mathematics. There has been a spate of recent
work showing that the ANS is heavily involved in the steps children take towards mastering
arithmetic. For example, children who have mastered verbal counting, and are on the
threshold of arithmetic instruction, can utilize their non-symbolic number system to perform
symbolic addition and subtraction (Gilmore, McCarthy & Spelke, 2007). Furthermore, a
child’s level of general ANS acuity is associated with their level of mathematical
achievement (Halberda, Mazzocco, & Feigenson, 2008; Ramani & Siegler, 2008; Wilson,
Revkin, Cohen, Cohen, & Dehaene, 2006). In a retrospective study, Halberda et al. (2008)
found that individual differences in ANS acuity at age 14 were significantly associated with
symbolic math achievement back to kindergarten. In an intervention study, Wilson et al.
(2006) found that a computer training program which improved ANS acuity also improved
certain arithmetic skills in a school setting. Together with the present findings, these
experiments suggest that core multiplication ability may provide further means to increase
children's learning of school mathematics. Combining intuition with education may lead to
enhanced conceptual understanding of a central and challenging part of the elementary
school mathematics curriculum.
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Figure 1.
Schematic of the multiplication videos presented to the children.
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Figure 2.
Performance for testing trials of Experiment 1 (multiplicative factor = 2). Error bars
represent SEM, and the dotted line indicates chance (50%). Asterisks indicate a <.05 level of
significance.
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Figure 3.
Performance for testing trials of Experiment 2 (multiplicative factor = 4). Error bars
represent SEM, and the dotted line indicates chance (50%). Asterisks indicate a <.05 level of
significance.
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Figure 4.
Performance for testing trials of Experiment 3 (multiplicative factor = 2.5). Error bars
represent SEM, and the dotted line indicates chance (50%). Asterisks indicate a <.05 level of
significance.
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Table 1

Exact operand and comparison array values used in Experiments 1, 2, and 3.

Experiment

Times 2 Times 4 Times 2.5

Training Training Training

6 * 2 vs. 6 6 * 4 vs. 12 6 * 2.5 vs.8

6 * 2 vs. 8 6 * 4 vs. 16 6 * 2.5 vs. 10

6 * 2 vs. 18 6 * 4 vs. 32 6 * 2.5 vs. 23

6 * 2 vs. 24 6 * 4 vs. 48 6 * 2.5 vs. 30

10 * 2 vs. 10 10 * 4 vs. 20 10 * 2.5 vs. 13

10 * 2 vs. 13 10 * 4 vs. 27 10 * 2.5 vs. 17

10 * 2 vs. 30 10 * 4 vs. 30 10 * 2.5 vs. 38

10 * 2 vs. 40 10 * 4 vs. 40 10 * 2.5 vs. 50

14 * 2 vs. 14 14 * 4 vs. 28 14 * 2.5 vs. 18

14 * 2 vs. 19 14 * 4 vs. 37 14 * 2.5 vs. 23

14 * 2 vs. 42 14 * 4 vs. 84 14 * 2.5 vs. 53

14 * 2 vs. 56 14 * 4 vs. 112 14 * 2.5 vs. 70

Testing Testing Testing

4 * 2 vs. 4 4 * 4 vs. 8 4 * 2.5 vs. 5

4 * 2 vs. 5 4 * 4 vs. 11 4 * 2.5 vs. 7

4 * 2 vs. 12 4 * 4 vs. 24 4 * 2.5 vs. 15

4 * 2 vs. 16 4 * 4 vs. 32 4 * 2.5 vs. 20

8 * 2 vs. 8 8 * 4 vs. 16 8 * 2.5 vs. 10

8 * 2 vs. 11 8 * 4 vs. 21 8 * 2.5 vs, 13

8 * 2 vs. 24 8 * 4 vs. 48 8 * 2.5 vs. 30

8 * 2 vs. 32 8 * 4 vs. 64 8 * 2.5 vs. 40

12 * 2 vs. 12 12 * 4 vs. 24 12 * 2.5 vs. 15

12 * 2 vs. 16 12 * 4 vs. 32 12 * 2.5 vs. 20

12 * 2 vs. 36 12 * 4 vs. 72 12 * 2.5 vs. 45

12 * 2 vs. 48 12 * 4 vs. 96 12 * 2.5 vs. 60

16 * 2 vs. 16 16 * 4 vs. 32 16 * 2.5 vs. 20

16 * 2 vs. 21 16 * 4 vs. 43 16 * 2.5 vs. 27

16 * 2 vs. 48 16 * 4 vs. 96 16 * 2.5 vs. 60

16 * 2 vs. 64 16 * 4 vs. 128 16 * 2.5 vs. 80
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