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Abstract

The contribution of the three core components of working memory (WM) to the development of
mathematical skills in young children is poorly understood. The relation between specific WM
components and Numerical Operations, which emphasize computation and fact retrieval, and
Mathematical Reasoning, which emphasizes verbal problem solving abilities in 48 2nd and 50 3rd
graders was assessed using standardized WM and mathematical achievement measures. For 2nd
graders, the central executive and phonological components predicted Mathematical Reasoning
skills; whereas the visuo-spatial component predicted both Mathematical Reasoning and
Numerical Operations skills in 3rd graders. This pattern suggests that the central executive and
phonological loop facilitate performance during early stages of mathematical learning whereas
visuo-spatial representations play an increasingly important role during later stages. We propose
that these changes reflect a shift from prefrontal to parietal cortical functions during mathematical
skill acquisition. Implications for learning and individual differences are discussed.
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1. Introduction

Although the basics of mathematics are among the more important competencies that
children need to master for successful living in modern societies, our understanding of the
cognitive mechanisms that support mathematics learning is limited (Mazzocco, 2008). What
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is known suggests that working memory (WM) is pivotal to many aspects of learning
mathematics (Bull, Epsy & Wiebe, 2008; Geary, 1990; Geary & Brown, 1991; Geary,
Hamson & Hoard, 2000; Geary, Hoard, Byrd-Craven & DeSoto, 2004; Hitch & McAuley,
1991; Passolunghi & Siegel, 2001, 2004; Siegel & Ryan, 1989; Swanson, 1993, 1994;
Swanson & Sachse-Lee, 2001; van der Sluis, van der Leij & de Jong, 2005; Wilson &
Swanson, 2001). However, the relations between the different components of WM and
mathematical competence are not as well established in children compared to adults
(Ashcraft, 1992; Furst & Hitch, 2000; Hecht, 2002; Lemaire, Abdi & Fayol, 1996; Logie,
Gilhooly & Wynn, 1994).

Many children begin school with an implicit understanding of aspects of number, counting,
and arithmetic and WM may contribute to their ability to build on this informal knowledge
during schooling (Geary & Brown, 1991; Geary & Burlingham-Dubree, 1989; Siegler &
Jenkins, 1989). Children who excel in early mathematics learning tend to have high WM
capacity (Hoard, Geary, Byrd-Craven & Nugent, 2008; Passolunghi, Mammarella & Altoe,
2008), and mathematically gifted adolescents tend to have enhanced visuo-spatial WM
(Dark & Benbow, 1990). WM has also been reported to mediate the relationship between 1Q
and mathematical performance as early as the 1st grade (Passolunghi et al., 2008).
Children’s learning of the mathematical number line is influenced by a combination of
intelligence, the central executive, and visuo-spatial WM. However, the relative
contributions of these WM components to learning changes from 1st to 2nd grade as the
central executive increases in importance, whereas the roles of intelligence and visuo-spatial
WM decline (Geary, Hoard, Nugent & Byrd-Craven, 2008). In short, we know that WM is
critical for mathematics learning but we do not fully understand how the different
components of WM contribute to learning in different areas of mathematics and we do not
know whether the importance of one or more WM components changes as learning
progresses. We begin with a brief review of the components of WM and their relation to
mathematics learning, and then outline how the current study addresses the issue of whether
the relative importance of the different WM systems changes from one grade to the next.

1.1. Working memory and mathematical cognition

WM is a cognitive system specialized for storage and manipulation of information
(Baddeley, Hitch & Bower, 1974). Although different theoretical models of WM have been
proposed (for a review see Miyake & Shah, 1999), Baddeley and Hitch’s model has been the
most influential. In this model, WM is composed of a central executive and two subsystems
for temporary storage and rehearsal of auditory-verbal and visuo-spatial information, the
phonological loop and the visuo-spatial sketchpad, respectively (Baddeley, 1986, 1996;
Baddeley et al., 1974; Miyake & Shah, 1999).

The central executive plays an important role in sequencing operations, coordinating the
flow of information, and guiding decision-making (Baddeley, 1996; Baddeley, Emslie,
Kolodny & Duncan, 1998), particularly when problems are more complex and facts cannot
be easily retrieved from memory. The central executive is important for many aspects of
mathematical performance, including use of complex arithmetic procedures that involve
carrying and borrowing operations (Ashcraft, 1992; De Rammelaere, Stuyven &
Vandierendonck, 1999, 2001; Frensch & Geary, 1993; Geary, Frensch & Wiley, 1993;
Hecht, 2002; Lemaire et al., 1996). The two other components of WM are specialized for
storage of domain-specific information. The phonological loop is involved in encoding and
maintaining arithmetical operands (Furst & Hitch, 2000; Logie et al., 1994; Noel, Desert,
Aubrun & Seron, 2001) and maintaining intermediate results (Heathcote, 1994), but not
specifically in calculation of answers (De Rammelaere et al., 1999; Furst & Hitch, 2000;
Hecht, 2002; Lemaire et al., 1996). Furst and Hitch showed that the phonological loop is
involved in retaining and storing information about complex problems, but it is not critically
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involved in retrieving factual mathematical knowledge (Furst & Hitch, 2000). Consistent
with this, the relationship between phonological loop and adults’” mathematical performance
has been relatively weak, except in dual-task paradigms when the phonological loop is
excessively taxed (Heathcote, 1994; Lehto, 1995; Logie & Baddeley, 1987; Logie et al.,
1994). In adults, the visuo-spatial sketchpad has been implicated in solving multi-digit
operations (Heathcote, 1994) and in more complex algebraic and geometric problem solving
(Reuhkala, 2001). Notwithstanding these findings, the role of the visuo-spatial sketchpad in
mathematical cognition remains poorly understood.

1.2. Role of specific WM components in mathematical learning

Each WM component has a specialized role in mathematical cognition that varies with
expertise and development. Different levels of experience with numbers and mathematical
concepts, familiarity of the stimuli and the strength of representations can lead to changes in
the types of strategies applied to solve a mathematical task; this in turn calls upon different
WM components (Gathercole & Adams, 1994; Henry & Miller, 1991).

Children under the age of seven tend to rely more on visual memory to remember material
such as pictures of familiar and nameable objects rather than coding visual items to verbal
labels (Hitch, Halliday, Schaafstal & Schraagen, 1988). Some researchers have suggested
that preschoolers tend to perform better on nonverbal rather than verbal arithmetic tasks and
that the visuo-spatial sketchpad capacity is the best predictor of these abilities in this age
group (Levine, Jordan & Huttenlocher, 1992; McKenzie, Bull & Gray, 2003; Rasmussen &
Bisanz, 2005; Simmons, Chris & Horne, 2008). From the age of seven onwards, however,
children increasingly rely on verbal rehearsal to maintain information in memory, thus
recruiting the phonological loop (Hitch et al., 1988). Consistent with this, Rasmussen and
Bisanz found that by the 1st grade, performance becomes equivalent on nonverbal and
verbal mathematical tasks, and that the phonological loop becomes the best predictor of
performance on verbal mathematics problems (Rasmussen & Bisanz, 2005). WM also
influences math performance in elementary school: in a large sample of 1st, 2nd and 3rd
graders, Swanson found that younger children and children who were poor mathematical
problem solvers performed less well on WM tasks than older children or children who were
good problem solvers (Swanson & Beebe-Frankenberger, 2004). However, the specific
contributions of each WM component across grades were not examined.

In 7- to 8-year-old children, one study found that mathematics performance is most strongly
correlated with the central executive, followed by the phonological loop (L. Henry &
MacLean, 2003). As the supervisory system, the central executive facilitates children’s
problem solving by aiding in selection of appropriate strategies (Barrouillet & Lepine, 2005;
Bull, Johnston & Roy, 1999; Geary et al., 2004) and by allocating attention resources to
implement the strategy execution. Using a longitudinal design, Gathercole and Pickering
found that central executive measures shared significant and unique links with children’s
standardized test scores in mental arithmetic at 7 years of age and again at 8 years of age
(Gathercole & Pickering, 2000). On the other hand, in a large sample of 8- to 11-year-old
children, Adams and Hitch found that articulatory suppression significantly disrupted
children’s ability to solve arithmetic problems (Adams, Hitch & Donlan, 1998), suggesting
an important role for the phonological loop. Other studies have suggested that the
phonological loop is engaged when children transform symbol and number strings into
verbal code when using verbally mediated counting strategies during basic arithmetic
problem solving (Baddeley & Logie, 1987; Geary, Bow-Thomas, Liu & Siegler, 1996;
Geary et al., 1993; Logie et al., 1994; Miura, Yukari, Vlahovic-Stetic, Kim & Han, 1999).
More recently, Holmes and Adams found that in a group of typically developing 8- and 9-
year-olds, the central executive and the visuo-spatial sketchpad, but not the phonological
loop scores, predicted overall curriculum-based mathematics achievement (Holmes &
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Adams, 2006). Interestingly, this study also found that for 8-year-olds, the visuo-spatial
sketchpad was a stronger predictor of mathematics performance than the central executive.
Similarly, Gathercole and Pickering (Gathercole & Pickering, 2000) found that 6- and 7-
year-old children’s performance on national curriculum mathematics assessments correlate
with performance on measures of visuo-spatial WM.

1.3. Current study

Taken together, these studies suggest that WM plays an important role in both mathematical
performance and skill development in 7- to 11-year-old children. Current data also hint at
the changing role of different WM components in relation to performance and skill
development. However, the research to date has been contradictory; some studies implicate
the phonological loop, others the visuo-spatial sketchpad, and still others the central
executive (Henry & MacLean, 2003; Holmes & Adams, 2006) There are several reasons for
such inconsistencies. The first is related to the large age-range across studies (Adams et al.,
1998; Andersson, 2007; Durand, Hulme, Larkin & Snowling, 2005; Holmes & Adams,
2006; Swanson, 2006), resulting in high variability in the level of the participants’
mathematical competence and in the curricular content of the mathematical tasks. To
address these issues, we focus on two groups of children in the 2nd and 3rd grades who are
at an important stage in formal mathematical skill development.

A second reason for the inconsistencies in findings is the large variability in the types of
tasks used to assess mathematical performance. For example, some studies have focused
either on individual arithmetic operations, such as addition (Adams & Hitch, 1997),
subtraction (Barrouillet, Mignon & Thevenot, 2008) or other more complex arithmetic
problems (Henry & MacLean, 2003). The use of a single measure of mathematical ability is
useful for studying particular cognitive questions, but is less useful for revealing more
general links between WM and developmentally relevant mathematical abilities. To obtain a
more complete and ecologically valid profile of mathematics competence, we administered
two standardized mathematics achievement measures — the Numerical Operations and
Mathematical Reasoning subtests of the Wechsler Individual Achievement Test (WIAT-II;
(Wechsler, 2001)). A key distinction between the two measures is that Numerical
Operations plays a greater emphasis on counting and computation whereas Mathematical
Reasoning emphasizes word problems.

A third reason for inconsistencies across studies is the use of non-standardized instruments
to assess WM. We use the Working Memory Test Battery for Children (WMTB-C), a
comprehensive, standardized assessment of three core WM components (Pickering &
Gathercole, 2001). Importantly, large-scale studies have found that the three-component
model of WM best fits empirical data on the structure and development of WM in 6- to 16-
year-old children (Gathercole, Pickering, Ambridge & Wearing, 2004). Additionally, WM
capacity can be expressed both in terms of raw and standardized scores on each of the three
WM components. Raw scores reflect age-related differences, whereas age-normed scores
are useful in assessing performance differences after controlling for normative development.
Accordingly, we used both raw and age-normed scores from the standardized WMTB-C
measure to examine how each WM component influences mathematical abilities assessed by
the Numerical Operations and Mathematics Reasoning. Based on previous research on 2nd
and 3rd graders’ strategy use (Geary et al., 2004; Wu et al., 2008) we hypothesized that 2nd
graders would rely more on the central executive compared to the 3rd graders because of the
greater use of counting and other algorithmic strategies, whereas 3rd graders would rely
more on automated retrieval processes that do not require the central executive to the same
extent as 2nd graders.
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2. Methods

2.1. Participants

Participants were recruited from a wide range of schools in the San Francisco Bay Area
using mailings to schools, newspaper advertisements and postings at libraries. Participants
include 48 2nd graders (17 girls, 31 boys) between the ages of 7 to 8.4 (M=7.59 years;
SD=0.52), and 50 3rd graders, 24 girls, 26 boys) between the ages of 7.8 and 9.3 (M=8.52
years; SD=0.40). Participants were administered a demographic questionnaire and 1Q was
assessed using the Wechsler Abbreviated Scales of Intelligence (Weschler, 1999). As a part
of the screening process, participants completed the Child Behavioral Checklist (Achenbach,
1991) to rule out behavioral and emotional problems. Participants with full-scale 1Q between
80 and 120, who did not demonstrate signs of behavioral or emotional problems were
selected for this study. All tests were administered in one session that lasted about 2 hours.

2.2. Standardized measures

2.2.1. Mathematical abilities—The WIAT-1I was used to assess mathematical abilities.
This achievement battery includes nationally standardized measures of children’s (grades
K-12) academic skills and problem-solving abilities (Wechsler, 2001). The Numerical
Operations subtest is a paper-and-pencil test that measures the ability to identify and write
numbers, rote counting, number production, and solve written calculation problems and
simple equations that require the child to draw from the basic operations of addition,
subtraction, multiplication and division. The Mathematical Reasoning subtest is a verbal
problem solving test that measures the ability to count, identify geometric shapes, and solve
single- and multistep word problems. For example, items present problems in terms of time,
money, and measurement with both verbal and visual prompts. The child is required to solve
problems with whole numbers, fractions or decimals, interpret graphs, identify mathematical
patterns, and solve problems of statistics and probability.

2.2.2. Working memory—~Four subtests of the WMTB-C (Pickering & Gathercole, 2001)
were used: Counting Recall, Backward Digit Recall, Digit Recall, and Block Recall. All of
the subtests have six items at span levels ranging from one to six to one to nine. Passing four
items at one level moves the child to the next. At each span level, the number of items to be
remembered is increased by one. Failing three times at a span level terminates the subtest.

2.2.2.1. Central executive: Two central executive subsets were administered, Counting
Recall and Backward Digit Recall. Counting Recall requires the child to count a set of 4, 5,
6, or 7 dots on a card, and then to recall the humber of counted dots at the end of a series of
cards. With Backward Digit Recall, the experimenter states a string of number words and
the child repeats them in reverse order.

2.2.2.2. Phonological loop: Digit Recall was used to assess the phonological loop. The task
requires the child to repeat in the same order a string of number words spoken by the
experimenter.

2.2.2.3. Visuo-spatial sketchpad: Block Recall was used to assess the visuo-spatial
sketchpad. The stimuli consist of a board with nine raised blocks in what appears to the child
as a random arrangement. The blocks have numbers on one side that can only be seen by the
experimenter. The experimenter taps a block (or series of blocks), and the child’s task is to
duplicate the tapping in the same order as the experimenter.
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3.1. 1Q, WIAT-Il and WMTB-C in 2nd and 3rd graders

Although there was some overlap in the ages of the 2nd and 3rd graders, the two groups
differed significantly in age (p<0.0001). There were no differences between the verbal 1Q,
performance 1Q, and full-scale 1Q scores of 2nd and 3rd graders (FSIQ M=108, SD=11.39,
respectively), as shown in Table 1, suggesting comparable samples. As might be expected,
Mathematical Reasoning and Numerical Operations raw scores were significantly higher in
3rd graders than 2nd graders, but there were no grade-level differences for age-normed
scores (Table 1).

From WMBT-C subscales, only the raw Backward Digit Recall WMBT-C score was
significantly different between 2nd and 3rd graders (t(1)=2.05, p<0.05). Once the scores
were normed based on age, WM scores were not significantly different on any measure
across grades (Table 2).

3.2. Relation between working memory and mathematics achievement

The relation between WM and mathematical achievement was first assessed with linear
regression in 2nd and 3rd grade children (Table 3). As shown in Fig. 1 and Table 3,
Counting Recall was a significant predictor of Mathematical Reasoning scores in 2nd grade
but not 3rd grade. Backward Digit Recall did not predict Numerical Operations or
Mathematical Reasoning scores in either grade.

Digit Recall was a significant predictor of Mathematical Reasoning scores in 2nd grade (,
but again not in 3rd grade, as shown in Fig. 1 and Table 3. Digit Recall did not predict
Numerical Operations scores in either grade.

Block Recall did not predict Mathematical Reasoning or Numerical Operations scores of
2nd graders. For 3rd graders, Block Recall predicted both Numerical Operations, and
Mathematical Reasoning, as shown in Table 3 and Fig. 1. The corresponding slopes differed
significantly across grades for both Numerical Operations (standardized f = —1.221; t(1) =
—2.214; p<0.05) and Mathematical Reasoning (standardized S = —1.364; t(1)=2.116;
p<0.05).

There were two 2nd graders whose Digit Recall scores were three standard deviations above
the mean score. We reanalyzed our data without these two subjects. There were no changes
in any of the results noted above. No other WM or WIAT scores were identified as outliers.

To test whether gender was a significant predictor, we used hierarchical regression analysis
to test the three-way interaction between working memory measures, math performance, and
gender. Including gender as a covariate did not alter any of our findings.

We then conducted additional analyses using age-normed WMTB-C and WIAT-II scores.
Linear regression analysis using age-normed scores showed similar relationships as raw
scores. In 2nd graders, Counting Recall (standardized f = 0.42; p<0.01; R2=0.18) and Digit
Recall (standardized $ = 0.29; p<0.05; R2=0.08) predicted Mathematical Reasoning. In 3rd
graders, Block Recall predicted Numerical Operations Mathematical Reasoning
(standardized g = 0.50; p<0.001; R?=0.25) and Mathematical Reasoning (standardized S =
0.31; p<0.05; R2=0.09).

3.3. Hierarchical regression analysis of mathematics achievement and working memory

Hierarchical regression analyses were used to examine the unique and incremental
contributions of the various components of WM to performance on the Numerical
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Operations and Mathematical Reasoning subtests; the order of entry of the predictors was
based on the magnitude of the Pearson correlation between the WM subtest and the
mathematics subtest scores. The order of predictors of 2nd grade Mathematical Reasoning
scores was Counting Recall (r=0.44; p<0.01), Digit Recall (r=0.36, p<0.05), Block Recall
(r=—0.08, p=0.724), and Backward Digit Recall (r=0.06; p=0. 87). The order of predictors
of 3rd grade Mathematical Reasoning scores was Block Recall (r=0.33; p<0.05), Digit
Recall (r=0.14; p=0.314), Counting Recall (r=0.13; p=0.359), and Backward Digit Recall
(r=0.11; p=0.442). The order for Numerical Operations for 3rd graders was Block Recall
(r=0.39; p<0.01), Backward Digit Recall (r=0.24; p=0.096), Counting Recall (r=0.16;
p=0.256), and Digit Recall (r=0.11; p=0.413).

As shown in Table 4, Counting Recall contributed to 20% of the variance of 2nd graders
Mathematical Reasoning scores (p<0.01), but the incremental contributions of Digit Recall,
Backward Digit Recall, and Block Recall were not significant, although Digit Recall showed
a trend towards significance (p=0.05). In 3rd graders’ Mathematical Reasoning scores,
Block Recall accounted for 11% of the variance (p<0.05), but the incremental contributions
of Digit Recall, Backward Digit Recall, and Counting Recall were not significant. Block
Recall also contributed a significant 16% of the variance in 3rd graders” Numerical
Operations scores (p<0.05); again, the incremental contributions of Counting Recall,
Backward Digit Recall, and Digit Recall were not significant predictors.

In order to further examine the relation between WM and math achievement, we conducted
additional analyses using age-normed measures of the WMTB-C and WIAT-II. Counting
Recall predicted 18% of the variance (p<0.01) of 2nd graders’ Mathematical Reasoning, but
the incremental contributions of Digit Recall, Backward Digit Recall, and Block Recall were
not significant. In 3rd graders, Block Recall predicted 25% of the Numerical Operations
(p<0.001) and 9% of the variance in Mathematical Reasoning (p<0.07) and; Counting
Recall, Backward Digit Recall, and Digit Recall were not significant predictors.

4. Discussion

The purpose of our study was to clarify how the three WM systems differentially contribute
to 2nd and 3rd grade children’s performance on standardized measures that assess basic
number, counting, and arithmetic competencies (Numerical Operations) and more complex
problem solving competencies (Mathematical Reasoning). We hypothesized that the central
executive would more strongly predict 2nd graders’ than 3rd graders’ performance on both
mathematics measures. We found that the central executive and the phonological loop
significantly predicted performance on the Mathematical Reasoning scores of the WIAT-II
in 2nd graders. For 3rd grade children, however, the central executive and the phonological
loop were not correlated with either of the mathematics measures; instead, visuo-spatial
sketchpad scores significantly predicted performance on both measures. Importantly, both
raw and age-normed scores showed an identical profile of relations between WM and
mathematics achievement, pointing to the robustness of our findings.

4.1. Developmental and instructional changes in mathematical competence and WM

Between 2nd and 3rd grade there were significant improvements in the Mathematical
Reasoning and Numerical Operations components of the WIAT-I1, but no changes in either
the raw or the age-normed WM scores. The only exception was for the raw Backward Digit
Recall test, which is not surprising as this central executive task is considerably more
demanding than our other central executive task, Counting Recall. The overall pattern
suggests that the window between 2nd and 3rd grades is too short a time frame for major
changes in WM capacity. In spite of the lack of significant improvements in WM, there were
changes in the contributions of WM components to the improvement in mathematical
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competence in 2nd and 3rd graders. Backward Digit Recall (raw scores), the only WM
subscale that showed developmental changes across grades, was also the only WM measure
that did not predict any of the mathematics performance scores. Critically, this profile allows
us to rule out the possibility that differences in the observed relationships between
mathematical abilities and specific WM components arise from developmental changes in
WM capacity. Rather, because the observed relationships between mathematical abilities
and specific WM components are virtually identical for raw and age-normed scores, they
likely reflect changes in mathematical skill arising from instruction and practice.

4.2. Central executive and phonological loop

We confirmed our hypothesis that the central executive best predicts mathematics
performance in 2nd graders. However, the central executive did not predict mathematics
performance in 3rd graders. Further, hierarchical regression analysis was consistent with
these results and confirmed that Counting Recall accounted for a significant fraction
(p<0.01) of the variance in Mathematical Reasoning scores, while the incremental
contributions of other WM components was not significant (p>0.3). It is noteworthy that no
significant relation was found with Backward Digit Recall, our second measure of the
central executive. One crucial difference between Backward Digit Recall and Counting
Recall is that the former requires manipulation of information in WM, whereas the latter
only requires maintaining information in WM. Our data suggest that Mathematical
Reasoning in 2nd graders (as assessed by the WIAT and similar standardized tests) may rely
more crucially on maintenance, rather than manipulation, of information in WM. Further
studies are needed to disentangle the manner in which specific subcomponents of the central
executive influence development of mathematical skills in children.

Our findings are consistent with several previous studies which have implicated the central
executive in mathematical problem-solving in 7- to 12-year-old children (Adams & Hitch,
1997; Geary et al., 2004; Swanson, 2006; Swanson & Beebe-Frankenberger, 2004;
Swanson, Cooney & Brock, 1993). Our results extend the findings of Swanson (2006) who
found that maturation in the central executive was an important predictor of one-year
longitudinal changes in children’s problem solving abilities in a sample of 1st, 2nd and 3rd
graders. Swanson also showed that, in a combined 1st and 2nd grade group, central
executive ability predicted mathematics performance on both Numerical Operations and
Mathematical Reasoning one year after initial testing and that the central executive was the
strongest predictor of mathematics skills even after accounting for phonological and visuo-
spatial sketchpad capacities. These studies have, however, not examined the changing role
of the central executive in mathematics achievement as learning progresses in the early
grade levels. In this regard, our findings relate most closely to a study by Henry and
Maclean (2003) who observed that in 7- to 8-year-old children, arithmetic reasoning ability
was best predicted by memory measures tapping the central executive. In 11- to 12-year-old
children, on the other hand, arithmetic reasoning was not predicted by the central executive.
Our study identifies the interval between the 2nd (mean age=7.59) and 3rd grades (mean age
8.52) as an important period for this shift.

Mathematical skill development during this period is characterized by significant changes as
children learn to rely less on finger and verbal counting to solve arithmetic problems, and
shift to more complex procedural strategies and automatic retrieval of mathematical facts
from long-term memory. The development of long-term storage of arithmetic facts depends
on consistent pairing of numbers and operations with their associated responses as children
are solving math problems through execution of counting strategies (Siegler, 1996). An
important function of the central executive during early stages of mathematics skill
acquisition may be to guide the use of counting strategies that young children typically use
to solve arithmetic problems. Consistent with our findings, in a study of 1st, 3rd, and 51
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grade children Geary et al. found that counting span (a CE measure) predicted use of finger
and verbal counting in 1st graders, but not in older children (D. Geary et al., 2004). Digit
Recall, a measure of the phonological capacity, was also correlated with Mathematical
Reasoning abilities in 2nd grade, but not 3rd grade, children. The contribution of the
phonological loop was weaker than that of the central executive. Nevertheless, the co-
dependence on the central executive and the phonological loop is noteworthy because the
Mathematical Reasoning subtest of the WIAT-I1 is comprised of verbal word problems, such
as “Sally has a pie, cuts it into four pieces, and gives two pieces to her friend John. How
many pieces does Sally have now?”. We suggest that the phonological loop and the central
executive together facilitate the translation of verbal-codes in word problems into numeric—
symbolic format, and this co-dependence may be most prominent in 2nd graders. We
suggest that 3rd graders may extract numerical information more readily, and hence not
have to rely on the central executive and the phonological loop to directly transform word
problems into their core numerical representation. The results are also consistent with the
finding that the solution of word problems, and especially multi-step word problems, which
would be more frequent among the 3rd graders than 2nd graders, is often facilitated by use
of visual-spatial representations (Geary, 1994). Our data instead suggest that 3rd graders
may increasingly rely on visual-spatial representations to solve such problems.

4.3. Visuo-spatial sketchpad

In conjunction with the decreasing dependence on the central executive and the
phonological loop in the 2nd grade, we found that dependence on the visuo-spatial
sketchpad increases in the 3rd grade. In our 3rd grade sample, visuo-spatial sketchpad
capacity was the only WM measure that significantly predicted mathematics achievement.
We suggest that these changes reflect a greater reliance on visuo-spatial representations as a
result of greater facility with numeric—symbolic representations of mathematics problems
and increased practice in mathematical problem solving. Hierarchical regression analysis
confirmed that Block Recall accounted for a significant fraction of the variance in
Numerical Operations and Mathematical Reasoning, but incremental contributions of
Counting Recall, Backward Digit Recall, and Digit Recall were not significant.

These results are consistent with those of three previous studies. In Swanson’s (2006)
longitudinal study of a combined group of 1st, 2nd, and 3rd graders, the central executive,
measured in Year 1, predicted word problem solving abilities in Year 2, whereas visuo-
spatial sketchpad capacity in Year 2 was a significant predictor of math calculation skills in
Year 3 (Swanson, 2006). In a group of 7- to 10-year-old children, Holmes and Adams
(2006) found that the visuo-spatial sketchpad and central executive, but not phonological
loop, predicted overall curriculum-based mathematical achievement. Consistent with our
findings, Bull et al. found that performance on executive functioning and phonological WM
tasks in preschoolers predicted later mathematical and reading ability in elementary school
students (Bull et al., 2008). However, only visuo-spatial WM and visuo-spatial short-term
memory performance in preschool uniquely predict mathematical performance by the end of
the third grade. Our study extends these results by showing that greater reliance on visuo-
spatial sketchpad emerges between the 2nd and 3rd grades. It is noteworthy that in a recent
study, Holmes et al. assessed the contributions of the visual and spatial components of
visuo-spatial sketchpad separately, and found that the spatial subcomponent is a better
predictor of 7- to 8-year-old children’s mathematical performance, whereas the visual
subcomponent is a better predictor of 9- to 10-year-old children’s performance (Holmes,
Adams & Hamilton, 2007). Taken together, these studies suggest that the central executive
and phonological loop may facilitate initial learning and performance, while visuo-spatial
WM and visuo-spatial representations support mathematical performance during later
stages.
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Beyond these studies, compared to the central executive and the phonological loop, less
attention has been paid to the development of visuo-spatial sketchpad and its role in
facilitating mathematical problem solving during the early years of schooling (Hitch, 2006).
In a study of older children (11- to 12-year-olds), the best predictor of mathematics
achievement was the visuo-spatial sketchpad, followed by the phonological loop (Henry &
MacLean, 2003). Moreover, Dark and Benbow (1990) found that 12- and 13-year-old
children with mathematical talent show superior visuo-spatial sketchpad capacity compared
to typically developing peers, and one study has reported that by 15 to 16 years of age,
visuo-spatial sketchpad capacity was the only predictor of mathematics performance
(Reuhkala, 2001). These effects appear to be developmentally stable over a protracted time
frame, given that studies in adults have also reported that visuo-spatial working memory
plays an important role in mathematical problem solving (Heathcote, 1994). Although these
studies draw from older samples, the results parallel our findings in 3rd graders. Our
findings are not only consistent with these studies, but they further suggest a greater role for
the visuo-spatial sketchpad at a younger stage in mathematics learning than has been
previously acknowledged.

We suggest that the interval between 2nd and 3rd grade is an important stage for a
transformation to visuo-spatial representations in problem solving. The importance of the
visuo-spatial sketchpad in children’s arithmetic skills can be traced to preschool, reflecting
young children’s reliance on visuo-spatial representations of number and quantity for
elementary tasks (Rasmussen & Bisanz, 2005). Furthermore, one recent study found that
performance on two standardized tests of math achievement (the TEMA-2 and Woodcock-
Johnson Calculation subtest) acquired in 6- to 11-year-old children was strongly correlated
with their performance on a basic approximate number sense task at age 14 (Halberda,
Mazzocco & Feigenson, 2008). Taken together, these findings suggest that the development
of mathematical problem solving skills relies in part on visual problem representations.

4.4. Convergence with neurocognitive studies

The increased reliance on the visuo-spatial representations is consistent with neurocognitive
studies that have provided evidence for a shift from reliance on prefrontal cortex functions
to those mediated by the parietal cortex with increased mathematical skill acquisition. With
development (Rivera, Reiss, Eckert & Menon, 2005), as with extended practice in adults
(Ischebeck, Zamarian, Egger, Schocke & Delazer, 2007; Ischebeck et al., 2006), there is a
shift from central executive processes subserved by the prefrontal cortex to more specialized
mechanisms in the posterior parietal cortex.

Critically, a wide range of brain imaging and lesion studies have underscored the crucial role
of the posterior parietal cortex, including the IPS region, more dorsally, and the angular
gyrus, more ventrally, in efficient math performance. The posterior parietal cortex plays a
more crucial role in number processing and fact retrieval as well as low-level computation
(Ansari, 2008), while the prefrontal cortex is responsible for cognitive sequencing, executive
control, decision-making and attention processes needed when more complex computation is
required (Menon, Rivera, White, Glover & Reiss, 2000). The degree to which these
processes are engaged may depend on individual proficiency and learning. Our findings
suggest that 2nd graders are likely to engage the prefrontal cortex more as they perform
these tasks because of greater reliance on the central executive and phonological rehearsal,
especially in more proficient and high-performing children. In 3rd graders, a different
pattern is suggested by our findings, with greater reliance on the visuo-spatial processes,
again to greater extent in more proficient and high-performing children. Visuo-spatial
representations that link to core magnitude systems in the parietal cortex are one mechanism
by which mathematical skill development can occur. A shift away from central executive
mechanisms frees the prefrontal cortex from low-level computation and thus makes
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available valuable processing resources for more complex problem solving and reasoning.
Our study identifies the period between 2nd and 3rd grades as an important window in
which such transformations might occur. The extent to which these changes depend on the
development of spatial representations of number (Holloway & Ansari, 2008; Kucian, von
Aster, Loenneker, Dietrich & Martin, 2008; Siegler & Opfer, 2003) remains to be
investigated.

4.5. Implications for individual differences and learning

Our findings have important implications for understanding individual differences in
mathematics performance. Previous research in children with poor mathematical skills has
suggested distinctions between the three WM components and how they correlate with
performance at different grades. The most consistent links with WM impairments are found
with the central executive (Geary & Brown, 1991; Geary et al., 1999, 2000; Hitch &
McAuley, 1991; McLean & Hitch, 1999; Passolunghi & Siegel, 2001; Siegel & Ryan, 1989;
Swanson, 1993; Swanson & Sachse-Lee, 2001; Wilson & Swanson, 2001). Findings have
been more mixed in the case of the visuo-spatial sketchpad, with some studies suggesting
visuo-spatial sketchpad related impairments (D’Amico & Guarnera, 2005; McLean & Hitch,
1999; Passolunghi & Pazzaglia, 2005; Reuhkala, 2001; van der Sluis et al., 2005) whereas
others have not found any consistent relationship (Bull et al., 1999; Geary et al., 2000).
Similarly, studies of the phonological loop have been contradictory, and its role in poor
mathematics learning is still debated (Bull et al., 1999; Geary & Brown, 1991; Geary et al.,
1999, 2000; Hitch & McAuley, 1991; Landerl, Bevan & Butterworth, 2004; McLean &
Hitch, 1999; Swanson & Sachse-Lee, 2001). Our findings suggest that in 2nd graders, in
addition to the central executive, the phonological loop can also contribute to poor
mathematics outcomes in reasoning tasks which require significant verbal processing. The
impact on tasks which primarily taps symbolic fact retrieval is weaker, suggesting that poor
performance on complex reasoning problems require good phonological skills, at least in the
2nd grade at a stage when children are beginning to be exposed to these types of problems
(Jordan, Hanich & Kaplan, 2003). In children with poor central executive and phonological
capacity, it is likely that math skills do not develop appropriately and these factors may
continue to influence their performance in the 3rd grade. This is an important research
question that the cross-sectional sample used in our study cannot address. Further research
with longitudinal samples is required to address this issue.

4.6. Conclusion

Between 2nd and 3rd grades, there were significant changes in mathematics achievement, as
assessed by the Numerical Operations and Mathematical Reasoning subtests of the WIAT-
I1. In comparison, changes in WM were weak — only Backward Digit Recall showed
developmental changes related to WM but this measure did not predict mathematics
performance. Taken together, these results ensure that the contributions of WM to math
performance observed in our study are independent of developmental changes in WM
capacity. Critically, we identified the period between 2nd (mean age 7.59) and 3rd grades
(mean age 8.52) as an important period for a shift in the differential roles of specific WM
components to mathematics achievement. Our data suggest that the central executive and
phonological loop play a more important role in facilitating performance during the early
stages of learning, and that their role diminishes with exposure and learning. In contrast, the
visuo-spatial sketchpad plays an increasingly important role during the later stages of
learning, suggesting a shift to an increasing role for visuo-spatial representations in
mathematics problem solving. These changes may mirror increasing use of more specialized
posterior parietal cortex mechanisms and decreasing use of prefrontal cortex mechanisms as
facility with math problem solving develops and matures in this period (Rivera et al., 2005).
The changing role of WM components in mathematics performance identified here may be

Learn Individ Differ. Author manuscript; available in PMC 2011 June 7.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 12

useful in remediating poor math skills in young children (Fuchs et al., 2005) and in early
identification of children at risk for mathematical learning disabilities.
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Fig. 1.

Relation between WIAT-II math scores and working memory components. Top row: In 2nd
graders, WIAT-Il Mathematical Reasoning scores were significantly correlated with the
central executive and phonological loop. Bottom row: In 3rd graders, both WIAT-II
Mathematical Reasoning and Numerical Operations scores were correlated with the visuo-
spatial sketchpad. The solid regression line is for data from 2nd graders and dashed line is
for data from 3rd graders. Analysis based on raw scores for both WIAT-1I and working
memory.
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