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ABSTRACT

Motivation: The concept of pleiotropy was proposed a century ago,
though up to now there have been insufficient efforts to design
robust statistics and software aimed at visualizing and evaluating
pleiotropy at a regional level. The Pleiotropic Region Identification
Method (PRIMe) was developed to evaluate potentially pleiotropic
loci based upon data from multiple genome-wide association studies
(GWAS).

Methods: We first provide a software tool to systematically identify
and characterize genomic regions where low association P-values
are observed with multiple traits. We use the term Pleiotropy Index
to denote the number of traits with low association P-values at a
particular genomic region. For GWAS assumed to be uncorrelated,
we adopted the binomial distribution to approximate the statistical
significance of the Pleiotropy Index. For GWAS conducted on traits
with known correlation coefficients, simulations are performed to
derive the statistical distribution of the Pleiotropy Index under the
null hypothesis of no genotype-phenotype association. For six
hematologic and three blood pressure traits where full GWAS results
were available from the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) Consortium, we estimated the
trait correlations and applied the simulation approach to examine
genomic regions with statistical evidence of pleiotropy. We then
applied the approximation approach to explore GWAS summarized
in the National Human Genome Research Institute (NHGRI) GWAS
Catalog.

Results: By simulation, we identified pleiotropic regions including
SH2B3 and BRAP (12924.12) for hematologic and blood pressure
traits. By approximation, we confirmed the genome-wide significant
pleiotropy of these two regions based on the GWAS Catalog data,
together with an exploration on other regions which highlights the
FTO, GCKR and ABO regions.

Availability and Implementation: The Perl and R scripts are
available at http://www.framinghamheartstudy.org/research/gwas_
pleiotropictool.html.

Contact: odonnellc@nhlbi.nih.gov

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Pleiotropy describes the effect of a single genetic region on
multiple phenotypic traits. The concept of pleiotropy was first
defined a century ago as one mutation resulting in multiple distinct
phenotypes (Stearns, 2010). Among the proposed mechanisms, the
genetic region may encode a product that is used by multiple
cell types, or it may have a signaling function affecting multiple
targets, or the traits under study may themselves be highly inter-
related at a physiological level (Hodgkin, 1998; Pyeritz, 1989).
Pleiotropic genes have been shown in other species to affect
environmental adaptation and tend to reside in central node positions
in protein—protein interaction networks (Foster et al., 2004; Zou
et al., 2008). The identification and characterization of pleiotropic
genes and regions offers a unique window into the complexities
of biological molecular interaction networks, and may potentially
indicate evidence for epistasis (Tyler et al., 2009).

The presence and impact of pleiotropy in genome data for
normal human characteristics and human disease traits merits further
investigation, but thus far the efforts at statistical development
are insufficient. Methods and software for analyzing multivariate
phenotypes have been proposed (Ferreira and Purcell, 2009; Lange
et al., 2003; Liu et al., 2009; Yang et al., 2010). However, the
available methods, such as those by Ferreira and Purcell (2009),
Lange et al. (2003) and Liu et al. (2009), all require use of
individual-level phenotype data and thus cannot be used to study
pleiotropy using only existing summarized genome-wide association
studies (GWAS) results. The method of Yang et al. (2010) can be
used on existing summarized GWAS results; however this method
only considers single nucleotide polymorphism (SNP) level but not
region-level pleiotropy.

A novel analytic approach was recently demonstrated to examine
pleiotropic genes in psychiatric phenotypes (Huang et al., 2010).
The current abundance of GWAS results provides an unprecedented
opportunity to fully examine this phenomenon in a systematic
manner. We previously analyzed results across 118 GWAS articles
published from 2005 through 2008, creating a comprehensive
database of 56411 SNP-phenotype associations at a significance
level of <0.001 (Johnson and O’Donnell, 2009). This study
highlighted potential pleiotropic regions, presenting the 61 densest
regions of associations from 118 GWAS. Polymorphisms associated
with multiple traits in genes including APOE and the MHC region
were identified, as well as novel candidates (PIGU, RAPGEF]I,
COL4A1/2 and OASI) that were subsequently replicated in other
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studies (Johnson and O’Donnell, 2009). Another resource for the
collection of significant GWAS associations is the National Human
Genome Research Institute’s Catalog of Published Genome-Wide
Association Studies (GWAS Catalog), which is regularly updated. A
summary of results from 151 (of 237) published GWAS through
December 2008 described 531 replicated SNP-trait associations
and highlighted 18 regions of association with two or more traits
(Hindorff et al., 2009). Since that time GWAS have continued to
be published at a rapid pace, as of October 16, 2010, including
584 GWAS and 4054 SNP-trait associations reported in the GWAS
Catalog. Other repositories of GWAS-related data exist such as
the database of Genotypes and Phenotypes (dbGAP) but thus far
these have not been widely applied to address hypotheses relating
to pleiotropy (Mailman et al., 2007).

We developed the Pleiotropic Region Identification Method
(PRIMe) and applied it to cardiovascular-related traits from the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) Consortium (Psaty et al., 2009). We provide an
initial example involving six hematologic traits (hemoglobin
concentration, hematocrit, mean corpuscular hemoglobin, mean
corpuscular hemoglobin concentration, mean corpuscular volume
and red blood cell count) and three blood pressure traits (systolic
blood pressure, diastolic blood pressure and hypertension) used in
two independent GWAS meta-analysis reports from the CHARGE
Consortium (Ganesh et al., 2009; Levy et al., 2009). We further
evaluated an approximation approach to estimate the statistical
distribution of the Pleiotropy Index for uncorrelated traits, using
data reported in the publicly accessible GWAS Catalog.

2 METHODS
2.1 PRIMe visualization

We implemented the PRIMe tool to systematically identify and characterize
regions across multiple GWAS/traits. Here we use the terms ‘GWAS’ and
‘trait’ interchangeably when one GWAS reports association results for one
phenotypic trait. However, the CHARGE datasets we used for pleiotropic
analysis include two overall GWAS studies with a total of nine traits. The
PRIMe visualization method defines a genomic region of interest out of
the whole genome as follows: let Ps denote the threshold for association
significance of SNPs, which can be user defined. Let r denote the correlation
coefficient between an SNP pair, measured as the square root of the linkage
disequilibrium (LD) measure of 2. PRIMe iteratively finds SNPs with the
lowest association P-value among all traits as the driver, and SNPs whose
2 with the driver is above the user-specified threshold (>0.8 by default) as
passengers. In order to define distinct regions out of a genome with extensive
LD patterns, once a SNPis designated as a passenger, it will not be considered
again as a new driver or passenger. After completion of this iterative process,
regions are defined by one driver and zero or more passengers.

2.2 Statistical evaluation

To follow-up regions identified by the PRIMe visualization tool, we
conducted statistical evaluation for scenarios ranging from uncorrelated to
highly correlated traits. We use the term Pleiotropy Index to denote the
number of traits with low association P-values at a particular genomic region.
We estimated the statistical distribution of the Pleiotropy Index under the null
hypothesis of no genotype—phenotype association for any of the traits. Let
Pr denote the probability of the reaching a certain Pleiotropy Index value in
a genomic region. Since the calculation of Pr depends on the particular LD
pattern of a genomic region, which varies substantially across the genome,
the same Pleiotropy Index value at different genomic regions would yield

Table 1. Correlation of six hematologic and three blood pressure traits

P Hb HCT MCH MCHC MCV RBC DBP SBP HTN

Hb 1.00 0.88 0.17 0.18 0.12 054 0.11 0.09 0.07

HCT 1.00 0.06 —-0.03 0.12 055 0.1 0.08 0.06
MCH 1.00  0.37 0.64 —0.23 0.02 0.00 0.00
MCHC 1.00 —-0.01 0.07 0.04 0.03 0.02
MCV 1.00 —=0.2 —-0.02 —0.02 —0.03
RBC 1.00 0.07 0.05 0.04
DBP 1.00 0.72 0.56
SBP 1.00 0.64
HTN 1.00

Hb, hemoglobin concentration; HCT, hematocrit; MCH, mean corpuscular hemoglobin;
MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume;
RBC, red blood cell count; DBP, diastolic blood pressure; SBP, systolic blood pressure;
HTN, hypertension.

different Pr, and thus are not comparable. Therefore, we do not attempt
to address the probability of attaining a Pleiotropy Index for any region
across the genome per se. Instead, we assume that a region of interest has
been identified through basic PRIMe queries or other means, and the main
objective is to evaluate statistical significance for that particular region. We
evaluated the simulated or approximated Pr value against the genome-wide
significance threshold of 5 x 1078 to assess pleiotropy (Pe’er et al., 2008).

2.2.1 For uncorrelated traits: the binomial approximation When GWAS
are conducted across different cohorts with non-overlapping samples, they
can be assumed to be uncorrelated, under the assumption that there is no
genotype—phenotype association for each individual GWAS. The number of
independent SNPs within a genomic region could also be derived using the
pairwise tagging approach (by default, r? threshold of 0.8) (de Bakker ez al.,
2005). For K uncorrelated traits and M independent SNPs, the statistical
distribution of the Pleiotropy Index can be mathematically derived as follows.
In a region with M independent SNPs, the number of SNPs with association
P-values below Pg follows a binomial distribution B(n, p), with n equal
to M and p equal to Ps. Therefore, the probability that at least one out
of M SNPs with association P-value below Pgs is equal to 1—(1 —PsM
because (1—Ps)M is the probability that none of the SNPs have a P-value
below the threshold. For K uncorrelated traits each with M SNPs in the
region, the number of traits with at least one SNP below Pg also follows
a binomial distribution B(n, p), this time with n equal to K and p equal to
1—(1—Pg)™. Therefore, for uncorrelated traits and independent SNPs, Py
can be approximated from a simple binomial approach.

2.2.2  For correlated traits: the multivariate simulation  In the backdrop
of deep phenotyping and large consortia, GWAS scans could be correlated
due to both overlapping samples and similar phenotypic measurements.
We estimated the overall trait correlation by calculating the correlation of
z-statistics (B/SE) for all common SNPs (e.g. ~2.5 million SNPs based
on HapMap2 imputation) in a number of GWAS from consortia (Table 1,
Supplementary Tables S1 and S2). For K correlated traits in a region of M
SNPs with known LD, the test statistics (z) of each SNP for each trait follows
approximately a multivariate normal distribution (Conneely and Boehnke,
2007).

The probability that a trait indexed by k has at least one SNP with a
P-value below the threshold of Pg is equivalent to the probability that the
maximum of the absolute value of zx, zx2, ... zkm Statistics is greater than
Zs (the z-value corresponding to the Pg /2 two-sided threshold). Theoretically,
this probability can be derived from a multiple dimension integral of
the multivariate normal density function of the z-statistics. However, this
multiple dimension integral is challenging to evaluate numerically when
the number of SNPs is large. Moreover, using the multivariate normal
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Fig. 1. Mathematical derivation of the test statistics correlation for K traits
and M SNPs. This is based on the assumption that there is no genotype—
phenotype association for any of the traits.

approximation from one GWAS to derive the null distribution of the
Pleiotropy Index would require taking the correlation among the GWAS
into consideration. Therefore, we take a simulation approach to evaluate the
distribution of the Pleiotropy Index. We simulate the test statistics for all traits
and all SNPs simultaneously, and to do so we use the fact that the correlation
matrix between all K x M test statistics is the (kronecker) product of the
M dimensional correlation matrix between SNPs (r) and the K dimensional
correlation matrix of the traits analyzed (p) (Fig. 1).

3 RESULTS
3.1 PRIMe visualization

Figure 2 shows adjacent regions within the 12q24 region, which
were highlighted by PRIMe for association with blood pressure and
hematologic traits in the CHARGE Consortium. In Figure 2, the SNP
in blue is designated as the driver SNP due to its lowest association
P-value among all traits. The driver SNP can also be associated with
other traits (shown in blue with less significant P-values). The SNPs
shown in bright red are designated as passengers. The SNPs shown
in weaker red are those whose r2 with the driver SNP do not reach
the user-specified threshold (0.8 by default).

3.2 For correlated traits: the multivariate simulation

Table 1 shows the trait correlation matrix for nine hematologic
and blood pressure traits from the CHARGE Consortium data.
Correlation coefficients for these nine traits range widely from 0
to 0.88. To further illustrate the cause and extent of trait correlation,

we calculated the pairwise correlation for two other publically
available sets of data: the Wellcome Trust Case Control Consortium
(WTCCC) and Global Lipids, as shown in Supplementary Tables S1
and S2 respectively (WTCCC 2007; Teslovich et al., 2010). The
latter two datasets are used only as references on trait correlation
and not for pleiotropy analysis. We recommend that users of
PRIMe consider any pair of traits with correlations <0.1 as largely
uncorrelated.

For the nine hematologic and blood pressure traits, the two regions
shown in Figure 2 (referred to as the SH2B3 region and BRAP region
hereafter) have the highest Pleiotropy Index of 4 among all identified
regions with a Pleiotropy Index >2. For these nine traits in the
SH2B3 region, we performed 200 million simulations, and found
only one instance where four of the nine traits all had at least one SNP
with simulated association P-value (derived from the z-statistic) less
than the pre-specified threshold of 1 x 1073 Therefore, we conclude
that for these nine traits and the SH2B3 region, based on a Pg of
1x 1072, the simulated Pr value for the Pleiotropy Index of 4 is
equal to 1/(2x 108)=5.0x10~° (Supplementary Figure S1, left
panel). Similarly, for these nine traits and using GWAS results from
the BRAP region to estimate the SNP correlation, we performed
2% 108 simulations and found six instances where four of the nine
traits all had at least one SNP with simulated association P-value
below the threshold. Therefore, the simulated P7 value for the
Pleiotropy Index of 4 is equal to 6/(2 x 108)=3.0x 108 for the
BRAP region (Supplementary Figure S1, right panel). Although the
Pleiotropy Index is the same (i.e. 4), for both regions (out of a total
of nine traits analyzed), the simulated P for the BRAP region is less
significant than that for the SH2B3 region, because the former resides
in a longer haplotype block and, therefore, has a higher probability
of observing more traits associated with SNPs in the region by
chance. We conclude there is evidence that the proposed pleiotropy
for these two regions is significant, because P7 is estimated to be
<5.0x1078.

The SH2B3 region was recently associated in a single report with
platelet count, coronary artery disease, type 1 diabetes and celiac
disease validating its likely pleiotropic effects (Soranzo et al., 2009).
In this region, the SNP 53185404 is non-synonymous and predicted
to disrupt protein function. Furthermore, SH2B3 is an important
signaling protein and thus it is likely to affect cellular functions in
a variety of human tissues (Barrett et al., 2009; Hunt et al., 2008).

3.3 For uncorrelated traits: the binomial
approximation

We applied the PRIMe tool to the largest GWAS repository publicly
available, the GWAS Catalog. For the same SH2B3 and BRAP
regions, Pleiotropy Indices of nine were observed for both regions
(Supplementary Figures S2 and S3, respectively). There are no full-
scale genome-wide z statistics to calculate trait correlations. Instead,
we assume traits are not correlated for the 584 GWAS reported as
of October 16, 2010. Given the independent number of SNPs (4 for
the SH2B3 region and 11 for the BRAP region), the calculated Pr
is equal to 5.24 x 10721 and 4.53x 10717, respectively, based on
the binomial approximation approach described above. Therefore,
both regions are also deemed to demonstrate significant pleiotropy
based on the GWAS Catalog data. A systematic analysis of data in
the entire GWAS Catalog found that a total of 57 regions have a
Pleiotropy Index of >5. The top regions include the FTO gene and
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Pleiotropy Index: 4; driver SNP (in blue): rs10774625; passenger LD threshold: 0.8

(@)
7 ’
B
B 0.5
A A B
B 0.2
© C C
N CcC C A 75
D
o D D D =
=
3
| 502
— (0]
s g
2 . S
2 b5
[
5
F259
[$]
o &
o Lo
SH2B3
ATXN2
110360000 110380000 110400000 110420000 110440000 110460000 110480000 110500000
Chromosome 12 position (hg18)
A. Ganesh(19862010)(HB)[RBC]  C. Levy(19430479)(DBP)[BP]
B. Ganesh(19862010)(HCT)[RBC]  D. Levy(19430479)(SBP)[BP]
(b) Pleiotropy Index: 4; driver SNP (in blue): rs11065987; passenger LD threshold: 0.8
o
- A
B
A A Gs
B B &
A
02
© - B
. L 75
€—¢€
C
C
b o
° s
s
D
Db L 50S
— Q
S ®
=] c
= S
2 T
[=
5
L o5 §
[$]
& &
o Lo
BRAP MAPKAPKS nap1
ACAD10 TMEM116 TRAFD1
ALDH2 .E_EPZQ KIAA0614
PNAS-1 C1201f30
110600000 110700000 110800000 110900000 111000000 111100000

Chromosome 12 position (hg18)

A. Ganesh(19862010)(HB)[RBC]  C. Levy(19430479)(DBP)[BP]
B. Ganesh(19862010)(HCT)[RBC]  D. Levy(19430479)(SBP)[BP]

Fig. 2. PRIMe plot of the SH2B3 region and the BRAP region for GWAS of six hematologic traits and three blood pressure traits. The SH2B3 region (a) and
the BRAP region (b). The driver SNPs (shown in blue) are rs10774625 and rs11065987, respectively. A horizontal red line indicates the log of genome-wide
significance P-value of 5 x 1078, The longest isoforms of RefSeq genes in the region are annotated including introns (green) and exons (black). The legend
lists traits in the format of first_author(PubMed ID)(trait_name)[group_name].
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the GCKR region (Supplementary Figures S4 and S5), both with
a Pleiotropy Index of 18, while the well-known pleiotropic ABO
region has a Pleiotropy Index of 9 (Supplementary Figure S6).

4 DISCUSSION

PRIMe does not rely on prespecified methods for genomic region
grouping such as gene boundaries or physical position bins. Instead,
association P-values for individual SNPs and LD between SNPs are
used to define genomic regions where multiple traits show significant
association with SNPs. Since pairwise LD (r) among SNPs is a key
determinant of the width of a region; we used PLINK to precalculate
LD based on the HapMap II + III samples from the CEU (Utah
residents with ancestry from northern and western Europe) and TSI
(Toscans in Italy) populations (Frazer et al., 2007; Purcell et al.,
2007). We did not use the LD data downloadable from HapMap
website, because it calculates LD only for SNPs up to 250 kb apart
(Thorisson et al., 2005). To capture long-range haplotype blocks, we
include LD for SNPs up to 1500 kb apart. Of note, the LD threshold
chosen by investigators will not only affect the physical boundaries
of a putative pleiotropic region, but also the statistical significance
of the estimated P7.

For the SH2B3 and BRAP regions, if a LD threshold of P2 >0.5
rather than 0.8 is used, only one large region instead of two separate
ones will be identified. This change of LD threshold will further
complicate the choice of 5x 10~8 as the threshold for evaluating
genome-wide significance, since the total number of independent
regions across the genome would be different when ‘high LD’ is
defined as r2 >(.5 instead of 0.8. Furthermore, with a Pg threshold
of 1x1073 instead of 1x107° prespecified, the same SH2B3
region is noted with a Pleiotropy Index of 6 but the simulated
Pr would not have reached a genome-wide significant threshold.
From a statistical testing perspective, higher values of Pleiotropy
Index under less stringent Pg thresholds tend to result in a less
significant P7. On the other hand, a highly stringent Pg threshold
will pose technical challenges for simulation. We performed 200
million simulations (i.e. 10/(5 x 1078)) in an attempt to simulate
the distribution for Pg up to 5 x 10~8. However, as Supplementary
Figure S1 shows, despite the high number of simulations, we still did
not observe a Pleiotropy Index > 2 when Pg thresholds of 1 x 1077
and 5x10~8 were used. Therefore, an exact P7 could not be
specified other than P7 < 1/(2 x 108)=5x10"9. We suggesta Pg of
1x 1073, which corresponds to the significance threshold currently
used by the GWAS Catalog. Currently the direction of association
effect is not considered for computing the Pleiotropy Index. Studies
have suggested there may be biologically plausible mechanisms for
different effect directions even among closely related phenotypes
(Sirota et al., 2009).

For the approximation approach, we make the assumption that
traits are not correlated. When traits studied in separate GWAS scans
are not truly uncorrelated, the distribution of the Pleiotropy Index
deviates from the binomial distribution, with higher proportions of
correlated traits leading to greater deviations. As the correlation
coefficient increases, the expected Pleiotropy Index increases and
therefore is more likely (at any given significant P7) to achieve
larger values of the Pleiotropy Index (see Supplementary Figure S7).
For the two CHARGE GWAS, five common cohorts contributed
to a total of six cohorts for both GWAS, with the degree
of sample overlap for these two GWAS being ~80%. However,

a high degree of sample overlap alone does not imply that there
will be high correlation for quantitative traits [e.g. 0.00 between
mean corpuscular hemoglobin and systolic blood pressure for the
CHARGE traits (Table 1), and —0.08 between HDL and LDL for
the Global Lipids traits (Supplementary Table S2)]. For dichotomous
traits illustrated by the WTCCC data, the use of a common control
dataset generates an explicit overlap of phenotypic measurement,
therefore leading to some degree of correlation among GWAS
results for the seven traits (from 0.29 to 0.43, Supplementary
Table S1). The highest correlation of 0.43 between type 1 diabetes
and rheumatoid arthritis could also indicate common pathways
for auto-immune diseases (Supplementary Table S1). For both
quantitative and qualitative traits, under the null hypothesis of no
genotype—phenotype association for each individual GWAS, even
identically ascertained phenotypes will not yield trait correlation
given no sample overlap.

The finding of the FTO region highlights how care must be taken
in interpretation of conclusions on pleiotropy, since the commonly
associated traits for the F7O region include many weight-related
measures or for type 2 diabetes. Although a few of the association
signals in the GCKR region are for similar serum lipids and glucose
measures as well, there are distinct traits such as hematologic
traits, serum uric acid and C-reactive protein. The significant test
statistic in the case of FTO may be flagging either pleiotropy or
further independent replication for adiposity traits, while the case of
GCKR may reflect classic pleiotropy. For similar but not identical
traits, suspected pleiotropy could be due to independent effects or
through a chain of mediation. The identification of mediation can
still provide useful biological information. A recent study on the
genetics of FTO provides the first direct evidence that increased
FTO expression causes obesity in mice. Mice with increased
FTO expression on a high-fat diet develop glucose intolerance.
The causal mechanism of F7O on human phenotypes warrants
further gene expression profiling studies (Church et al., 2010).
The null hypothesis of no genotype—phenotype association for each
individual GWAS has been used as a basis for our simulation and
approximation approaches, which could be invalid when traits with
strong association with particular genomic regions have been well
established and extensively replicated. Deriving the distribution
under the alternative will depend on many variables (number
of associated loci, strength of association with each trait, etc.)
and could require a markedly different approach. We compared
the power between our method and that of Ferreira and Purcell
(2009), and found that their method is slightly more powerful
under scenarios with various association P-value thresholds and
type I error. However, our tool and method can be rapidly applied
to summary GWAS results, together with other features including
visualization.

In summary, we have developed a computational tool and
statistical method to systematically identify, characterize and
evaluate pleiotropic regions. PRIMe can be downloaded and run
on local machines without uploading potentially sensitive GWAS
data to public servers. The scripts are designed in a user friendly
manner so that all customizable parameters can be specified in an
interface script, which calls subsequent scripts that require no user
manipulation. The availability of PRIMe may encourage sharing of
more detailed GWAS data in a secure manner within collaborating
groups in order to conduct discovery of potential pleiotropic regions.
We anticipate that fine-mapping and re-sequencing will enable a
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higher resolution view of pleiotropy, and further refine whether the
same or distinct alleles in targeted regions contribute to multiple
traits (Kitsios and Zintzaras, 2009). We have recently used PRIMe
to help prioritize the selection of regions for sequencing in following
up GWAS, gaining more potential return for smaller resource
investments by focusing on regions with evidence for multiple
traits. The value of this approach would be greatly improved by
broader sharing of complete GWAS results among members of
the scientific community with appropriate safeguards (Lumley and
Rice, 2010), and the improvements in resources with more dense
maps of SNPs provided by the 1000 Genomes and other sequencing
projects that are underway. This new approach, together with efforts
that pull together GWAS data into publicly accessible centralized
repositories, is well suited to propel the study of the genetic
architecture of complex diseases beyond individual investigators or
individual datasets (Hindorff et al., 2009; Johnson and O’Donnell,
2009).
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