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Abstract
Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely
used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient
coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for
finding a large sample of maps that can explain a dataset, in which maps that do a better job of
explaining the data are more likely to be represented. This sample represents the knowledge that
the analyst has gained from the data about the unknown true map. BG provides a conceptually
simple way to convert these samples to predictions of features of the unknown map, for example
regional averages. These predictions account for each map in the sample, yielding an appropriate
level of predictive precision.

The need for Bayesian geostatistics
A recently described, large database of Plasmodium falciparum endemicity surveys in
Africa and Yemen [1,2] is shown in Figure 1 in two and three dimensions. The data are
highly clustered and coverage is sparse in Central Africa. The short-range variation in the
data is striking; for example, in the small cluster to the east of Lake Victoria, where
observed prevalences range widely from zero to near 80%. Efforts to account for this
variability by means of environmental factors [3-5], time [2], and age [6] are ongoing, but
much of it remains unexplained, possibly because local variation in environment and human
activities are not captured by the environmental data available at continental scales.

These observations call into question the usefulness of producing a single map of P.
falciparum endemicity in Africa and elsewhere. A map provides a single estimate for each
location in the mapped region, and it is clearly impossible to make accurate and precise
estimates of parasite rates in Central Africa based on the sparse data coverage there. Even if
data coverage were uniformly dense, the unexplained short-range variability evident in data-
rich East Africa indicates that no single value would capture the wide range of endemicities
that might be encountered at an unsampled location. The malaria epidemiology community
faces the problem of converting this patchy dataset, with substantial unexplained variation,
into advice for a range of users.

Bayesian geostatistics (BG), which is becoming the standard mapping technique in certain
branches of parasitology [7], is well suited to generating advice under uncertainty because it
attempts to find a large sample of maps that are consistent with the dataset rather than a
single map. This sample is encapsulated in the posterior distribution. This opinion is a guide
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to understanding and making good use of the posterior distribution for parasitologists, with
examples drawn from malaria.

Posterior distributions
A posterior distribution, often called a posterior, is a probability distribution that has been
informed by data according to the rules of Bayesian inference [8]. Figure 2 shows a
probability distribution for a random number labeled X. In the Bayesian interpretation of
probability, ‘random’ just means ‘unknown;’ random numbers such as X are understood to
have unknown, true values. The probability distribution of X can be used to compute the
probability density (intuitively speaking, the relative probability) of any given candidate
value, but does not specify the value of X exactly. In Figure 2, any number between 0 and 1
is a possible value, but each alternative number has a different probability density.

Figure 2 shows the probability distribution as both a probability density function (PDF) and
as random values (also known as realizations) generated from it. In Bayesian probability,
these values can be interpreted as a sample of all the candidates for the unknown, true value
of X. Values that are more probable are more likely to be represented. A long list of these
candidate values can be seen as an alternative representation of the probability distribution,
and in practice are usually more useful than its mathematical formula. Properties of a
probability distribution such as the mean, variance, quantiles and credible intervals can be
estimated readily from long lists of candidate values.

A BG analysis is an application of these ideas to an unknown map, which is made up of one
unknown number for each point in the region of interest. In BG, the posterior is a probability
distribution for the map that takes the data into account. It is understood that in reality there
is a single true map, but that it cannot be determined exactly from the data. A vast variety of
maps are possible, but a more restricted variety is probable in light of the data. It is possible
to generate candidate maps (CMs, also known as realizations) from the posterior. Because
random maps are much more complicated than random numbers, it is not possible to
visualize their probability distributions as PDFs; the posterior is best understood as a long
sequence of CMs.

Three CMs of P. falciparum endemicity within the regions of stable malaria transmission in
Africa [2] are shown in Figure 3(a). Between them, the maps convey some idea of the
variety of large-scale spatial patterns that are consistent with the dataset. In Central Africa,
some maps show high typical values and some show low values, reflecting the relatively
large uncertainty associated with this data-poor area. In data-rich East Africa, however, the
pattern is relatively consistent from map to map.

Samples of CMs are the conceptual key to the full range of probabilistic results that BG can
produce, so we focus on them in this paper. However, they are usually not produced
explicitly in practice because of their computational cost [9]. Computational shortcuts exist
to produce many of the same results (see the Conclusions).

Predicting functions of the map
Consider once more the random number X whose probability distribution is shown in Figure
2. A useful feature of the candidate value-based representation is that it can be directly
converted to an analogous representation for the probability distribution of any variable Y
that depends on X, Y=f(X). Examples include the square of X and the logarithm of X. The
procedure is simple: f is applied to each candidate value of X to obtain a candidate value of
Y. If desired, these transformed values can be compiled into a histogram, which
approximates the PDF of Y (Figure 4).
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This benefit is also enjoyed by the candidate value-based representation of the posterior of
the P. falciparum endemicity map (Figure 3). Suppose the population-weighted average
endemicity in Tanzania were desired. If, hypothetically, the true map were known, this
product could be approximated using standard geographic information systems (GIS)
software by representing the map as a raster, multiplying it by a population raster (assuming
it is known) of the same resolution, summing the result over all the pixels in Tanzania, and
dividing by the total population. In reality, the true map is not available but CMs are. These
can be converted into candidate values for population-weighted average endemicity in
Tanzania by following the procedure in Figure 4. The raster operation just described (which
plays the role of f) is applied to each of the CMs (X) to obtain a set of candidate values for
the average endemicity (Y), which form a representation of its posterior (Figure 5). This can
be presented directly as a histogram or summarized, for example as the mean, median or
mode (Figure 2).

The simplicity of candidate value-based prediction is deceptive, so it is worth emphasizing
that it is a method for approximating the unique posterior prescribed by probability theory,
based on the model (including priors) and the dataset, for any product that could be derived
from the true map (if it were known). This simple, flexible procedure for making predictions
is the primary advantage of BG.

‘The’ map and the role of GIS
It is not possible to visualize the posterior of a map as a PDF. As a useful alternative, BG
analyses invariably present summary maps (Figure 3) [2,7,10-24]. Constructing these maps
from the posterior is straightforward. If, hypothetically, the true map were known,
endemicity at a given pixel could be extracted using a GIS. The procedure in the previous
section can therefore be used to produce a posterior for endemicity (the CMs are X,
extraction at a particular pixel is f, and the value of the map at the pixel is Y). The median,
for example, of the distribution of endemicity at the pixel can be computed and recorded.
The medians for all pixels of concern can be displayed as a map.

Summary maps are good overall pictures of the information contained in the data. However,
they misrepresent the posterior in several important ways. The summary maps shown in
Figure 3(c) lack the short-range variability seen in the data. Over longer scales, they give the
incorrect impression that the endemicity is more spatially variable in areas of dense data
coverage. The CMs are not subject to either shortcoming and indeed they look completely
unlike the summary maps. The summary maps are not plausible candidates for the true map.

Nevertheless, a single summary map is usually presented, and users frequently perform
further GIS-based analysis on it. This procedure often does not yield the desired results (Box
1). In addition, it introduces arbitrariness and ambiguity into the predictive analysis. For
example, using the median in place of the mean changes the result. In the future, GIS
software could evolve to facilitate flexible and correct predictive analysis by non-
statisticians in the future. This possibility is discussed later. This possibility is discussed
later.

What BG can provide
Subject to practical constraints discussed in the next section, BG can provide the probability
distribution (not the values) of any quantities that could be determined (or whose probability
distribution could be determined) if the true map were known. This category includes
anything that could be derived from the true map (if it were known) by GIS-based raster
manipulations. For example, Diggle et al. [10] were interested in the truth of the statement
‘Loa loa prevalence exceeds 20%’ at each pixel in their region of concern in Cameroon.
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Because this truth value can only take two values (true and false), its probability distribution
is defined by a single number: the probability of truth. Diggle et al. [10] computed this
probability at each pixel and displayed it as a map.

Probability distributions are much more informative than estimates and confidence intervals,
but also more complicated. One way to build intuition about them is to ask operational
questions. What advice could one give control program managers about communities in the
extracted pixel in Figure 3? It might help to think of the histogram in row B as representing
a large population of prevalences, from which the true prevalence in each community in the
pixel (in the 2–10-year-old age group, averaged over the year 2007 [2]) has been drawn at
random.

It is usually necessary to summarize probability distributions at some point. An advantage of
thinking operationally about probability distributions is that it highlights which summaries
are relevant. To give helpful advice to the hypothetical control program manager, it would
be necessary to describe the key feature of the histogram in Figure 3(b), which is its shape.
Prevalence can be expected to be low in many communities, but will occasionally be high.
This general observation could be quantified in many ways. For example, the probabilities
that prevalence in any given community is below 10%, between 10% and 60%, and above
60% could be reported.

Practical considerations
BG predictive analysis has been discussed at an abstract level to facilitate exposition. Here
this discussion is supplemented with an overview of the computational constraints that
define BG in practice.

Generating candidate values for each pixel independently is relatively inexpensive and is
done routinely by all BG software packages [25] (http://www.mrc-bsu.cam.ac.uk/bugs/
winbugs/geobugs.shtml). For per-pixel products such as the summary maps in Figure 3(c)
and the density field in Figure 3(b), these values produce the same results as actual CMs.

However, they cannot be used to produce candidate values for volumetric quantities (VQs)
such as the average endemicity in Tanzania. These can be produced using CMs (Figure
3(a)), which are very expensive to produce [9]. Fortunately, candidate values for VQs can
often be produced without full CMs by trading precision for running time. Piel et al. [12]
provided an example, for which bespoke code had to be written.

It is sometimes possible to perform incomplete predictive analysis for VQs without
programming. The posterior mean of a VQ can be obtained from a mean map using GIS
software if the VQ can be obtained by multiplying the value of the mapped quantity at a set
of pixels by a matrix and adding a vector, as is the case with the sum in Box 1. If that is not
the case, or if the mean map is not available (Box 1), estimates produced using summary
maps do not have a simple relation to the actual candidate values.

Computers are constantly getting faster, and novel hardware [26] and algorithms [27–30] are
lowering the computational barriers. Revolutionary developments in probabilistic computing
are beginning to appear on the horizon [31]. It will probably not be long before generating
global-scale CMs is routine. Users of BG products should understand the corners that they
are cutting in the present so that they are prepared to make full use of the posterior when
more powerful tools become available.

In the nearer future, GIS software could support mapping via per-pixel candidate values.
Ideally a well-documented standard would be developed for computer representations of
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geostatistical posteriors to encourage interoperability. Once a standard is in place,
developers could wrap existing raster functionality to allow users to produce maps by
correctly incorporating many candidate values.

Currently, commissioners and users of BG depend on statisticians to calculate their answers.
The right questions are usually of the form, ‘what is the probability that…?’ or ‘what is the
probability distribution of…?’ Many questions that seem reasonable, such as, ‘what is the
value of…?’ and ‘should the mean map or the median map be published?’ are unanswerable
or odd from the perspective of BG. The distinction is confusing if BG is viewed as only a
mapping technique, but makes sense when the posterior is understood as a large sample of
CMs.

Further reading
Diggle’s Model-Based Geostatistics is the standard introduction to both Bayesian and non-
Bayesian model-based geostatistics [32], and Crainiceau et al. [33] and Diggle et al. [11]
presented some pioneering uses of BG in parasitology. Soares Magalhães et al. [7] reviewed
BG for malaria and helminth infections. Goovaerts’ Geostatistics for Natural Resources
Evaluation [34] is a standard introduction to classical geostatisics, another geostatistical
paradigm. Pfeiffer et al. [35] introduced spatial epidemiology in general. Gelman et al. [36]
and Basáñez et al. [8] provided practical introductions to Bayesian data analysis in general,
Jaynes and Bretthorst [37] a more conceptual one. Berger [38] and Goldstein [39] compared
the objective and subjective branches of Bayesian analysis. Freedman [40] argued for
frequentist analysis and against the Bayesian view. Hájek [41] compared frequentist,
Bayesian and other interpretations of probability.

It is worth noting that the concepts discussed in this paper apply to classical geostatistics and
even nominally non-Bayesian model-based geostatistics. Similar to BG, these other
geostatistical paradigms approach the problem of inferring a map from imperfect data by
producing a probability distribution for it, from which CMs can be drawn [32,34]. The true
map is unknown but is fixed, not the outcome of a repeatable random experiment (assuming
that the data have been drawn from the same map that is to be predicted). The use of
probability to quantify certainty of knowledge about fixed unknowns is the defining feature
of Bayesian analysis. Because these other paradigms also treat the unknown map in an
essentially Bayesian way, they enjoy the benefits described in this paper. However, they
deal with other model parameters such as covariate effect sizes in a non-Bayesian way.

Box 1

Using posterior summaries

The posterior can be summarized by computing the posterior mean, median, interquartile
range, standard deviation, etc. at each pixel in a grid, and displaying these values as a
map. These summary maps have traditionally been presented as the end products of
geostatistical analyses. For example, a map of the posterior median of the historical
incidence of sickle-cell trait, HbS, in humans was presented [12]. They are useful as
visual aids, but it is incomplete or incorrect to designate any one of them as ‘the map’
and feed it into a GIS-based analysis.

Suppose a geneticist or historian wanted to use this analysis [12] to estimate the total
number of HbS carriers in a region. In GIS, the procedure for producing this estimate
would be to multiply the median map by a map of population and sum the product over
all the pixels of a region. Because the median was mapped, the mathematical formula for
this would be:
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whereas the mathematical formula for the median of the target quantity would be

where Xi is HbS allele frequency at a pixel i and Pi is the population inhabiting that pixel.

Unfortunately, the two are not equal and can be rather different. To make this point more
concrete, consider an example where there are n pixels, with Xi Pi independent and log-
normally distributed [42] with parameters m and v in each. The median of the sum is
approximately ev/2 times the sum of the medians for large n. This difference quickly
becomes huge as v increases. Errors of this general type have occurred in the literature,
but we focus here on best practices for the future.

The correct way to produce the desired estimate is to use the posterior to produce a
representative sample of the CMs that are consistent with the data, compute ∑i Xi Pi for
each of them, and compile these values into a histogram. This histogram approximates
the posterior of ∑i Xi Pi, and can be used to estimate the median or any other posterior
summary. If there are a large number of pixels in the region of interest, generating CMs
can be extraordinarily expensive [9], but the cost can be mitigated in some cases [12].

It is true that

regardless of the dependence between the s [42]. The sum of the means is, in fact,
equal to the mean of the sum. This does not imply that the mean is overall a better
posterior summary than the median, only that the mean of the sum can be produced
efficiently from the mean map using GIS software. Note that it is not possible to compute
the full posterior (or the variance, quantiles, credible intervals, etc.) of ∑i Xi Pi from
summary maps.
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Glossary

Bayesian
geostatistical
analysis:

the process of using probability theory to determine a probability
distribution that quantifies knowledge gained about an unknown map
from imperfect data, and using that probability distribution to make
predictions with appropriate precision.

Candidate
maps

the probability distribution that a Bayesian geostatistical analysis
produces for an unknown map can be represented as a large sample of
maps that explain the data, in which maps that do a better job of
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explaining the data are more likely to be represented. We call these
candidate maps in this paper because each is a credible candidate for
the unknown, true map; none of them are ruled out by the data. This
term is not standard.

Cartography the science of using geographic information to make maps.

Cartographic
analysis

The study and analysis (e.g. comparison) of one or several maps.

Credible
interval of
probability q

the interval between the quantile of probability q/2 and the quantile of
probability 1-q/2.

Geographic
information
system or GIS

a suite of tools allowing the cartography, management and analysis of
spatial data.

GIS software a specific piece of software to use and develop tools for spatial analysis
of data.

Interquartile
range

the credible interval with probability 0.5. There is a 50% chance that
the value of a random variable is within its interquartile range.

Likelihood the probability or probability density of the data, as a function of the
values of any other variables in the model. The likelihood can often be
modeled based on physical or sampling considerations. For unknown
variable X and data Y, the likelihood is usually denoted [YǀX]. When
X is an unknown map, the likelihood is usually written using
probability notation for each individual datapoint. Datapoint Yi usually
depends only on the value of the map X at a specific location zi, X(zi).
Common likelihoods in BG include the normal likelihood, which
describes uncertain observations of maps whose value at a point can be
any number,

the binomial likelihood, which describes observations of maps of
prevalences (whose value at each point must be between zero and one
inclusive) via finite samples of sizes ni,

and the Poisson likelihood, which describes observations of maps of
rates of event occurrence (whose value at each point must be
nonnegative) via counting,

where ki can be, for example, the duration of observation or the size of
a sample depending on the context.

Markov chain
Monte Carlo

a popular and effective fitting algorithm [8], that is, an algorithm for
drawing samples from posterior distributions. In Bayesian analysis,
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fitting algorithms should be clearly distinguished from actual models.
Any fitting algorithm should produce approximately the same answer
for a given model, dataset and goal (i.e. posterior samples vs posterior
mode). However, they differ in performance characteristics and output
format.

Mean the probability-weighted average of the possible values of a random
variable. If many independent values are drawn from the probability
distribution of a random variable, their limiting average is its mean.
For random numbers, this quantity coincides with the physical balance
point of the probability distribution (Figure 2). For unknown variable
X, the prior mean is usually denoted E(X) and the posterior mean
given data Y is usually denoted E(XǀY).

Median the quantile of probability 0.5. There is a 50% chance that a random
number is larger than its median.

Mode the most probable value of a variable. Rarely presented in Bayesian
analysis because it is relatively difficult to estimate from a Markov
chain Monte Carlo output.

Per-pixel
prediction

any prediction that can be made by considering candidate values of an
unknown map at individual locations independently, as opposed to
entire CMs. Important examples are the summary maps such as those
in Figure 4 and the maps of uncertainty metrics that often accompany
them. Volumetric quantities such as population-weighted mean
endemicity in Tanzania cannot be predicted in a per-pixel fashion. This
term is not standard.

Pixel geographical unit defining the resolution of a map (e.g. a 1 km by 1 km
square).

Posterior the probability distribution of any variable in a model after data have
been incorporated. It can be obtained from the prior and the likelihood
by means of Bayes’ Rule [8,36,37,41]. For unknown variable X and
data Y, the posterior is usually denoted [XǀY].

Posterior
predictive

nearly synonymous with posterior. The optional ‘predictive’
designation usually indicates that the variable under consideration is
‘predicted data,’ for example, infection prevalence at an unsampled
location.

Prior the probability distribution of any unknown variable in a model before
data have been taken into account. In Bayesian statistics, there is no
way to avoid specifying priors, but opinions vary widely on the best
way to do it. Many methods exist for eliciting priors from expert
judgments [43]. Several standard priors, which do not use prior
information, have been developed to avoid the explicit subjectivity in
expert opinion-based priors [44,45]. For unknown variable X, the prior
is usually denoted [X].

Quantile of
probability q

for unknown number X, this is the value xq for which the probability
that X<xq is equal to q. If many independent values are drawn from the
probability distribution of X, q gives the limiting proportion that are
below xq.
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Random maps in Bayesian probability, ‘random’ means ‘unknown.’ In BG, a single
true map is known to exist, but it cannot be determined uniquely from
the data. It therefore remains random or unknown even when the data
are taken into account.

Raster grid or layer of information composed of pixels, as opposed to a vector
layer, which is made of points, lines and polygons.

Realization in BG, this is a synonym for our term ‘candidate map.’
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Figure 1.
Spatial patterns of Plasmodium falciparum endemicity data. Visualizations of a large P.
falciparum dataset [2] within the range of stable transmission in Africa. In the left-hand
panel, survey locations are marked as semitransparent red dots. This panel illustrates the
heavy spatial clustering in the dataset. Certain hot spots, such as East Africa and Yemen,
have very dense coverage, whereas coverage in Central Africa is sparse. The data within the
green square (approximately 270 km2) east of Lake Victoria are plotted in three dimensions
in the right-hand panel. The z-axis and the color indicate the observed prevalence of each
data point. This panel illustrates another aspect of the dataset that complicates mapping: in
clusters of high coverage, there is remarkable short-range variability in prevalence.
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Figure 2.
Probability distributions for unknown numbers and their summaries. Representations and
summaries of a probability distribution for a random number. Samples (b) can be drawn
from a probability distribution, shown in (a) as a probability density function (PDF). Many
such samples can be compiled into a histogram (c), which approximates the original PDF
(a). The representations in the top row can be summarized as, for example, the mean (d),
which is the point at which the PDF would balance on a fulcrum; the mode (e), which is the
highest point on the PDF; and the median (f), which is the dividing point where the two
halves of the PDF have equal mass. Although the summaries on the bottom row are depicted
in terms of the histogram representation (c), it is generally most convenient to compute them
based on the sample representation (b).
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Figure 3.
Probability distributions for unknown maps and their summaries. The relation between the
posterior of the map of average P. falciparum endemicity over 2007 within the areas of
stable transmission in Africa in 2–10-year-olds [2], and some summaries of the posterior.
The posterior of a map cannot be visualized as a probability density function or histogram,
as was possible in Figure 2(a,c). The most understandable and usable representation of this
complicated mathematical object is a long sequence of CMs (analogous to Figure 2(b)),
three of which are shown in row (a). Each CM (or realization) in row (a) is credible given
the data, meaning it reflects the long- and short-range patterns of spatial variation seen in the
data and its value at each of the observation locations is consistent with the data. The maps
are in relatively good agreement with one another in areas with abundant data, such as East
Africa, but major discrepancies can be found in areas of sparse data, such as Central Africa,
reflecting the uncertainty of the prediction. The long sequence of CMs does not have any
particular order; they are exchangeable [46]. Any number of them can be produced, given
sufficient time. Because the ‘map view’ in row (a) de-emphasizes the short-range variation,
the portion of each map within the red square east of Lake Victoria (the same square as in
Figure 1) is shown in three dimensions. The histogram in row (b) was generated by
extracting the value of a large number of CMs at a single pixel (located near Brazzaville,
Democratic Republic of the Congo) and combining these values. Repeating this procedure
for every pixel results in the ‘density field’ pictured on the right in row (b). This density
field is less informative than the set of CMs. It contains the posterior of each pixel taken
independently, but does not contain any information about their probabilistic dependencies
(i.e. it does not incorporate the patterns of long- and short-range variation seen in the CMs).
The density field can be reduced further to produce the summary maps in row (c) by taking
the mean, median and mode (Figure 2(d,f)) at each pixel. These maps are indispensable
visual aids, but they do not reflect the short-range variation seen in the dataset and row (a).
In other words, none of the maps in row (c) is a credible candidate for the unknown, true
map. Row (a) is the most complete representation of the posterior; any of the summaries
pictured in rows (b) and (c) can be calculated from row (a), but not vice versa.
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Figure 4.
Transformations of unknown variables. The probability distribution for variable X depicted
in (a) as a probability density function can alternatively be represented by a set of candidate
values (b), as in Figure 2. One advantage of this representation is that it can be easily
converted to an equivalent representation for any variable Y=f(X) (c). This representation
can be converted to a histogram (d), which approximates the probability density function of
Y.
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Figure 5.
Predicting volumetric quantities. Estimating population-weighted average endemicity in
Tanzania. Each of a large number of CMs (a) is combined with a population raster [(b)
shows the log of population density in Tanzania in 2007 according to the GRUMP product
[47] to produce a sample from the posterior distribution of population-weighted average
endemicity in Tanzania]. These values are collected to produce a histogram, which
approximates the actual posterior.
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