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Abstract
Purpose of review—Microsporidiosis is an emerging and opportunistic infection associated
with a wide range of clinical syndromes in humans. This review highlights the research on
microsporidiosis in humans during the previous 2 years.

Recent findings—The reduced and compact microsporidian genome has generated much
interest for better understanding the evolution of these parasites, and comparative molecular
phylogenetic studies continue to support a relationship between the microsporidia and fungi.
Through increased awareness and improved diagnostics, microsporidiosis has been identified in a
broader range of human populations that, in addition to persons with HIV infection, includes
travelers, children, organ transplant recipients, and the elderly.

Summary—Effective commercial therapies for Enterocytozoon bieneusi, the most common
microsporidian species identified in humans, are still lacking, making the need to develop tissue
culture and small animal models increasingly urgent. Environmental transport modeling and
disinfection strategies are being addressed for improving water safety. Questions still exist about
whether microsporidia infections remain persistent in asymptomatic immune-competent
individuals, reactivate during conditions of immune compromise, or may be transmitted to others
at risk, such as during pregnancy or through organ donation. Reliable serological diagnostic
methods are needed to supplement polymerase chain reaction or histochemistry when spore
shedding may be sporadic.
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Introduction
Microsporidia infect animals of virtually all phyla, and are particularly prevalent in fish and
insects. Interest in these organisms grew tremendously during the past 20 years after being
associated as a cause of persistent diarrhea and systemic disease in persons with AIDS [1].
Increased awareness and improved diagnostics have broadened our knowledge about the
wide demographic, geographic, zoonotic, and environmental range of the species of
microsporidia that infect humans. Identification of microsporidia in water sources also led to
their inclusion on the National Institutes of Health (NIH) Category B list of biodefense
pathogens and the Environmental Protection Agency (EPA) microbial contaminant
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candidates list of concern for waterborne transmission. The fairly recent completion of the
Encephalitozoon cuniculi genome [2] has led to new insights into the molecular phylogeny
and biology of the microsporidia. This review highlights research on microsporidiosis in
humans published during the previous 2 years and the questions these findings raise.

Organism
The phylum, Microsporidia, includes approximately 1200 species that infect members of all
animal phyla, and 14 of these can infect humans (Table 1) [3•]. Enterocytozoon bieneusi and
the Encephalitozoon spp. currently are the most prevalent microsporidia identified in
humans. Microsporidia are single-celled intracellular parasites and infectious stages, or
spores, of species that infect humans are small, measuring 1.0–3.0 μM × 1.5–4.0 μM. Spore
stages are surrounded by a glycoprotein outer layer and a chitinous inner layer that provide
protection from the environment [4]. The cytoplasm of a microsporidian spore consists of a
nucleus in a monokaryon or diplokaryon arrangement, an anterior anchoring disk, a
membranous lamellar polaroplast that may include an atypical Golgi apparatus, polar
vesicles that appear to be reduced mitochondria called mitosomes, endoplasmic reticulum,
ribosomes, and a poster vacuole that may function as a peroxisome [5,6,7•,8•]. A coiled
polar tube emanates from the anchoring disk and is a structure unique to the microsporidia
that functions to facilitate infection of the host cell. A change in osmotic pressure results in
swelling of the posterior vacuole and causes the polar tube to evert, followed by transfer of
the cytoplasmic contents through the everting polar tube into the host cell (Fig. 1).

Microsporidia were previously believed to be among the earliest or deep-branching
eukaryotes because they lacked typical mitochondria, Golgi, and peroxisomes, and they
possessed small ribosomes like those of prokaryotes [9]. This early divergence hypothesis
was questioned on the basis of a long-branch attraction artefact of faster-evolving genes in
these phylogenetic analyses, and today, the microsporidia are considered to be highly
diverged, well adapted, and specialized parasites that are related or belong to the fungi
[10,11••,12,13]. Their exact relationship to the fungi, that is as a sister group, remains to be
determined [14••]. Through comparative genome analyses, microsporidia were observed to
contain among the smallest genomes of eukaryotes which resulted from gene reduction and
compaction [10,11••,15••,16••]. For example, the Encephalitozoon cuniculi genome is 2.9
Mb and consists of approximately 2000 genes which are tightly packed having few introns, a
shorter gene length and smaller protein size for homologous genes and proteins seen in other
eukaryotes, and having overlapping gene-coding regions [6,15••,16••,17•]. Microsporidia
have lost many of the genes relating to metabolic and regulatory pathways, and retained
those related to transport of energy sources and metabolites, presumably as a consequence of
host cell dependence [6,10,11••,12]. Identification of over a dozen genes encoding for
mitochondrion-derived proteins and the localization of mitochondrial HSP70 to the
mitosome support the likelihood that microsporidia evolved from ancestors that contained
mitochondria. Phylogenetic analyses of multiple gene sequences, including those with lower
evolution rates, continue to support a relation between the microsporidia and fungi, and
more specifically, to the ascomycete and basidiomycete clade [13,14••]. Efforts are under
way to obtain sequence data from the E. bieneusi genome (S. Tzipori, personal
communication) and to continue comparative genome analyses between the microsporidia
and other organisms to better understand the forces that impact genome reduction and
compaction in relation to phylogenetics and evolution. The fairly recent application of
comparative molecular phylogenetic analyses has generated new considerations about the
taxonomic classification of many species within the phylum of Microsporidia that was
historically based on ultrastructural features, biological and biochemical characters, and
habitats [18••,19••].
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Clinical features
When the microsporidia were first identified in the setting of HIV-1 infection and diarrhea,
there was some debate about whether they were truly pathogenic as these organisms were
also detected in persons who did not have diarrhea or other symptoms typically associated
with infection. This most likely is a reflection that the immune status of the host plays a role
in the expression of clinical signs during infection. AIDS patients with less than 50 CD4+ T
cells per mm3 blood are most likely to experience persistent diarrhea, weight loss, and
abdominal pain associated with E. bieneusi or E. intestinalis infections, whereas HIV-
infected individuals receiving antiretroviral therapies, or non-HIV-infected individuals who
may be immunologically naive to microsporidia (i.e. children or travelers) may develop
diarrhea that subsequently resolves [20•,21•]. Replication of organisms in the villus
epithelium of the small intestine, along with reduced villus height and surface area, appear
to contribute to malabsorption that leads to the diarrhea [22–25]. E. bieneusi infections may
spread to the hepatobiliary system to cause cholangitis and a few pulmonary infections have
been reported [23,26]. Encephalitozoon spp. typically disseminate and infections have been
identified in nearly every organ system, including a recently described fatal pulmonary
infection in a bone marrow transplant recipient [27,28•]. Of interest are reports of less
commonly detected microsporidia species in humans, including a case of Trachipleistophora
anthropopthera cornea infection in an AIDS patient [29•] and a fatal case of myositis in a
women with rheumatoid arthritis, caused by Brachiola algerae (recently reclassified as
Anncaliia algerae), a microsporidian that typically infects mosquitoes [30,31,32•]. This
latter case now raises the added potential for vectorborne transmission of microsporidiosis.
There are also increasing numbers of case reports suggesting that microsporidia are an
emerging cause of ocular infections, including contact lens wearers [33,34•, 35,36,37•,38].

Several questions still exist about clinical aspects and consequences of microsporidia
infections in humans. Transplacental transmission of E. cuniculi has been reported in
carnivores and laboratory rodents, and was recently considered to be responsible for the
deaths of newborn emperor and cotton-top tamarins in Europe and the Americas [39–41].
Similarities between human and nonhuman primates, as well as the ubiquitous nature of
microsporidia, would support the possibility for transplacental transmission in humans, but
this has not yet been documented or reported to occur. Questions still persist about why
some microsporidia infections do not seem to correlate with expression of clinical signs.
Lessons from microsporidia infections in other mammals may offer some answers. In
immune-competent laboratory mice experimentally infected with E. cuniculi, for example, a
mild ascites may develop during the acute phase of infection that subsequently resolves even
though the infections remain persistent or chronic for the life of the animals. Rabbits
likewise develop persistent infections with E. cuniculi and sometimes develop motor
paralysis or torticolis (head tilt), but most often, remain asymptomatic [42••]. It seems
reasonable that otherwise healthy humans may also develop clinical signs of infection
during the early or acute stages of infection, as reported in travelers with diarrhea in which
symptoms subsequently resolved even though spore shedding continued [21•]. No formal
studies have been reported in humans, however, about whether microsporidia infections
routinely persist in a latent state, if they may reactivate during conditions of immune
compromise, or if persistently infected individuals can transmit infections to others at risk.
An example that supports the latter possibility was a case report of microsporidial
keratocon-junctivitis being transmitted by the donor corneal graft [34•]. Microsporidiosis is
being reported more frequently in solid organ transplant recipients, but it is not clear if the
infections were transferred by the donor or acquired by the host during immunosuppressive
therapy [43]. It seems important to determine if asymptomatic and persistent microsporidia
infections occur in humans, and if so, improved and reliable diagnostic methods are needed
for attempting to prevent transmission to others at risk or to reduce the potential for
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reactivation of infection. Many of the species of microsporidia infecting humans tend to
disseminate, and since kidney is one of the more common sites of disseminated infection,
examination of urine for the presence of microsporidia is likely to improve detection of
systemic infections. In addition, if one considers that microsporidia spore shedding in feces
or urine may be intermittent or at levels below detection by histochemistry or polymerase
chain reaction (PCR), serological approaches may become feasible for diagnosing infections
in immune-competent individuals.

Diagnostics
Transmission electron microscopy was used to confirm a diagnosis of microsporidiosis
based on detecting the polar filament within spores, and is still important for demonstrating
ultrastructural features that, along with newly applied molecular biology approaches,
contribute to taxonomic organization of the microsporidia, as evidenced by the recent
reclassification of Brachiola spp. to Anncaliia [19••,32•]. Histochemistry methods were then
developed and applied to detecting microsporidia more efficiently in fluids (feces, urine,
mucus) and tissues. These included application of fluorescent brighteners (e.g. Calcofluor
White, Uvitex 2B, Fungifluor) that target the chitinous spore wall, modified (concentrated)
trichrome staining used alone or in combination with Gram stain, and the Warthin-Starry
silver stain [44]. Immunofluorescent antibody staining for species-specific identification has
been somewhat limited, but the recent production of monoclonal antibodies to E. bieneusi,
along with earlier reports of monoclonals to Encephalitozoon spp., should simplify and
improve detection of microsporidia in clinical specimens [45•,46]. PCR-based methods that
typically utilized primers for amplification of microsporidial rDNA genes, have been
routinely applied in research laboratories for improving both sensitivity and specificity, but
are still not routinely applied in diagnostic laboratories [44]. Recently, an oligonucleotide
microarray system was reported for simultaneous detection of four species of human
pathogenic microsporidia species in clinical specimens that should increase diagnostic
throughput, at least in research laboratories [47••].

Since microsporidia infections are increasingly reported in relatively immune-competent
individuals such as children, travelers, and the elderly, efforts are growing to develop
serological tests using whole organisms or recombinant polar tube protein or spore wall
protein as antigens, especially in cases in which the microsporidian species cannot be grown
in culture [48,49•,50,51•,52]. Of interest is that the serologic response of humans to the
polar tube has been demonstrated to include the glycoepitopes found on this structure [49•,
51•]. The significance of such approaches is to detect subclinical infections in individuals
who may transmit microsporidiosis to others at risk (e.g. as transplant donors) or who may
develop a risk for reactivation of infection under conditions of immune compromise (e.g.
aging). Serology has not been used to routinely detect microsporidiosis in humans due to
variable expression of antibodies in immune-deficient individuals.

Generally speaking, however, microsporidiosis is still probably overlooked because
organisms are quite small, requiring expertise by microscopists in diagnostics laboratories,
and inhibitors of PCR found in many clinical specimens may confound interpretation of
results. In addition, microsporidia are often not included in the routine differential diagnoses
for diarrhea, and urine specimens are typically not evaluated for microsporidia as a potential
cause of systemic infections. As the reports of microsporidiosis continue to increase
worldwide and in a wider range of human populations, it is expected that a greater emphasis
will need to be placed on recognizing such infections.
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Epidemiology and sources of infection
Microsporidiosis in humans occurs worldwide, with prevalence rates ranging between 0 and
50% depending on the geographic region, method of diagnosis, and demographic
characteristics of the population being studied [53]. Prior to the application of antiretroviral
therapies, prevalence rates for microsporidiosis tended to be highest among HIV-infected
individuals with diarrhea and less than 100 CD4+ T cells per mm3 blood [24,54•]. In regions
of South America, Africa, and Asia where antiretroviral therapies are not readily accessible,
microsporidiosis has been consistently identified in HIV-infected patients with AIDS and
additional risk factors that included poor sanitary conditions and exposure to animals
[24,25,55,56•,57,58]. Microsporidiosis continues to be increasingly recognized in non-HIV-
infected persons such as travelers, children, the elderly, and organ transplant recipients [20•,
21•,43,59•–61•].

The source of most microsporidia infections is still uncertain, but the genotypes that infect
humans have now been identified in domestic, farm, and wild animals, which supports the
finding that microsporidiosis is a zoonotic disease [42••]. The associations between the risks
for infection with microsporidia through occupational and recreational contact with water
sources were recently reviewed [53] and these observations contributed to the inclusion of
microsporidia as NIH Category B biodefense pathogens
(http://www3.niaid.nih.gov/biodefense/bandc_priority.htm) and EPA microbial contaminant
candidates (http://www.epa.gov/safewater/ccl/ccl2_list.html) of concern for waterborne
transmission. There also appears to be an association between microsporidia and foodborne
transmission as a consequence of contaminated irrigation water, and organisms have been
identified on lettuce, parsley, cilantro, and strawberries in Costa Rica [62]. These
observations supported the rationale for studies on the transport of microsporidia through
sandy porous media for developing mathematical models to assess the potential of
microsporidia contamination of potable water supplies [63•]. There is no doubt that
continued improvements in diagnostics and molecular epidemiology will improve our
understanding about the modes of transmission and risk factors associated with acquiring
microsporidiosis and these data can then be employed for the development of rational
prevention strategies.

Immunology
The hypothesis that resistance to microsporidiosis depends upon functional T lymphocytes is
based on the greater severity of disease in AIDS patients with declining CD4+ T-cell levels
and the development of lethal experimental microsporidia infections in mice depleted of
CD4+ and CD8+ T cells [64,65]. Recent studies on experimental microsporidiosis in murine
models and ex-vivo human studies demonstrated the importance of the proinflammatory
(Th1) cytokines such as interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin
(IL)-12, along with a role for nitric oxide, in resistance to Encephalitozoon spp. [66•,67].
CD8αα+ intraepithelial lymphocytes were observed to increase rapidly after oral
administration of E. cuniculi to mice. These cells appeared to participate in proinflammatory
responses via IFN-γ production and cytotoxic activity and also contributed to immune
regulation via IL-10 secretion [65]. In addition, antibodies were reported to contribute to
prolonging survival in severe combined immune deficiency (SCID) mice given E. cuniculi
per os [68•]. Virtually nothing is known about protective immune responses to E. bieneusi
infections due to the lack of tissue culture and small animal models. Naturally occurring E.
bieneusi infections have been reported in rhesus and pigtail macaques and these currently
represent the only animal models that simulate infections observed in both immune-
competent and immunedeficient humans [69,70].
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Therapy and disinfection
Immune reconstitution with antiretroviral therapies has greatly reduced the occurrence of
microsporidiosis-associated clinical symptoms in persons with HIV infection [24,25,71],
and a recent study suggested that aspartyl protease inhibitors of HIV also directly inhibited
growth of E. intestinalis in tissue culture [72•]. Albendazole, a benzimidazole that inhibits
microtubule assembly, was effective against several microsporidia, including the
Encephalitozoon spp. but was less effective against E. bieneusi [73,74]. Fumagillin, an
antibiotic and antiangiogenic compound produced by Aspergillus fumigatus, was more
broadly effective against Encephalitozoon spp. and E. bieneusi but was toxic when
administered systemically [75]. Recent therapeutic development studies have focused on
compounds that target microsporidian polyamines (e.g. polyamine analogues), methionine
aminopeptidase 2 (e.g. fumagillin-related compounds and analogues), chitin (e.g.
nikkomycins), and topoisomerases (e.g. fluoroquinolones) [71,76,77,78•,79]. These studies
utilized Encephalitozoon spp. as the lack of tissue culture and small animal models for E.
bieneusi have limited studies to directly identify effective compounds for this organism.

There are significant concerns about the potential of waterborne and foodborne transmission
of microsporidia. Recent studies demonstrated successful disinfection of E. intestinalis in
water using chlorine and ozone disinfection, successful disinfection of E. cuniculi in food by
high-pressure processing, and that exposure of E. cuniculi to bleach, ethanol, HiTor, or
Roccal was effective at reducing infectivity of these organisms in a tissue culture model
system [80–82].

Conclusion
The tremendous growth in research on the microsporidia since their recognition as causes of
opportunistic infections in AIDS patients has led to a greater appreciation for their ability to
adapt and infect a wide range of animals, including humans. New information is challenging
current paradigms about the biology of microsporidia infections and should result in a better
definition of the consequences of infection and the development of effective preventive and
therapeutic strategies.
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Figure 1. Life cycle of the four most prevalent species of microsporidia that infect humans
Most infections are believed to occur through ingestion or inhalation of spores that are the
mature stages of the microsporidia. Encephalitozoon species are shown to typically cause
disseminated infections. Enterocytozoon bieneusi primarily infects the gastrointestinal tract,
but recent reports suggest that extraintestinal infections may also occur. Organisms are
typically shed with feces, urine, or respiratory secretions to transmit infections. This figure
was reprinted with permission from the DPDx: CDC's website for parasite identification;
http://www.dpd.cdc.gov/dpdx/.
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Table 1
Species of microsporidia infecting humans

Microsporidia species Sites of infection

Anncaliia (syns. Nosema and Brachiola) algeraea Eye, muscle

Anncaliia (syns. Nosema and Brachiola) connori Systemic

Anncaliia (syns. Nosema-like and Brachiola) vesicularum Muscle

Encephalitozoon (syn. Nosema) cuniculia Systemic, eye, respiratory tract, urinary tract, liver, peritoneum, brain

Encephalitozoon hellema Eye, respiratory tract, urinary tract, systemic

Encephalitozoon (syn. Septata) intestinalisa Intestine, biliary tract, respiratory tract, bone, skin, systemic

Enterocytozoon bieneusi Intestine, biliary tract, respiratory tract

Microsporidium africanum (syn. Nosema sp.) Eye

Microsporidium ceylonensis (syn. Nosema sp.) Eye

Nosema ocularum Eye

Pleistophora ronneafiei (syn. Pleistophora sp.) Muscle

Trachipleistophora anthropoptheraa Systemic, eye

Trachipleistophora hominisa Muscle, eye

Vittaforma corneae (syn. Nosema corneum)a Eye, urinary tract

a
Species that can be grown in long-term culture for harvesting organisms.
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