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Abstract
All of the members of the Microsporidia possess a unique, highly specialised structure, the polar
tube. This article reviews the available data on the organisation, structure and function of this
invasion organelle. It was over 100 years ago that Thelohan accurately described the
microsporidian polar tube and the triggering of its discharge. In the spore, the polar tube is
connected at the anterior end, and then coils around the sporoplasm. Upon appropriate
environmental stimulation the polar tube rapidly discharges out of the spore pierces a cell
membrane and serves as a conduit for sporoplasm passage into the new host cell. The mechanism
of germination of spores, however, remains to be definitively determined. In addition, further
studies on the characterisation of the early events in the rupture of the anterior attachment
complex, eversion of the polar tube as well as the mechanism of host cell attachment and
penetration are needed in order to clarify the function and assembly of this structure. The
application of immunological and molecular techniques has resulted in the identification of three
polar tube proteins referred to as PTP1, PTP2 and PTP3. The interactions of these identified
proteins in the formation and function of the polar tube remain to be determined. Data suggest that
PTP1 is an O-mannosylated glycoprotein, a post-translational modification that may be important
for its function. With the availability of the Encephalitozoon cuniculi genome it is now possible to
apply proteomic techniques to the characterisation of the components of the microsporidian spore
and invasion organelle.
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1. Overview
Microsporidia are eukaryotic, obligate intracellular, spore-forming parasites in the phylum
Microsporidia (Sprague, 1977; Sprague and Becnel, 1998). They are ubiquitous in the
animal kingdom with over a 1000 species parasitising a wide range of invertebrate and
vertebrate hosts, including humans (Wittner and Weiss, 1999). While it had been suggested
that the Microsporidia are primitive eukaryotes lacking mitochondria, recent data suggests
they are related to the Fungi (Weiss et al., 1999; Keeling, 2003; Thomarat et al., 2004), have
homologues for mitochondrial hsp70 (Hirt et al., 1997; Arisue et al., 2002) and a
mitochondrial relic organelle (the mitosome) (Williams et al., 2002). Encephalitozoon
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species have very small genomes (2.9, 2.6, and 2.3 Mb in Encephalitozoon cuniculi,
Encephalitozoon hellem and Encephalitozoon intestinalis, respectively) (Biderre et al., 1999;
Wittner and Weiss, 1999). With the completion of the E. cuniculi genome, the phylogenetic
relationship between microsporidia and fungi has been further solidified by the presence of
numerous genes that on phylogenetic analysis cluster the Microsporidia with the Fungi
(Katinka et al., 2001; Thomarat et al., 2004). The fungal origin of microsporidia has a
significant impact on how we interpret their unusual characteristics. They no longer
represent ancestral features, but instead are indicative of the highly derived nature of these
intracellular parasites.

In 1857, microsporidia were first recognised as pathogens in silkworms, and long before
they were described as human pathogens they were recognised as a cause of disease in many
nonhuman hosts (Franzen and Muller, 2001). The first suggestion that microsporidia are
associated with human infections was made in 1924, and up to 1985, there were less than a
dozen reports of human microsporidiosis (Wittner and Weiss, 1999). Since 1985 with the
recognition that Enterocytozoon bieneusi causes diarrhoea in patients with AIDS (Desportes
et al., 1985), many infections with different species of microsporidia have been reported
from all over the world and microsporidia are now frequently recognised as etiologic agents
of opportunistic infections in persons with AIDS, and more recently, in organ transplant
recipients, patients being treated with immunosuppressive drugs and immunocompetent
patients (Weber and Bryan, 1994; Sax et al., 1995; Wanke et al., 1996; Bryan et al., 1997;
Raynaud et al., 1998; Gumbo et al., 1999; Wittner and Weiss, 1999; Metge et al., 2000;
Lores et al., 2002; Lewis et al., 2003).

Although the phylum Microsporidia consists of nearly 150 genera only seven genera
Enterocytozoon, Encephalitozoon (including Septata), Pleistophora, Trachipleistophora,
Vittaforma, Brachiola and Nosema as well as a few unclassified microsporidia (e.g.
Microsporidium) have been described as pathogens in humans (Sprague et al., 1992; Wittner
and Weiss, 1999; Franzen and Muller, 2001). Reported prevalence rates in the 25 studies
conducted on patients with HIV infection before the widespread use of highly active
antiretroviral therapy demonstrated rates that varied between 2 and 70% depending on the
symptoms of the population studied and the diagnostic technique employed (Weber and
Bryan, 1994; Drobniewski et al., 1995; van Gool et al., 1995; Weitz et al., 1995; Coyle et
al., 1996; Deplazes et al., 2000). In immunocompromised patients, Encephalitozoon has
been associated with hepatitis, peritonitis, keratoconjunctivitis, sinusitis and disseminated
infections involving the lungs and/or kidneys (Zender et al., 1989; Moss et al., 1997; Weber
et al., 1997, 1999; Wittner and Weiss, 1999; Franzen and Muller, 2001). Three cases of
Pleistophora-like microsporidian infection involving skeletal muscles and myositis have
been described in two HIV-infected patients and in a non-HIV-infected patient (Chupp et al.,
1993; Cali and Takvorian, 2003). The genus Trachipleistophora contains two species
Trachipleistophora hominis (Hollister et al., 1996), which has caused myositis and
Trachipleistophora anthropophthera (Vavra et al., 1998), which has been associated with
encephalitis and disseminated infection in immune compromised patients. The genus
Brachiola has three species that have been reported in human infections Brachiola
vesicularum, Brachiola conorii and Brachiola algerae (Coyle et al., 2004). Vittaforma
corneae infection has presented as corneal disease as well as a disseminated infection
(Deplazes et al., 1998).

Microsporidian spores are commonly found in surface water and human pathogenic
Microsporidia have been found in municipal water supplies, tertiary sewage effluent and
ground water (Avery and Undeen, 1987; Sparfel et al., 1997; Dowd et al., 1998; Cotte et al.,
1999). It is possible that many of the Microsporidia are zoonotic human infections.
Microsporidia of the genus Encephalitozoon are widely distributed parasites of mammals
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and birds and the onset of microsporidiosis has been associated with exposure to livestock,
fowl and pets (Deplazes et al., 2000). Most microsporidian infections are transmitted by oral
ingestion of spores with the site of initial infection being the gastrointestinal tract. Viable
infective spores of Microsporidia are present in multiple body fluids (stool, urine,
respiratory secretions, etc.) during infection suggesting that person to person transmission
can occur and that ocular infection may be transmitted by external autoinoculation due to
contaminated fingers (Schwartz et al., 1993b,c).

2. Structure of the microsporidian spore and polar tube
The microsporidian life cycle consists of a proliferative phase, the spore production phase
(sporogony) and the mature spore or infective phase. The unicellular spore has a resistant
spore wall, with a uninucleate or binucleate sporoplasm, and an extrusion apparatus
consisting of a single polar tube with an anterior attachment complex, which is characteristic
for the phylum (Wittner and Weiss, 1999; Fig. 1). Spores range in size from 1 to 12 μm. The
spore coat consists of an electron dense, proteinaceous exospore, and electron lucent
endospore composed of chitin and protein and an inner membrane or plasmalemma (Kudo,
1921; Vavra, 1976; Canning and Lom, 1986; Wittner and Weiss, 1999).

The invasion apparatus consists of a long polar tube which is divided into two regions: the
anterior straight portion surrounded by a lamellar polaroplast and attached to the inside of
the anterior end of the spore by an anchoring disc; and the posterior coiled region that forms
from four to approximately 30 coils around the sporoplasm in the spore, depending on the
species (Wittner and Weiss, 1999). While inside the spore, the core of the polar tube is
sometimes referred to as a polar filament prior to discharge (Lom and Vavra, 1963;
Weidner, 1972, 1976, 1982; Takvorian and Cali, 1986). Evagination of this filament during
discharge forms a hollow tube that remains attached to the spore and permits the passage of
the sporoplasm from the spore through this tube into its host cell (Ohshima, 1937; Walters,
1958; Lom and Vavra, 1963). The distal end of the polar filament has not been demonstrated
and it remains unclear if it is blunt (i.e. closed) or open-ended in the spore (Erickson et al.,
1968; Lom, 1972; Vavra, 1976; Chioralia et al., 1998). Depending on the genus, the
sporoplasm may have one nucleus or may have two abutted nuclei called a diplokaryon. A
posterior vacuole and numerous ribosomes, arranged in helical coils or in sheets, are also
present in the sporoplasm (Vavra, 1976).

In cross-section, the polar filament inside the spore is composed of electron dense and
electron lucent concentric layers that can range from as few as three to as many as 20
different layers in cross-section (Lom, 1972; Sinden and Canning, 1974; Vavra, 1976;
Chioralia et al., 1998; Cali et al., 2002; Fig. 2). It appears that the thickness of the layers
vary along the polar filament while number of layers vary with spore maturity (Vavra,
1976). Moreover, a different pattern of layers has been observed before, during and after
extrusion (Lom, 1972; Vavra, 1976; Chioralia et al., 1998; Cali et al., 2002). An electron
dense particulate material fills the centre of the filament (Kudo and Daniels, 1963; Lom and
Vavra, 1963; Vavra, 1976) and it undergoes changes during the eversion process (Lom and
Corliss, 1967; Cali et al., 2002). Weidner proposed that this material is unpolymerised polar
tube protein (Weidner, 1972, 1976). Discharged polar tubes have a sheath which is sensitive
to trypsin, is silver methenamine negative and is able to bind ferritin-conjugated
concanavalin A (Weidner, 1972). Incompletely discharged tubes appear as a cylinder within
a cylinder at their distal ends (Weidner, 1982). A homogenous pattern of subunits has been
observed in completely and incompletely discharged tubes, which appears identical to the
material inside the tube (Weidner, 1976, 1982).
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When triggered by appropriate stimuli, the polar tube rapidly discharges from the anterior
pole of the spore forming a hollow tube that remains attached to the anterior end of the spore
(Ohshima, 1937; Lom and Vavra, 1963; Weidner, 1972; Frixione et al., 1992) and the
sporoplasm flows through the tube appearing as a droplet at its distal end (Ohshima, 1937;
Lom and Vavra, 1963; Weidner, 1972; Frixione et al., 1992; Fig. 3). Lom (1972) and
Weidner (1976) using electron microscopy demonstrated elongated sporoplasm in sections
of extruded polar tube and the piercing of host cell membranes by the polar tube (Lom,
1972; Weidner, 1976). This process serves as a unique mechanism of infection resulting in
sporoplasm transfer directly into the host cell cytoplasm (Ohshima, 1937; Lom and Vavra,
1963; Frixione et al., 1992; Weidner, 1972). In B. algerae, polar tube discharge is associated
with the appearance of membrane infoldings surrounding the polar tube (Cali et al., 2002).
These ultrastructural observations are suggestive that the polar tube is actually
extracytoplasmic in the spore and explains how the sporoplasm can remain intact during the
explosive germination reaction.

Polar tubes range from 50 to 100 μm in length and 0.1 to 0.15 μm in diameter (Frixione et
al., 1992). The polar tube has some flexibility in that it shows variation in diameter from 0.1
to 0.25 μm during discharge, its diameter can increase to 0.4 μm during sporoplasm passage,
and its length shortens by 5–10% after sporoplasm passage (Ohshima, 1937; Lom and
Vavra, 1963; Weidner, 1972; Frixione et al., 1992). The hollow discharged tubes appear to
be 2–3 times as long as the dense, coiled tube inside the spore and it has been suggested that
the internal contents of the tube are incorporated at its growing tip during discharge
(Weidner, 1972, 1976, 1982; Frixione et al., 1992). The evagination of the polar filament
has been likened to ‘reversing a finger of a glove’ (Oshshima 1937; Ishihara, 1968; Lom and
Vavra, 1963; Weidner, 1972; Weidner and Byrd, 1982; Weidner et al., 1995). This theory is
supported by observations using pulse labelling with latex particles and by video enhanced
contrast microscopy (Weidner, 1982; Frixione et al., 1992). It has also been observed that
the portion of the tube already everted remains unchanged while the tube elongates and even
changes direction at the tip (Weidner, 1982; Frixione et al., 1992). It should be noted that
spores can be broken by mechanical pressure or by glass bead disruption, thus releasing
polar tubes from the sides of the spores (Kudo, 1921; Keohane et al., 1994, 1996a). It has
been reported that polar tubes had a similar ultrastructural appearance regardless of whether
they were triggered to activate and evert from the apical pole, or if they passively burst
through the lateral walls of the spores (Weidner, 1982). Although it is now accepted that the
sporoplasm flows through the discharged polar tube and into the host cell, the mechanisms
of activation and tube formation during discharge still remain unclear.

3. The microsporidian spore wall
The spore wall is a major feature of microsporidian spores. Its mechanical properties
provide resistance to environmental influences and allow the increase in hydrostatic pressure
that causes spore discharge (Frixione et al., 1997). The anterior end of the spore, in front of
the anchoring disk, has an area where the endospore is less thick and more electron-dense.
Ultrastructural studies of the genus Encephalitozoon using TEM, freeze-fracture and deep-
etching, demonstrated that the exospore is very complex and consists of three layers: an
outer spiny layer, an intermediate electron-lucent lamina and an inner fibrous layer
(Bigliardi et al., 1996). The endospore is observed as a space crossed by bridges connecting
the exospore to the plasma membrane. Chitin, a major component of the endospore, has
been suggested to be a component of the fibrils forming the bridges across the endospore
and to be part of the fibrillar system of the exospore (Erickson and Blanquet, 1969; Vavra,
1976; Bigliardi et al., 1996). This hypothesis was confirmed by an immunohistochemical
study in E. intestinalis (Prigneau et al., 2000).
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There are hints that the spore surface, besides providing mechanical protection, is involved
in the initiation of polar tube extrusion and that modifications of the spore wall architecture
occur during this activation (Weidner, 1992; Weidner and Halonen, 1993). Electron
microscopy revealed that the outer spore envelope of Spraguea lophii and Thelohania sp.
completely disassembles at the time of spore activation (Weidner, 1992; Weidner and
Halonen, 1993). Using antikeratin antibodies it was demonstrated that the outer spore wall
of Thelohania sp. consists in part of keratin-like proteins that form 10-nm intermediate
filaments which become phosphorylated and disassemble during spore activation (Weidner
and Halonen, 1993).

It is possible to distinguish subcompartments within the spore wall using polyclonal antisera
against partially purified microsporidial proteins. A 30-kDa antigen was found to be located
on the outer spore wall, while a 33-kDa protein was found in a region close to the plasma
membrane (Delbac et al., 1998a). In addition, several monoclonal antibodies were reported
to recognise spore wall antigens (Visvesvara et al., 1994; Beckers et al., 1996; Lujan et al.,
1998). A glycine- and serine-rich 51-kDa protein named SWP1 is localised to the exospore
in E. cuniculi (Bohne et al., 2000) and E. intestinalis (Hayman et al., 2001). The
corresponding gene, swp1, has been identified in E. cuniculi (Bohne et al., 2000), E. hellem
(Bohne et al., 2000) and E. intestinalis (Hayman et al., 2001). SWP1 is absent in meronts
and first seen in early sporonts at a time when organisms translocate from the periphery to
the centre of the parasitophorous vacuole (Bohne et al., 2000). A 150-kDa glycoprotein in
the spore wall named SWP2 was identified in E. intestinalis (Hayman et al., 2001). SWP2 is
found on mature spores. Cysteine residues and the N terminal signal sequences are
conserved among these SWPs. E. cuniculi SWP1 has 11 cysteine residues and E. intestinalis
SWP1 and SWP2 have 10 cystein residues with a conserved spacing suggesting that these
proteins may have similar secondary structures and functions (Bohne et al., 2000; Hayman
et al., 2001).

Techniques have been described that permit the purification of spore coat proteins as well as
polar tube proteins (Keohane et al., 1994, 1996a, 1998, 1999). With the publication of the
genome of E. cuniculi this has permitted investigators to initial proteomic studies of the
composition of this structure (Texier et al., 2003; Weiss L.M., unpublished data). This has
resulted in the identification of new components of the spore wall, such as an enzyme
involved in the synthesis of chitin and a protein Ec-6 that is expressed during formation of
the spore wall (Xu Y. and Weiss L.M., unpublished data). Some of the components of the
spore wall appear to be modified by post-translational glycosylation involving
mannosylation. These modifications may be important in adherence of the spore wall to
mucin or to host cells during passage of the spores in the gastrointestinal tract, facilitating
invasion. It has, for example, been demonstrated that exogenous glycosaminoglycans can
decrease the adherence of spores to a host cell monolayer (Hayman et al., 2005).

4. Germination
Spore discharge is generally believed to occur in several phases: (1) activation, (2) increase
in intrasporal osmotic pressure, (3) eversion of the polar tube, and (4) passage of sporoplasm
through the polar tube. The exact mechanism(s) of this process is not well understood.
Conditions that activate spores vary widely among species, presumably reflecting the
organism’s adaptation to their host and external environment (Undeen and Epsky, 1990) [for
a review see Keohane and Weiss (1999)]. Since microsporidia are found in a wide range of
terrestrial and aquatic hosts, different species may require unique activation conditions for
spore discharge. These specific conditions are also probably important to prevent accidental
discharge in the environment (Undeen and Epsky, 1990).
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Conditions that have been shown to promote spore discharge include incubation at an
alkaline pH, acidic pH, or a pH shift from acid to alkaline or from alkaline to neutral
(Undeen and Avery, 1984; Undeen and Epsky, 1990). Other species have demonstrated
spore discharge at both acidic and alkaline conditions (Hashimoto et al., 1976). Dehydration
by drying or hyperiosmotic solutions followed by rehydration has been effective in
promoting spore discharge in some species, while dehydration followed by rehydration at an
alkaline pH was effective in others (Olson, 1976; Undeen and Epsky, 1990). Various cations
including potassium, lithium, sodium, cesium and anions such as bromide, chloride, iodide
and fluoride have been used to promote discharge (Undeen and Avery, 1988; Undeen and
Epsky, 1990; Frixione et al., 1994). Mucin or polyanions, hydrogen peroxide, low dose
ultraviolet radiation and calcium ionophore A 23187 have also been used to trigger
discharge (Lom and Vavra, 1963; Weidner and Byrd, 1982; Undeen and Vandermeer, 1990;
Leitch et al., 1993).

Inhibitors of spore discharge include 0.01–0.1 M magnesium chloride, ammonium chloride,
low salt concentrations (10–50 mM), sodium fluoride, silver ions, gamma radiation,
ultraviolet light, temperatures greater than 40 °C, calcium channel antagonists, calmodulin
inhibitors (chlorpromazine, trifluroperazine), a microfilament disrupter (cytochalasin D), a
microtubule disrupter (demecolcine) and itraconazole (Undeen and Avery, 1988; Undeen
and Vandermeer, 1990; Leitch et al., 1993). Calcium chloride (0.001–0.1 M) has been found
to inhibit spore discharge in some studies, while 0.2 M CaCl2 at pH 9.0 and 1 mM CaCl2
promoted discharge in other studies (Weidner and Byrd, 1982; Pleshinger and Weidner,
1985; Leitch et al., 1993). EGTA in the presence of calcium also promoted spore discharge
in one study and inhibited discharge in another (Pleshinger and Weidner, 1985; Malone,
1990). Removal of clathrin and calmodulin from the intermediate filament cage assembly,
which envelopes the spores of Glugea americanus (formerly S. lophii), results in irreversible
inactivation of spore discharge (Weidner, 1992).

It has been theorised that, regardless of the mode of activation, microsporidia exhibit the
same response to the stimuli, that is, increased intrasporal osmotic pressure (Ohshima, 1937;
Lom and Vavra, 1963; Weidner and Byrd, 1982; Undeen, 1990; Undeen and Frixione,
1990). This increase in osmotic pressure results in an influx of water into the spore
accompanied by swelling of the polaroplast and posterior vacuole prior to spore discharge
(Lom and Vavra, 1963; Undeen, 1990; Undeen and Frixione, 1990). It is this pressure that
forces the eversion of the polar tube and expulsion of sporoplasm (Undeen, 1990; Undeen
and Frixione, 1990). In hyperosmotic solutions, polar tube discharge is inhibited or slowed
down, and sporoplasm passage does not occur, thus providing indirect evidence for the
osmotic pressure theory (Lom and Vavra, 1963; Weidner and Byrd, 1982; Undeen, 1990;
Undeen and Frixione, 1990; Frixione et al., 1992).

Several theories have been proposed for the mechanism by which osmotic pressure is
increased in the spore. One of the earliest explanations was that the activation simply
increases the permeability of the spore coat to water (Lom and Vavra, 1963). Another theory
involved the creation of a proton gradient by the alkaline environment surrounding the spore
(Dall, 1983). The proton gradient drives a protoncation exchange mechanism consisting of a
carboxylic acid ionophore. As protons in the sporoplasm are depleted, the increase in
alkalinity triggers the same mechanisms in the membrane of organelles, particularly the
polaroplast and posterior vacuole. Water flows into the spore, due to the generalised osmotic
imbalance, increasing the intrasporal pressure (Dall, 1983). It should be noted, however, that
not all microsporidia require an alkaline pH for spore discharge. Another theory was based
on the finding of decreased trehalose levels in discharged spores as compared with
undischarged spores of B. algerae, an aquatic microsporidium (Undeen and Vandermeer,
1994). In this mechanism, activation causes changes in the spore that brings the trehalose in
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contact with the enzyme trehalase, perhaps by a disruption of compartments within the spore
(Undeen, 1990). The trehalose is degraded into a larger number of small molecules, causing
an increase in osmotic pressure. The subsequent flow of water into the spore results in
increase in intrasporal pressure and spore discharge (Undeen, 1990). Recently it has been
suggested that the posterior vacuole may function as a peroxisome containing both catalase
and Acyl CoA oxidase (Findley et al., 2005). The oxidation of fatty acids in the posterior
vacuole may therefore provide the force needed for germination (Findley et al., 2005).

Calcium has been proposed to play a major role in spore discharge, in which the
displacement of calcium from the polaroplast membrane would either activate a contractile
mechanism or combine with the polaroplast matrix causing polaroplast swelling (Weidner
and Byrd, 1982). Calcium ionophore A23187, sodium citrate and phosphate were found to
trigger polaroplast swelling and polar tube discharge, while calcium chloride inhibited the
reaction (Weidner and Byrd, 1982).

The first sign of spore discharge is a visible protrusion at the anterior end of the spore at the
polar cap, which is followed by the rapid emergence of the polar tube in a helicoidal fashion
along nearly a straight line (Lom and Vavra, 1963; Frixione et al., 1992). In B. algerae,
activation is associated with several other morphologic changes in the spore including the
appearance of membrane infoldings that surround the polar tube (Cali et al., 2002). This
ultra-structural data is suggestive that the polar tube is actually extracytoplasmic in the spore
and explains how the sporoplasm can remain intact during the explosive germination
reaction.

After complete discharge of the polar tube, the sporoplasm flows through the polar tube and
appears as a droplet at its distal end (Ohshima, 1937; Weidner, 1972; Frixione et al., 1992).
Using video enhanced contrast microscopy, there is a time delay between completion of
discharge and appearance of the droplet of about 15–500 ms (Frixione et al., 1992). It has
been suggested that the delay might be due to the eversion of a blind ended tube that needs
to be opened by some mechanism prior to sporoplasm release (Frixione et al., 1992).
Sporoplasm passage has not been observed in partially discharged tubes (Weidner, 1972;
Frixione et al., 1992). While in contact with the tip of the polar tube, the sporoplasm droplet
enlarges to a volume in excess of what might be expected from the size of the spore
(Frixione et al., 1992). This might be due to the movement of water into the sporoplasm due
to the osmotic gradient (Frixione et al., 1992). If the polar tube is discharged next to a cell it
pierces the cell and transfers the sporoplasm into it (Ohshima, 1937; Weidner, 1972;
Frixione et al., 1992). If there are no adjacent cells, the droplet of sporoplasm remains
attached to the polar tube for a period of time. It has been suggested that a new membrane
for discharged sporoplasms may be provided by the polaroplast (Weidner et al., 1984).

The polar tube provides a bridge to deliver the sporoplasm to the host cell. It serves to
protect the sporoplasm from the harsh external environment during its passage into its host
cell. Ultrastructural data have demonstrated that the polar tube can invaginate the host cell
membrane creating a microenvironment for the interaction of the sporoplasm and the host
cell membrane. Traditionally, the polar tube has been believed to pierce the host cell
membrane delivering the sporoplasm directly into the host cell’s cytoplasm. The
mechanism, however, by which the polar tube or sporoplasm interacts with the host cell’s
membrane is not known. Some data suggests that the final penetration of the sporoplasm
into the host cell may require the participation of host cell proteins such as actin (Foucault
and Drancourt, 2000). In addition to its role in delivering the sporoplasm to the host cell, the
polar tube has also been demonstrated to be a mechanism of escape from phagosomes for
ingested spores (Couzinet et al., 2000; Franzen, 2004). In fact, spore germination in a
phagosome has been demonstrated to allow the sporoplasm to escape the phagosome and
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penetrate out of one host cell and into an adjacent cell (Franzen, 2004). This may be an
important mechanism for dissemination of infection through macrophages transporting
spores in their phagosomes to other tissues.

5. Composition of the microsporidian polar tube
A single coiled polar tube is present, in a similar structural and functional form, in all
microsporidia regardless of species, host or geographical location. It is likely that this
structure evolved prior to divergence of microsporidia into various genera, and is not the
result of convergence of independently-evolved polar tube structure in different
microsporidia. Therefore, the proteins comprising the polar tube are likely to be members of
a protein family that evolved from the same ancestral genes. Several observers have
suggested that the polar tube originates from the coalescence of vacuoles of the Golgi,
forming a tube with a limiting membrane (Vavra, 1976). Weidner (1970) proposed that the
central core of the filament arose from the Golgi-like saccules and the outer envelope from
the endoplasmic reticulum (Weidner, 1970). In Glugea stephani, thiamine pyrophosphatase
was present on membranes and dense material that formed the polar filament suggesting a
trans-Golgi association (Takvorian and Cali, 1994). However, staining of the polar filament
core, its outer sheath and its originating vacuoles was also seen with nucleoside
disphosphatase (NDPase), which is a marker for endoplasmic reticulum as well as cis-Golgi
membrane (Takvorian and Cali, 1996). The polaroplast has also been reported to be derived
from the Golgi (Sprague and Vernick, 1968; Jensen and Wellings, 1972) and the
endoplasmic reticulum (Lom and Corliss, 1967; Weidner, 1970).

Early studies on the properties of polar tubes found them to be insoluble in water and saliva
but completely digested by trypsin in 24 h (Kudo, 1921). Polar tubes have been observed to
be rapidly digested after extrusion in digestive fluid or in the midgut of insects (Ohshima,
1937; Undeen and Epsky, 1990). The polar tube resists dissociation in 1–3% sodium
dodecyl sulfate (SDS), 5–8 N H2SO4, 1–2 N HCl, chloroform, 1% guanidine HCl, 0.1 M
proteinase K and 8–10 M Urea, but is soluble in 50% 2-mercaptoethanol (2-ME) or 1%
dithiothreitol (DTT) (Weidner, 1972, 1976; Keohane et al., 1994, 1996a, 1998a, 1999;
Keohane and Weiss, 1998). The polar tube inside the spore has been found to react in the
same manner to reducing agents and detergents as everted polar tubes (Weidner, 1976,
1982).

Polar tube proteins (PTPs) appear to be highly immunogenic in both experimental and
natural infections. In a large serosurvey, antibodies reacting to E. intestinalis by
immunofluorescence techniques were present in 5% of pregnant French women and 8% of
Dutch blood donors (van Gool et al., 1997). Studies have demonstrated that polyclonal
antibodies raised to whole spore lysates in experimental animals usually react with the polar
tube (Schwartz et al., 1993a; Zierdt et al., 1993; Weiss L.M., unpublished data). In a study
of the immunologic response to spore antigens of Glugea atherinae and E. cuniculi, several
candidate antibodies to PTPs were identified (Delbac et al., 1996, 1997) which demonstrated
cross reactivity to the polar tubes of G. atherinae and E. cuniculi by immunogold electron
microscopy. In addition, E. cuniculi antibodies reacted with the polar tube of S. lophii (aka
G. americanus) by immunofluorescence (Delbac et al., 1996). These findings suggest that
shared epitopes must exist. In the process of eversion of the polar tube, unique immunologic
epitopes may be exposed. For example, monoclonal antibody Si91 is specific for extruded
polar tubes of E. intestinalis and does not react with polar tubes within the spore nor does it
react with the polar tube of other Encephalitozoonidae (Beckers et al., 1996).

The solubility properties of polar tube proteins have facilitated their separation from other
proteins in the spore permitting the development of a method for the purification of the
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major polar tube protein (PTP1) from microsporidian spores (Keohane et al., 1994, 1996a,
1998, 1999). Soluble polar tube preparations of G. americanus, E. hellem, E. cuniculi, E.
intestinalis and B. algerae were prepared by sequentially extracting glass bead disrupted
spores with 1% SDS and 9 M urea, followed by solubilisation of the residual polar tubes in
2% DTT (Keohane et al., 1994, 1996a, 1998, 1999). PTP1 in the DTT-solubilised material
was then purified to homogeneity using reverse phase high performance liquid
chromatography (HPLC) (Keohane et al., 1994, 1996a, 1998, 1999). By SDS-PAGE and
silver staining this purified fraction migrated at 43 kDa for G. americanus, 45 kDa for E.
cuniculi and E. intestinalis, 55 kDa for E. hellem (Keohane et al., 1994, 1996a, 1998, 1999).
Monoclonal and or polyclonal antibodies raised to the purified PTP1 demonstrated reactivity
with polar tubes by immunofluorescence (IF) and immunogold electron microscopy (EM),
and demonstrated cross reactivity among the species by immunoblotting and immmunogold
EM (Keohane et al., 1994, 1996a, 1998, 1999; Fig. 4). Weidner (1976) purified a potential
polar tube protein of 23 kDa from Ameson michaelis by utilising the unusual solubility
properties of polar tubes (Weidner, 1976). Amino acid analysis of this protein demonstrated
the presence of multiple cysteine residues consistent with the hypothesis that disulfide
bridging is important in polar tube proteins (Weidner, 1976).

All of the major polar tube proteins (PTP1s) purified to date display similarities in
hydrophobicity, high proline content, and immunologic epitopes. Amino acid analysis of the
Encephalitozoonidae, G. americanus and B. algerae PTP1s demonstrated that proline was a
significant component of these proteins (Keohane et al., 1994, 1996a, 1998, 1999). Proline is
a hydrophobic imino acid and due to its ring structure it forms a fixed kink in a polypeptide
resulting in chain rigidity. High proline content is a feature of several structural proteins
such as collagen and elastin that are known for their high tensile strength, elasticity and
ability to recoil. Such properties are important for function of PTPs during the discharge and
passage of sporoplasm through the polar tube.

The E. cuniculi, E. hellem and E. intestinalis ptp1 have been cloned and the corresponding
protein (PTP1) expressed in vitro for E. cuniculi and E. hellem (Delbac et al., 1998b, 2001;
Keohane et al., 1998). Clones have also been obtained for the ptp1 of several different
isolates of E. hellem as well as G. americanus and B. algerae (Peuvel et al., 2000; Weiss,
2001; Xiao et al., 2001; Haro et al., 2003; Weiss L.M., unpublished data). The E. hellem
ptp1 is 1362 bp and encodes a protein of 453 amino acids with a predicted molecular mass
of 43 kDa while the ptp1 of E. cuniculi is 1188 bp and encodes a protein of 395 amino acids
with a predicted molecular mass of 37 kDa (Delbac et al., 1998b; Keohane et al., 1998).
These two microsporidia are in the same genus (Encephalitozoon) and cannot be
distinguished ultrastructurally, their native PTP1s have similarities in overall amino acid
composition, hydrophobicity, mass and immunologic epitopes, and their polar tubes have
functional identity (Weiss, 2001). It was therefore somewhat surprising that the translated
proteins have only limited identity in amino acid sequences. Further comparison does,
however, reveal striking similarities. Both translated proteins have a high number of proline
and glycine residues, a similar percentage of cysteine, and lack arginine, tryptophane and
phenylalanine. The spatial distribution of both the cysteine and proline residues is conserved
in both proteins. This suggests that conservation of function of these proteins may be
provided by conservation of secondary structural motifs (Weiss, 2001). From previous
studies on DTT solubilisation of polar tubes it is probable that disulfide bonds are important
for polar tube stability. The preservation of cysteine residues in these two PTP1s suggests
that these amino acids may be critical in the formation and function of the polar tube.

All of the cloned PTP1s have central amino acid repeat regions that are predominantly
hydrophilic. However, the repeats are different in composition and number. It is possible
that this region is not important for the assembly of the polar tube and may function as an
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immunologic mask. In the process of evolution, a similar duplication of internal sequences
has been noted in malaria and other protozoan genes and this mechanism may be operative
in the microsporidia ptp1 (Rich and Ayala, 2000). Analysis of ptp1 from several isolates of
E. hellem supports this view as the number of repeats in the central region of their ptp1 is
variable (Peuvel et al., 2000; Weiss, 2001; Xiao et al., 2001; Haro et al., 2003).

The Encephalitozoonidae PTP1s contain almost identical N-terminal signal sequences that
are cleaved to form the mature protein, as predicted by SignalP V1.1 and confirmed by N-
terminal sequencing in E. hellem (Keohane et al., 1998), E. cuniculi and E. intestinalis
(Keohane and Weiss, unpublished data). There are probably similar intracellular targeting
and processing pathways in these organisms for PTP1. The signal peptide is predicted by
PSORT to target PTP1 for processing through the endoplasmic reticulum and golgi
complex, which is consistent with morphologic observations of polar tube development
(Wittner and Weiss, 1999). The N- and C-terminus of these proteins display conservation
suggesting that these areas may have important structural or functional domains. In the
Encephalitozoonidae PTP1s, the C-terminus is high in cysteine residues and the last amino
acid is a cysteine, which may be important for interaction between proteins.

A study of the assembly properties of isolated PTP from A. michaelis demonstrated that
upon acidification this PTP reassembled into sheets or shells, appearing more fluid than PTP
of discharged spores (Weidner, 1976). Reassembly was not observed to occur if PTP was
alkylated after 2-ME treatment, nor after reduction by 1% DTT and subsequent removal of
the DTT (Weidner, 1976). We found that DTT solubilised E. hellem PTP1 would aggregate
when DTT was removed by dialysis, but reductive alkylation of cysteine residues using 4-
vinylpyridine prevented such aggregation (Keohane et al., 1996b; Weiss L.M., unpublished
data). Polar tubes have been reported to show branches and coalesce into networks when
suspended in 0.05–0.1 M CaCl2 (Weidner and Byrd, 1982).

Encephalitozoon hellem PTP1 has nine N-linked glycosylation sites, six of which are in the
central core and 93 O-linked glycosylation sites, 19 of which are in the central core. Many
of these are conserved among the Encephalitozoonidae PTP1 proteins. Glycosylation is
likely to have functional significance for the polar tube structure. This concept is supported
by studies demonstrating carbohydrate residues on intact polar tubes (Vavra, 1972; Wittner
and Weiss, 1999; Delbac et al., 2001; Xu et al., 2004). For example, concanavalin A bound
to PTP1 and to the polar tube of several different microsporidia species (Xu et al., 2004).
Analysis of the glycosylation of E. hellem PTP1 suggests it is modified by O-linked
mannosylation and that ConA binds to these O-linked mannose residues (Xu et al., 2004).
The E. cuniculi genome contains all of the genes required for O-mannosylation, however,
the genes for N-glycosylation appear to be absent (Katinka et al., 2001). Mannose
pretreatment of host cells decreased their infection by E. hellem consistent with an
interaction between the mannosylation of PTP1 and some unknown host cell mannose-
binding molecule (Xu et al., 2004).

While PTP1 is the major component of the polar tube, other polar tube proteins (PTPs) are
clearly present in the DTT solubilised polar tube fraction. For example, several putative
PTPs of 23, 27 and 34 kDa have been identified in G. americanus using mAbs produced to
the DTT solubilised polar tube (Keohane et al., 1994). Using 2D electrophoresis additional
proteins can be seen in DTT solubilised E. hellem polar tube preparations (Weiss, 2001). In
addition, polyclonal and monoclonal antibodies that localised to the polar tube by IFA and
immunogold EM and recognised proteins of 34, 75, and 170 kDa in G. atherinae and 35,
52/55, 150 kDa in E. cuniculi, 60 and 120 kDa in E. intestinalis and 46, 34, 21 and 15 kDa
in Nosema grylli have been reported (Beckers et al., 1996; Delbac et al., 1998a; Dolgikh and
Semenov, 2003).
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The gene encoding a 35-kDa protein band (i.e. PTP2) seen on SDS-PAGE of E. cuniculi
polar tube proteins has been cloned (Delbac et al., 2001). Encephalitozoon cuniculi PTP2 is
a 277 amino-acid polypeptide with a predicted molecular mass of 30 kDa with no significant
homology to any other GeneBank protein (Delbac et al., 2001). The N-terminal sequence of
PTP2 has a characteristic signal peptide (for Golgi-ER processing similar to PTP1) and the
central region contains a lysine-rich octapeptide motif (KPKKKKSK) (Delbac et al., 2001).
The C-terminal region of 27 residues is devoid of any basic residues and possesses four
aspartate and five glutamate residues forming an acidic tail (Delbac et al., 2001). One
putative N-glycosylation site and one RGD motif, possibly involved in some protein-protein
interactions, are present (Delbac et al., 2001). Similar to ptp1, E. cuniculi ptp2 exists as a
single copy per haploid genome. Encephalitozoon cuniculi ptp1 and ptp2 mRNAs are
polyadenylated and have reduced 5′ and 3′ UTRs (Delbac et al., 2001). Both ptp1 and ptp2
are located on chromosome VI in E. cuniculi as a gene cluster, which has a conserved
orientation and spacing in E. intestinalis and E. hellem (Delbac et al., 2001). Preservation of
gene order has recently been described in studies of microsporidian genomes and may be
due to constraints of evolution on these small eukaryotic genomes (Slamovits et al., 2004).
All of the Encephalitozoonidae PTP2 s are basic proteins of about 30 kDa, with a maximal
size difference of five residues (E. cuniculi PTP2 versus E. hellem PTP2) (Delbac et al.,
2001). Three potential O-glycosylation sites are present in PTP2.

By immunoscreening of a cDNA library of E. cuniculi, a third polar tube protein, PTP3, has
been identified and cloned (Peuvel et al., 2002). This protein is predicted to be synthesized
as a 1256-amino acid precursor (136 kDa) with a cleavable signal peptide and is encoded by
a single transcription unit (3990 bp) located on the chromosome XI of E. cuniculi (Peuvel et
al., 2002). Unlike PTP1 and PTP2, PTP3 is solubilised in the presence of SDS alone without
the need for a reducing agent such as DTT (Peuvel et al., 2002). Only one cysteine residue is
present, which is located in the potential N-terminal signal peptide. Charged residues (171
acidic and 144 basic residues) are highly dispersed along the protein (Peuvel et al., 2002).
Highly basic N- and C-terminal domains can be distinguished in the sequence of the
predicted mature protein (Peuvel et al., 2002). Aspartate and glutamate (16%) are the major
amino acids of the protein core (Peuvel et al., 2002). Immunolocalisation data indicated that
PTP3 is involved in the sporoblast-to-spore polar tube biogenesis (Peuvel et al., 2002). A
transcriptional up-regulation during sporogony is supported by a strong increase in the
relative amount of E. cuniculi PTP mRNAs within host cells sampled at late p.i. times
(Peuvel et al., 2002).

The regular multi-layered organisation of the microsporidian polar tube must be dependent
on specific interactions between its protein components. Previous studies suggested that
disulfide bridges play an essential role. Both PTP1 and PTP2 are cysteine-rich and the
positions of most cysteine residues are conserved in the three Encephalitozoon species
(Delbac et al., 2001), however, PTP3 protein lacks significant cysteine residues (Peuvel et
al., 2002). To explore polar tube-associated protein interactions, spore proteins were
extracted in the presence of SDS and dithiothreitol then incubated with a chemical cross-
linker (DSP or sulfo-EGS) (Peuvel et al., 2002). A large multimeric complex was formed
and shown to contain PTP1–PTP3 with a few other proteins (Peuvel et al., 2002).
Considering that PTP3 is extractable from E. cuniculi spores in the absence of thiol-reducing
agent, and lacks cysteine but is rich in charged residues, it has been suggested that PTP3
interacts with PTP1 and/or PTP2 via ionic bonds and may play a role in the control of the
conformational state of the PTP1–PTP2 polymers (Peuvel et al., 2002). For example, when
the polar tube exists as a coiled structure inside the spore interactions with PTP3 may permit
the maintenance of PTP1–PTP2 polymers in a condensed form (Peuvel et al., 2002).
Recently we have utilised DTT solubilised polar preparations for proteomic studies of the
polar tube (Weiss L.M., unpublished data). These studies suggest that in addition to PTP1–
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PTP3 other proteins may be present in the polar tube and these proteins may also contribute
to polar tube function and stability (Weiss L.M., unpublished data).

6. Summary
The invasion organelle of the Microsporidia has successfully served this diverse phylum,
resulting in a group of obligate intracellular organisms capable of infecting almost any cell
type. Investigations have resulted in the identification of three polar tube proteins (PTP1–
PTP3) in this structure. Mass spectrometry approaches may yield additional components of
the polar tube. Despite the fact that this structure was described over 100 years ago
(Thelohan, 1894), fundamental information on the mechanism of germination and the
interaction of the polar tube with the host cell still need to be obtained. Further study of this
structure may lead to novel strategies for control of these important parasitic protists.
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Fig. 1.
Diagram of a microsporidian spore. Spores range in size from 1 to 10 μm. The spore coat
consists of an electron dense exospore (Ex), an electron lucent endospore (En) and plasma
membrane (Pm). It is thinner at the anterior end of the spore. The sporoplasm (Sp) contains
a single nucleus (Nu), the posterior vacuole (PV) and ribosomes. The polar filament is
attached to the anterior end of the spore by an anchoring disc (AD), and is divided into two
regions: the manubrium or straight portion (M), and the posterior region forming five coils
(PT) around the sporoplasm. The manubrium is surrounded by the lamellar polaroplast (Pl)
and vesicular polaroplast (VPl). The insert depicts a cross-section of the polar tube coils
(five coils in this spore), demonstrating the various concentric layers of different electron
density and electron dense core present in such cross-sections. [Reprinted with permission
from Wittner, M., Weiss, L.M. (1999). The Microsporidia and Microsporidiosis. ASM
Press, Washington, DC].
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Fig. 2.
Ultrastructure of a microsporidian spore. Transmission electron micrograph of a spore from
Brachiola algerae demonstrating the polar tube in cross-section (arrow). Nu, nucleus; M,
manubrium; P, polaroplast. Bar=1 μm (courtesy of Ann Cali and Peter Takvorian, Rutgers
University).
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Fig. 3.
Germination of Brachiola algerae spores. Phase light microscopy demonstrating
germination of a B. algerae spore in aqueous acidic media. The arrows point to an extruded
polar tube. Bar = 25 μm.
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Fig. 4.
Staining of the polar tubes with antibody to PTP1. Encephalitozoon hellem cultured in RK13
(rabbit kidney) cells was stained with antibody to EhPTP1 (secondary antibody Cy3 anti-
mouse IgG) demonstrating the presence of PTP1 in the polar tube (arrows) and the
occurrence of germination in cell culture in vitro. Spores of E. hellem stained with 0.5%
Calcoflour white M3R (Xu et al., 2004) are indicated by an ‘*’. Bar=25 μm (courtesy of
Peter Takvorian, Rutgers University).
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