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A nonredundant database of 2312 full-length human 5�-untranslated regions (UTRs) was carefully prepared
using state-of-the-art experimental and computational technologies. A comprehensive computational analysis of
this data was conducted for characterizing the 5� UTR features. Classification and regression tree (CART)
analysis was used to classify the data into three distinct classes. Class I consists of mRNAs that are believed to be
poorly translated with long 5� UTRs filled with potential inhibitory features. Class II consists of terminal
oligopyrimidine tract (TOP) mRNAs that are regulated in a growth-dependent manner, and class III consists of
mRNAs with favorable 5� UTR features that may help efficient translation. The most accurate tree we found has
92.5% classification accuracy as estimated by cross validation. The classification model included the presence of
TOP, a secondary structure, 5� UTR length, and the presence of upstream AUGs (uAUGs) as the most relevant
variables. The present classification and characterization of the 5� UTRs provide precious information for better
understanding the translational regulation of human mRNAs. Furthermore, this database and classification can
help people build better computational models for predicting the 5�-terminal exon and separating the 5� UTR
from the coding region.

Gene expression is regulated at each step from DNA to
RNA to protein. Regulation of translational initiation is
a central control point in mammalian cells, and the
rate of initiation limits the translation of most mRNAs.
Mechanistically, cap-dependent ribosomal scanning
occurs on the majority of cellular 5� UTRs. This process
is severely hampered on long 5� UTRs, containing up-
stream AUGs (uAUGs), upstream open reading frames
(uORFs), and secondary structure. These features are
often found in mRNAs encoding regulatory proteins
like proto-oncogenes, growth factors, their receptors,
and homeodomain proteins. Some of these mRNAs use
an alternative mechanism of translation initiation, in-
volving an internal ribosomal entry site (IRES). Cellular
mRNAs containing a complex 5� UTR or an IRES share
an intriguing characteristic: Their translational effi-
ciency can be very specifically regulated by their 5�

UTR, providing post-transcriptional regulation. De-
spite the fact that the modulation of translation by
these multiple control elements has been studied by
researchers in many individual mRNAs on a case by
case basis (for review, see Kaufman 1994; Kozak 1996,
1999; Gray and Wickens 1998; Preiss and Hentze
1999), the detailed mechanisms involved in 5� UTR-
mediated control are not well understood. The binding
of trans-acting factors could mediate translation stimu-
lation or repression. The precise localization of uAUGs
and the activity of the cap-binding initiation factor 4E

are suggested to be important for translation regula-
tion of these mRNAs.

As completing the human genome sequencing is
imminent, systematic study of regulatory noncoding
regions has become a pressing need. We need to know
not only where the genes are and what they do but also
when, where, and how they are expressed. Functional
analysis of gene expression at the translational level
requires a knowledge of 5� UTR. During embryonic de-
velopment, the 5� UTRs of Antp, Ubx, RAR�2, c-mos,
and c-myc regulate protein expression in a spatiotem-
poral manner. Translation initiation on a number of
growth factor mRNAs (IGFII, PDGF2, TGF�, FGF-2, and
VEGF) is specifically regulated during differentiation,
growth, and stress. Furthermore, 5� UTR activity, mu-
tations in the 5� UTR, or the occurrence of alternative
5� UTRs have been implicated in the progression of
various forms of cancer (for review, see Clemens and
Bommer 1999; van der Velden and Thomas 1999).
Here, we attempt a comprehensive characterization of
the 5� UTR features by computational analysis of a
large collection of full-length (i.e., from transcription
start site to translation start site) 5� UTR sequences. As
far as we know, this work is the first classification of 5�

UTRs in a rigorous way. Kochetov et al. (1998, 1999)
did a computational prediction of eukaryotic mRNA
translational properties using partial 5� UTRs for only
two classes (high and low overall expression). How-
ever, our analysis includes a third class [terminal oli-
gopyrimidine tract (TOP) mRNAs] and is more compre-
hensive in terms of the size of the database and the
number and nature of the feature variables. Further-
more, all the 5� UTRs in our database are of full length.
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A high-quality database of 2312 full-length 5�

UTRs was prepared for the analysis. Three classes of
genes were considered for comparing and contrasting
the 5� UTR features. Class I consists of mRNAs encod-
ing transcription factors, growth factors, their recep-
tors, proto-oncogenes, and other regulatory proteins
that are poorly translated under normal conditions.
Class II consists of TOP mRNAs whose translation is
regulated in a growth-dependent manner. Class III
consists of mRNAs of highly expressed genes, whose
expression is controlled mainly at the transcriptional
level and may be candidates for efficient translation.
We compared the three classes with respect to their 5�

UTR features and identified those features that dis-
criminate most. Classification and regression tree
(CART) analysis (Breiman et al. 1984) was used to de-
velop a classification model for segregating these three
classes with significantly different 5� UTR features. CDS
length and codon bias were also added as the addi-
tional feature variables to improve the model.

The CART model indicated that secondary struc-
ture (free energy estimate by Zuker’s mfold program;
Mathews et al. 1999) was the most predictive variable.
This was followed by the presence of TOP, UTR length,
the number of stable free energies, the presence of
stable secondary structure within the first 100 bp from
the cap site, CDS length, A/T ratio, G/C ratio, the pres-
ence of uAUGs, the G+C percentage (GC%), the pres-
ence of uORFs, and codon bias, in the order of relative
importance for predictive classification. Most of the 5�

UTR features, which are inhibitory for translation,
were commonly observed in the 5� UTRs of class I tran-
scripts, whereas the 5� UTRs of classes II and III are
comparatively short and free from these inhibitory fea-
tures. The presence of TOP, secondary structure, UTR
length, and uAUGs remained as the most relevant vari-
ables for the final classification model that facilitated a
clear-cut separation into the three classes.

RESULTS
We constructed 5�-end enriched cDNA libraries based
on the oligo-capping method. By clustering these

cDNAs, a set of 954 5� UTR sequences was prepared see
Methods). Eighty-two percent of these sequences were,
on an average, 45 bp longer than any other sequences
previously reported. The overall sequence quality of
these 5� UTRs was 99.2% with 0.8% of ambiguity base
N (for further details, see Suzuki et al. 2000). This set
was expanded with another set of 5� UTRs retrieved
from UTRdb (Pesole et al. 2000) database. Finally, a
nonredundant high-quality database of 2312 human
5� UTRs was prepared for the analysis.

The data collected on all the 12 variables were ana-
lyzed by CART analysis (for details, see Methods). Mul-
tivariate analysis by CART indicated that free energy
estimate was the most discriminative variable for the
three classes. This was followed by the presence of
TOP, 5� UTR length, the number of stable free energies,
the presence of stable secondary structure within the
first 100 bp from the cap site, CDS length, A/T ratio,
G/C ratio, the number of uAUGs, GC% ,the number of
uORFs, and codon bias, in the order of relative impor-
tance for predictive classification. The summary statis-
tics on the important variables are presented in
Table 1.

As UTR length and free energy estimate were iden-
tified as the two most discriminating features, we pre-
sented their distributions in Figure 1. Ninety-five per-
cent of the 5� UTRs of class I transcripts have a length
of >100, whereas the transcripts of classes II and III
have much shorter 5� UTRs, with mean lengths of 45
and 73, respectively. Similarly, >90% of class I 5� UTRs
are embedded with stable secondary structures with
average free energies less than �50 kcal/mole. It is re-
ported that a structure with a free energy of �50 kcal/
mole is sufficient to impose a strong block on ribo-
somal scanning (Pelletier and Sonenberg 1985; Kozak
1989). 5� UTRs of classes II and III are almost free from
this translational inhibitory feature. An exception to
this is HBQ1, a hemoglobin, �1 (from class III) gene
whose 5� UTR contained a highly stable secondary
structure with an estimated free energy of �87.3 kcal/
mole. Also, 60% of the class I 5� UTRs have stable sec-
ondary structures within the proximity of the cap site,

Table 1. Summary Statistics for Four Categorical Variables

Number of UTRs with
Class I
(226)a

Class II
(70)a

Class III
(76)a

I + II + III
(372)a

Overall
(2312)a

Stable folds within first
100 bp from the cap site 136 (60.2) 0 (0) 1 (1.3) 137 (36.8) 635 (27.5)

TOP 10 (4.4) 70 (100) 2 (2.6) 83 (22.3) 152 (6.6)
uAUGs 96 (42.5) 0 (0) 4 (5.3) 100 (26.9) 465 (20.1)
uORFs 73 (32.3) 0 (0) 1 (1.3) 74 (19.9) 347 (15.0)
Start site good context 111 (49.1) 46 (65.7) 44 (57.9) 201 (54.0) 1153 (49.9)

aSize of the class.
Values in the parentheses are percentages.
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and only one (HBQ1) from the other two classes has
this inhibitory feature.

The presence of uAUGs and uORFs was observed as
a common feature in class I 5� UTRs. We counted only
those uAUGs and uORFs that are in good initiation
context (see Methods), and ∼42% of the class I 5� UTRs
have uAUGs, and 32% have uORFs. Class II and III are
quite free from these features, and the few outliers that
have these features are presented in Table 3, below. On
an average, we observed three uAUGs in class I 5� UTRs
and one uAUG in class III 5� UTRs for every 1000 bp;
class II 5� UTRs did not contain any uAUGs. The ratios
A/T and G/C are close to 1 in the case of class 1 5� UTRs
than classes II and III. This is consistent with the fact
that the 5� UTRs have more secondary structures than
the other two classes. In the case of start site context,
65% of class II transcripts are in good context followed
by class III with 57% and class I with 49%.

We applied a standard two-sample Z-test (Snede-
cor and Cochran 1980) to test the significant difference
in mean GC% and mean codon bias between the three
classes. The Z values for comparing the GC% of classes
I and II, classes I and III, and classes II and III were 1.12,
1.61, and 0.47, respectively. These values suggest that
there was no significant difference in the case of GC%,
though class I 5� UTRs have slightly higher GC content
than the other two classes. Similarly the Z values for
comparing the mean codon bias between classes I and

II, classes I and III, and classes II and III were 1.02, 2.6,
and 1.48, respectively. These values too were not sig-
nificant at the 1% level of significance and suggest that
there wasn’t any significant difference in mean codon
bias between the three classes. This indicates that the
codon usage and expression level in human genes are
not correlated. Duret and Mouchiroud (1999) also re-
ported the same. In contrast, codon bias plays an im-
portant role in translational efficiency in some lower
eukaryotes, such as yeast (Sharp and Li 1987).

Multivariate analysis of CART gave the classifica-
tion model that is presented in the form of a decision
tree (Fig. 2). The presence of TOP, secondary structure,
UTR length, and the presence of uAUGs remained as
the most relevant variables in the final classification
model that facilitated a clear-cut separation into the
three classes. The misclassification errors of the CART
model by class were presented in Table 2. The most
accurate tree we found has 92.5% classification accu-
racy as estimated by cross validation. Furthermore, the
model correctly classified all the class II transcripts and
misclassified 7% of class I and 16% of class III tran-
scripts. The second part of Table 2 gives cross valida-
tion classification by class. For example, the first row
explains that 210 (93%), 1 (0.4%), and 15 (6.6%) of 226
class I transcripts were classified as class-I, II, and III,
respectively. The transcripts that were misclassified are
presented in Table 3. The full CART classification of all

Figure 2 CART model.
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2312 human 5� UTRs is available at the ftp site pro-
vided in Methods.

DISCUSSION
The rate-limiting step in protein synthesis is thought
to be at translation initiation (Merrick 1992), and vari-
ous classes of mRNAs differ considerably in their trans-
lational efficiency. The mechanisms related to 5� UTR
features play an important role in translation regula-
tion, and there are many articles in recent years that
reported individual cases of translational regulation.
However, most of these experimental reports are about
mRNAs that are translationally repressed and the
mechanisms involved in it, and little experimental evi-
dence is available for efficiently translated transcripts.
Garcia-Sanz et al. (1998) estimated that the number of
translationally controlled mRNAs, following T-cell ac-
tivation, is close to 13% (7.9% are activated and 4.7%
are repressed), whereas the transcriptionally activated
is 36%. They showed that a subset of individual mRNA
species were translationally controlled and indicated
that translational control might contribute signifi-
cantly to the changes in gene expression that result in
T-cell activation. Recently, Zong et al. (1999) used hu-
man cancer cDNA expression arrays to identify those
mRNAs undergoing active translation. They identified
populations of cellular mRNAs that are either effi-
ciently or poorly translated in human foreskin fibro-
blast cell lines. Other than these two, we haven’t come
across any other experimental reports about transla-
tionally efficient mRNAs, especially for wild-type cells
under normal conditions.

In this article we made a rigorous computational
analysis of full-length 5� UTRs, by taking advantage of

the 5�-end-enriched cDNA library and UTRdb database.
We compared three different classes of transcripts that
perform completely different functions. Class I consists
of genes involved in cell growth regulation and differ-
entiation, regulation of metabolic pathways, and pro-
tection of cells from external damage. The transcripts
encoding these proteins are poorly translated under
normal conditions (e.g., in cells in the resting state).
Class II consists of TOP mRNAs that participate in pro-
tein synthesis. These are known to be translationally
regulated in a growth-dependent manner (Meyuhas et
al. 1996) and contain a cis-regulatory element called 5�

TOP at the cap site. Class III might be considered as a
control set, predominantly consisting of highly ex-
pressed gene transcripts. Most of these genes are either
efficiently translated or not regulated at the (default)
translational level. Our results show that these three
classes of transcripts are significantly different in many
of their 5� UTR features.

Class I Transcripts Have Long 5� UTRs Filled with
Stable Secondary Structures, uAUGs, and uORFs
Kozak (1991) presented a comprehensive review on 5�

UTR features involved in translation control and pre-
dicted that many of the growth-related proteins would
be poorly translated. Substantial experimental evi-
dence has been accumulated in recent years that sup-
ports this prediction. Some of the well-studied tran-
scripts that are poorly translated because of the pres-
ence of stable secondary structures or the presence of
uAUGs in the 5� UTR are ornithine decarboxylase (ODC),
TGF-�3, �1,4-galactosyltransferase (�4GalT-I), cyclin D1,
p53, AdoMetDC, RAR�2, and potassium channel
ROM-K3. Our classification model classified all these
transcripts (not included in the training set) in class I

Table 2. Misclassification Estimates by Class

Class
Prior

probability

Cross validation Learning sample

N (class
size)

N
misclassified

percent of
N misclassified

N (class
size)

N
misclassified

percent of N
misclassified

I 0.333 226 16 7.1 226 8 3.5
II 0.333 70 0 0 70 0 0
III 0.333 76 12 15.8 76 11 14.5

Total 1.0 372 28 7.5 372 19 5.1

Cross Validation Classification

Actual class

Predicted class

Actual totalI II III

I 210 (93.0) 1 (0.4) 15 (6.6) 226
II 0 (0) 70 (100) 0 (0) 70
III 10 (13.2) 2 (2.6) 64 (84.2) 76

Predicted total 73 220 79 372

Values in the parentheses are percentages.
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along with many other that have highly stable second-
ary structures and uAUGs. In most of these cases, trans-
lation occurs by the cap-dependent scanning model
(Merrick and Hershey 1996). The cytoplasmic cap-
binding protein, eIF-4E, participates in unwinding the
secondary structures, and hence, its availability is cru-
cial for the translation of these highly structured tran-
scripts. When the availability of active eIF-4E is limit-
ing, these transcripts are poorly translated. One way to
overcome this problem is the overexpression of eIF-4E.
Elevated levels of eIF-4E have been found in many tu-
mor cell lines and almost all breast carcinomas. As a
consequence, some of these poorly translated tran-
scripts in class I might be efficiently translated in cells
with eIF-4E overexpression. ODC is a good example for
this as its levels were found to be drastically increased
in eIF4-E transformed cells (Shantz et al. 1996).

One of the other ways these poorly translated tran-
scripts can get rid of these inhibitory features is by a
shift in the transcription start site and alternative splic-
ing. TGF-�3 and �4GalT-I are good examples for this
mechanism. Enhanced translational efficiency of TGF-
�3 was observed in human breast cancer cells, and its
5� UTR lacks the 5� end of ∼870 nucleotides (Arrick et
al. 1994) that contained inhibitory secondary struc-
ture. The �4GalT-I gene results in two transcripts with
different 5� UTRs. Charron et al. (1998) showed that
mammary gland-specific �4GalT-I transcript, with
truncated 5� UTR that lacks extensive secondary struc-
ture, was efficiently translated both in vitro and in
vivo. Both these transcripts that were not included in
the training set have been successfully classified as
class III transcripts by our classification model.

Class II and III Transcripts Have Small 5� UTRs
Free from Stable Secondary Structures, uAUGs,
and uORFs
Class II mRNAs contain a 5� TOP that regulates the
translation of these transcripts in a growth-dependent
manner. 5� UTRs of this class were relatively short and
almost completely free from the inhibitory features
that were commonly observed in class I 5� UTRs. How-
ever, we found a few transcripts from the other two
classes that contain this regulatory element. Avni et al.
(1997) showed that elongation factor 2 (EF2) and �1-
tubulin, which contain 5� TOP, are not regulated in a
growth-dependent manner but regulated in a cell type-
specific manner. They showed that the downstream
sequences suppressed the regulatory features of the 5�

TOP and suggested that the mRNAs with longer 5�

UTRs might not be regulated in the same way as ribo-
somal proteins. Our classification model correctly clas-
sified all those transcripts of class I and III even though
some of them contained 5� TOP.

In the classic review, Merrick (1992) suggested the
optimal characteristics for efficient mRNA translation,
and most of the transcripts in class III have the favored
characteristics. Hence, we suggest that most of these
mRNAs are likely to be efficiently translated or, at least
not repressed at the translational level. For a definite
proof, we would have to wait for the experimental re-
sults. In a personal communication, Dr. David Morris
provided the list of highly translated genes in human
foreskin fibroblast cell lines by using a method called
sucrose gradient analysis (Zong et al. 1999). Some of
the genes in the list that were not in our training set are
vimentin, desmin, CD59, caveolin-1, decorin, Ku80, and
cytokeratin 8. Our classification model was able to cor-
rectly classify all these into class III.

Why CART Is Good for the Present Analysis
We analyzed large multivariate data that included both
continuous and categorical variables. The CART tech-

Table 3. Misclassified Genes

Cases in class I classified in class III
MITF (AF034755) quiescin (Q6):

bone-derived growth
factor (L42379)

BTF3 (X74070) c-fms proto-oncogene
(X03663)

ZNF143 (U09850) CDKN3: CD11/KAP
(L25876)

STAT4 (L78440) AREB6 (D15050)
TFIIIC �-chain (AC002551) PDGF platelet-derived

growth-factor receptor
�-like tumor suppressor
(D37965)

GOS24 (M92844) TGF-� superfamily protein
(AB000584)

HIC-1 (zinc finger TF)
(L41919)

hepatocyte growth
factor-like protein
(U37055)

Stat2 (U18671)

Cases in class III classified in class I
Immunoglobulin � light

chain, subclass II, A3
gene (X12690) �G AUG

TBG: thyroxin-binding
globulin (Z83850) �G
AUG

Myosin VIIA (Usher
syndrome 1B
(autosomal recessive,
severe) (U39226) �G

immunoglobulin from
VH4 family (from a
patient with X-linked
agammaglobulinemia)
(X56158) TOP AUG

Myosin I beta (X98507)
�G

histone H3.3 (Z48950) �G

A2M: �2-macroglobulin
(Z11711) �G AUG

fructose–bisphosphatase,
aldolase A (D28356) �G

HBQ1: hemoglobin, �1
(M91453) �G

myosin regulatory light
chain (U26162) �G

Cases in classes I & III classified in class II
Mammaglobin

(AF015224)
Phosphogluconate

dehydrogenase
(U30255)

QM-tumor suppressor
gene (U37218)

(�G) Presence of stable secondary structure; (AUG) presence
of uAUGs; (TOP) presence of 5� TOP.

Davuluri et al.

1812 Genome Research
www.genome.org



nique is particularly applicable for studies like this, in
which many of the variables considered do not seem to
follow any particular distribution. In other words, we
didn’t make any parametric assumptions regarding the
distributions of the variables under study. Moreover,
our analysis was pattern driven rather than model
driven; rather than building a coherent global model
that includes all variables of interest, our classification
algorithm produced a set of statements about local de-
pendencies among predictor variables (in rule form
with yes or no answers).

Also, CART uses predictor variables indepen-
dently. That is, initially the entire data is partitioned
into two subgroups according to the variable that pro-
duces the best split, for example, presence of TOP.
Then, in each of the resulting strata, the process is re-
peated recursively until none of the selected variables
shows significant influence on the split or the size of
the subgroup is too small. In the final process, sub-
groups of cases that do not differ in any of the charac-
teristics under study are joined together to form ho-
mogeneous classes.

CART also picks the best discriminating variables
and ranks all the variables according to the relative
discriminating power. We tried other classical methods
such as linear discriminant analysis (LDA) and qua-
dratic discriminant analysis (QDA) by considering the
top three relevant variables picked by CART. The mod-
els of LDA and QDA didn’t seem to give any better
prediction than the CART model (data not shown).
This might be due to the non-normality of the data
and forcing parametric assumptions that didn’t seem
to exist.

Our experience shows CART as a useful data-
mining tool for analyzing large data with many vari-
ables, where conventional statistical methods like LDA
or QDA are not effective.

Limitations of CART
CART exhibits its greatest strengths in classification
trees with a highly nonlinear structure (e.g., the 5� UTR
data in the present study). The closer the model is to
linear, the less useful CART will be. When data exhibit
a genuinely linear structure, CART is not a particularly
useful analytical technique. Another important prob-
lem with CART is heteroscedasticity (within class vari-
ance). If the cases within a node genuinely belong to-
gether but have a high variance because of heterosce-
dasticity, CART may select a spurious split to partition
the data. Although cross validation is designed to pro-
tect against the retention of such splits, some do sur-
vive the pruning process. In the present study class II is
highly homogeneous, followed by class II and class III.
The classification model could clearly segregate class II
from the other two. However, 6.6% of class I were mis-
classified in class III, and 13.2% of class III were mis-

classified in class I (Tables 2 and 3). This might be due
to the heteroscedasticity present in classes I and III. On
the other hand, experimentalists are encouraged to
look into these misclassified transcripts for proper rea-
sons for their misclassification.

Conclusion
We made a comprehensive analysis of a large collec-
tion of 5� UTRs and broadly classified the data into
three functional groups. The class I transcripts seem to
be very poorly translated under normal conditions,
and those from class III might be candidates for effi-
cient translation. Our classification model and the data
we have generated may provide valuable information
for experimentalists engaged in translational control
and regulation studies. For example, the next natural
step is to look for IRES or internal entry points within
class I 5� UTRs experimentally as well as computation-
ally.

One of the main goals of our study is to develop a
complete gene prediction system. As a first step toward
this goal, we recently added a 3�-terminal exon-
recognition module (J. Tabaska, R.V. Davuluri, and
M.S. Zhang, in prep.) to the internal exon finder, MZEF
(Zhang 1997). Our next step in achieving this task is
the development of a 5�-terminal exon-detection mod-
ule. We are presently working on the extension of the
results of this work to the 5�-terminal exon-prediction
program. The feature variables studied here would be
valuable to identify the correct start site and separate 5�

UTR from the coding region. The drastic differences in
5� UTR features observed between the three classes in-
dicate that distinct models could be used to predict
5�-terminal exons. Hence, the classification of the 5�

UTRs into homogenous classes would facilitate the
building of separate models for each class so that the
overall quality of the 5�-terminal-exon prediction is ex-
pected to be higher than the prediction based on a
single mixture model.

METHODS

5� UTR Database
A set of 954 human 5� UTR sequences was obtained from the
5�-end-enriched cDNA library (Suzuki et al. 1997, 2000) with
their mRNA start sites. The 5�-end-enriched cDNA library was
constructed to isolate the mRNA start site of long mRNA, by
using a method called oligo-capping (Maruyama and Sugano
1994) with some modifications. We collected 5� UTRs from
this library as follows: First, cDNA sequences were clustered
with DYNACLUST (Dynacom) after removing the oligo-
capped 5�-oligonucleotide sequence from each 5� end.
DYNACLUST is a database management software, which clus-
ters the sequences using BLAST with the score of e � 40 for
400 bp. The position of the translation start site (ATG) was
marked for each sequence according to the annotation in
GenBank. Then, the sequence between the oligo-capped 5�-
oligonucleotide sequence and the translation start site (ATG)
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was extracted from each cluster. If alternative mRNA start sites
or translation start sites were observed, then the cDNAs con-
taining the longest 5� UTRs at both the 5� and 3� boundaries
were selected as the representative. (for details, see Suzuki
2000).

The experimentally derived set of 954 5� UTRs was aug-
mented with a second set of 1613 full-length 5� UTR se-
quences retrieved from the UTRdb (Pesole et al. 2000) data-
base. Only those sequences with UT feature tag as complete 5�

UTR are considered. These sequences were extensively verified
by going through their corresponding GenBank records, and
only those records with evidence = experiment were consid-
ered. All the redundant and ambiguous sequences were elimi-
nated, and finally, a nonredundant set of 2312 5� UTR
sequences was prepared for the analysis. A sequence was
considered redundant if it has 90% similarity and 90% over-
lapping with a larger sequence in the database. However,
there may be more than one 5� UTR for some genes because of
alternative splicing and usage of different transcription start
site. From this database the following three classes of 5� UTRs
were considered for analysis: Class I, the first class, consists of
5� UTRs of growth factors, their receptors, transcription fac-
tors, proto-oncogenes, cytokine receptors, and tumor suppres-
sor genes. Most of these are understood to be translationally
repressed mRNAs. Class II, the second class, consists of TOP
mRNAs. TOP mRNAs are vertebrate transcripts with a C resi-
due at the cap site, followed by an uninterrupted stretch of
4–13 pyrimidines, called 5� TOP, encode for ribosomal pro-
teins and elongation factors 1� and 2�. The translation of this
class of mRNAs is regulated in a growth-dependent manner.
Class III, the third class, consists of 5� UTRs of highly ex-
pressed genes, tubulins, globins, globulins, myosins, caseins,
glycolytic enzymes, �-actin, �-actin, and histones. The expres-
sion of these genes is controlled mainly at the transcriptional
level, and their transcripts are believed to be efficiently trans-
lated. In other words, these genes are either translationally
efficient or (at least) not repressed at the translational level. In
contrast, the first two classes of genes are tightly regulated at
the translational level in stringent ways. There are 226 5�

UTRs in the first class, 70 in the second, and 76 in the third
class. The complete data set is available at ftp://cshl.org/pub/
science/mzhanglab/ramana.

Data Analysis

CART
CART is a nontraditional algorithm developed by Berkeley
and Stanford statisticians (Breiman et al. 1984). Tree-based
models are becoming increasingly important in many fields.
They are quite useful for uncovering structural relationships
between a response/classification variable and a set of predic-
tor variables in large multivariate data sets and in devising
prediction rules that are both easy to interpret and easy to
evaluate. Tree-based methods have numerous advantages.
They produce decision rules that can readily accommodate
both continuous and categorical predictor variables, and they
readily capture nonlinear and nonadditive behavior and very
general sorts of interactions among the predictors. CART is a
decision tree structured statistical analysis and data mining
tool that partitions a data set into discrete classes based on the
value of a user-defined classification variable. The predictor
variables in the database are selected as to whether or not they
provide a predictive segregation of the data between different
values of the classification variable. This restriction presup-

poses that there is a causal relationship between the predictor
variables and the classification variable. The CART software
segregates the different values of a classification variable
through the growth of a binary decision tree, composed of a
progression of binary splits on the values of the predictor
variables. Each split is chosen such that the segregation of
different values of the classification variable is improved. The
resulting tree has multiple branches, of various complexities,
each of which represents a path to a particular value of the
classification variable.

Procedure for Constructing a CART Tree
The key components of tree-structured data analyses are tree
growing, tree pruning, and optimal tree selection. Tree grow-
ing depends on splitting rules and stopping criteria. CART
begins with all the data points in the learning sample, L. The
CART classification tree initially consists of one node—the
parent node of the tree, which contains all the points in L.
The CART program searches through all possible values of all
the variables, looking for the split that best separates the
classes. The first split creates two child nodes. CART takes
each of the child nodes and recursively partitions each child
node in the same way that it partitioned the parent node.
CART evaluates the goodness of any candidate split using an
impurity function. A node that contains members of only one
class is perfectly pure, and the node that contains an equal
proportion of every class is least pure. Given a node t with
estimated class probabilities p(j/t), j = 1,. . .,J, and a measure of
node impurity, CART searches for the split that most reduces
node, or equivalently, tree impurity. CART provides different
impurity functions, for example, Gini Measure, Twoing crite-
rion, etc. (for more details, see Breiman et al. 1984). We tried
all the impurity functions and finally selected Gini Measure,
which best suited our data. For a node t with estimated class
probabilities p(j�t), j = 1, . . . , J, Gini Measure is defined as

1− �
j

p2�j�t�.

The next important step in tree growing is stopping.
However, stopping is not an essential component of CART.
CART grows the tree until no further growth is possible, that
is, terminal nodes have only one case, or terminal nodes with
more than one case are identical on the classification variable.
The resulting maximal tree is called Tmax. Because Tmax usu-
ally overfits the data (i.e., being overly sensitive to irregulari-
ties in data) especially when it is noisy, CART applies a prun-
ing and evaluation procedure to find the optimum-sized clas-
sification tree,Topt. The pruning procedure generates a nested
sequence of smaller and smaller subtrees, {Tmax,. . .,T2,T1},
from which CART selects the Topt that has the lowest or near
lowest cost of misclassification as determined by a cross vali-
dation procedure. In other words, CART performs postprun-
ing, whereby as many child nodes as possible are eliminated
as long as the overall estimated accuracy of the tree is not
significantly reduced.

Cross Validation
A learning sample of 372 cases (226, 70, and 76 from classes I,
II, and III, respectively) was considered for the CART analysis.
A 10-fold cross validation was used for estimating the misclas-
sification rates. That is, CART divides the learning sample into
10 roughly equal parts, each containing similar distribution
for the classification variable. CART takes the first nine parts
of the data, constructs the largest possible treeTmax, and uses
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the remaining one-tenth of the data to obtain initial estimates
of the error rate of selected subtrees. The same process is then
repeated on another nine-tenths of the data and uses a differ-
ent one-tenth part as the test sample. The process continues
until each part of the data has been held in reserve one time
as a test sample. The results of the 10 minitest samples are
then combined to form the best estimates of true error rates
for trees of each possible size; these estimated error rates are
applied to the tree based on the entire learning sample. This
cross validation estimate is used in CART for two important
functions: (1) to determine the degree to which the final tree
should be pruned and (2) to estimate the true misclassifica-
tion rate of the final tree.

Feature Variables
The following variables were used as predictor variables in
CART analysis:

1. |UTR length � 80|: Kozak (1991) has shown that the
rate of mRNA translation increases proportionally as the
length of the 5� UTR is increased from 17 to 80. Hence, taking
80 as the optimal 5� UTR length for efficient translation, we
considered |UTR length � 80| as one of the variables.

2. Free energy estimate of secondary structure (�G): The
latest version of the mfold (Mathews et al. 1999) program was
obtained from Michael Zuker (mfold v.3.1). The mfold pro-
gram minimizes a free energy function, which sums contri-
butions from stacking, loop lengths, etc. It actually estimates
the difference between the free energy of the unfolded state
and folded state. For any given RNA sequence length, the
lower the energy estimate the more stable the predicted sec-
ondary structure. Local free energy estimates were worked out
for each 5� UTR. This was done by cutting the longer 5� UTRs
into sequences 200 bp in length with an overlapping window
of 100-bp size between successive sequence fragments. The
most stable secondary structure predicted in each sequence
fragment was considered, and its free energy estimate is re-
corded in the database.

3. Number of stable folds: The number of predicted folds
with minimum folding energy of less than �50 kcal/mole
were counted.

4. GC percentage: G + C percentage was calculated for
each 5� UTR.

5. G/C ratio: The absolute value of G/C � 1 was calcu-
lated. If the value of G/C is in the neighborhood of 1, then the
chance of forming stable secondary structures is high, and it
is less otherwise.

6. A/T ratio: Similar argument holds good for the abso-
lute value of A/T � 1.

7. Number of uAUGs: The most important positions for
efficient translation are a purine at the �3 position and a G at
position +4, where A of the AUG codon is position +1 (Kozak
1997). If either of these main features is unfavorable, posi-
tions +5 and +6 can influence the start site efficiency, with a
A or C being preferred at position +5 and a U at position +6
(Boeck and Kolakofsky 1994). An AUG is said to be in good
context if it satisfies these criteria, and all those uAUGs that
were in good context are counted for each 5� UTR.

8. Number of uORFs: Some mRNAs with a long 5� UTR
contain one or more uORFs, and these uORFs are often in-
hibitory for the translation of the downstream coding region.
All those uORFs with good initiation context, as defined
above, were counted for each 5� UTR.

9. TOP: This is a categorical variable with value 1 if 5�

TOP exits and 0 otherwise.

10. Start site context: This is another categorical variable
taking value 1 if the start codon (AUG) is in good context and
0 otherwise. Along with these 5� UTR features, we have also
included the following two more variables that may also in-
fluence the mRNA translation:

11. CDS length: The length of the coding sequence in
terms of the number of amino acids was calculated.

12. Codon bias: Codon bias was calculated according to
the Karlin formula (Karlin and Mrazek 1996) with slight
modifications.

Bg =
1
N �

a
p�a�Bg�a�

where p(a) are the amino acid frequencies, N is the total
amino acid count and Bg(a) are calculated as follows:

Bg�a� =
1

d�a� � |
gxyz

�r�

gxyz
− 1|

with g(r)
xyz being the relative codon frequencies for the gene gr

and gxyz the relative codon frequencies of a reference set. Here
the reference set constitutes a set of 30 genes with poor trans-
lational efficiency.
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