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Abstract
The acceleration of molecular dynamics (MD) simulations using high-performance reconfigurable
computing (HPRC) has been much studied. Given the intense competition from multicore and
GPUs, there is now a question whether MD on HPRC can be competitive. We concentrate here on
the MD kernel computation: determining the short-range force between particle pairs. In one part
of the study, we systematically explore the design space of the force pipeline with respect to
arithmetic algorithm, arithmetic mode, precision, and various other optimizations. We examine
simplifications and find that some have little effect on simulation quality. In the other part, we
present the first FPGA study of the filtering of particle pairs with nearly zero mutual force, a
standard optimization in MD codes. There are several innovations, including a novel partitioning
of the particle space, and new methods for filtering and mapping work onto the pipelines. As a
consequence, highly efficient filtering can be implemented with only a small fraction of the
FPGA’s resources. Overall, we find that, for an Altera Stratix-III EP3ES260, 8 force pipelines
running at nearly 200 MHz can fit on the FPGA, and that they can perform at 95% efficiency. This
results in an 80-fold per core speed-up for the short-range force, which is likely to make FPGAs
highly competitive for MD.

Additional Key Words and Phrases
FPGA-based coprocessors; high performance reconfigurable computing; bioinformatics;
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1. INTRODUCTION
Molecular dynamics simulation (MD) is a central method in high-performance computing
(HPC) with applications throughout engineering and natural science. Acceleration of MD is
a critical problem—there is a many order-of-magnitude gap between the largest current
simulations and the potential physical systems to be studied. As such it has received
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attention as a target for supercomputers [Fitch et al. 2006], clusters [Bowers et al. 2006], and
dedicated hardware [Komeiji et al. 1997; Shaw et al. 2007; Taiji et al. 2003], as well as
coprocessing using GPUs [Rodrigues et al. 2008], Cell [Shi and Kindratenko 2008], and
FPGAs [Alam et al. 2007; Azizi et al. 2004; Gu et al. 2006b; Hamada and Nakasato 2005;
Kindratenko and Pointer 2006; Scrofano and Prasanna 2006; Villareal et al. 2007]. The last
of these, MD with High Performance Reconfigurable Computing (HPRC), is our focus here.
In particular, we demonstrate that MD with HPRC is not only cost-effective, but in fact an
excellent fit. This result is surprising given the FPGA’s reputation for having difficulty with
floating point intensive computations.

In this article we re-examine the short-range force computation which dominates MD.
Although this problem has been addressed by many groups in the last few years, much of the
design space remains unexplored. In addition, recent advances in FPGA hardware and in
compiler technology appear to have shifted some basic trade-offs.

Our study has three parts. The first part considers the force pipeline. Our goal here is to
maximize throughput—operating frequency and the number of pipelines that fit on the
FPGA—while maintaining simulation quality. To do this, we explore various ways to
perform the arithmetic, the modes in which to execute the operations, the levels of precision,
and other optimizations. Some of the choices are as follows.

• Direct computation (Direct) versus table lookup with interpolation (LookUp)

• Interpolation order (for LookUp)

• Precision: single, double, custom

• Mode: floating point, hybrid fixed/floating point, custom

• Implementation: synthesized components, vendor cores, vendor compiler (e.g.,
Langhammer [2008])

• Various arithmetic reorderings

We find that direct computation, rather than table lookup, is now preferred, and that single
precision floating point combined with higher precision fixed point leads to both excellent
performance and high-quality simulations.

The second part considers filtering particle pairs. This issue emerges from the geometric
mismatch between two shapes: (i) the cubes (or other polyhedrons) into which it is
convenient to partition the simulation space and (ii) the spheres around each particle in
which the short-range force is non-zero. If this mismatch is not addressed (e.g., only the
standard cell-list method is used), then 85.5% of the particle pairs that are run through the
force pipelines will be superfluous. While filtering is a critical issue, we believe that the only
previously published results related to hardware implementations are from D.E. Shaw; these
are with respect to their Anton processor [Larson et al. 2008].

Here, we find filtering implementation on FPGAs to provide a rich design space. Its primary
components are as follows.

• Filter algorithm and precision

• Method of partitioning the cell neighborhood to balance load with respect to the
Newton’s-3rd-Law optimization

• Method of mapping particle pairs to filter pipelines

• Queueing and routing between filter and force pipelines
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We present new algorithms or methods for filtering, load balancing, and mapping, and find
that nearly perfect filtering can be achieved with only a fraction of the FPGA’s logic.

The third part considers the integration of the new features specified by the other two parts.
The particle mapping to the filter pipelines leads to changes in how cell lists are swapped
on/off chip. Also, the filter pipelines generate neighbor lists which must be fed into the force
pipelines. And having multiple force pipelines (8 or more) requires accumulation of forces
on the other end. We find solutions to all of these issues that have simple control, match
FPGA resources, and add only little overhead.

Our basic result is that for the Stratix-III EP3SE260, and for the best (as yet unoptimized)
designs, 8 force pipelines running at nearly 200 MHz can fit on the FPGA. Moreover, the
force pipelines can be run at high efficiency with 95% of cycles providing payload. As a
result, the short-range force for the standard 90K NAMD benchmark can be computed in
under 22 ms, or about a factor of 80 faster than its per-core execution time. Contributions
are three-fold: (i) demonstrating that FPGAs are highly competitive for MD, (ii)
substantially expanding the exploration of the MD force pipeline design space for FPGAs,
and (iii) presenting the first study of particle-particle filtering on FPGAs and with it a
number of innovations. The last of these may have implications to MD beyond HPRC.

The rest of this article is organized as follows: In the next section, we review the applicable
parts of MD simulation. There follows the presentations of the three parts of our study, after
which come results and some discussion. This article builds on work presented at
HPRCTA08 [Chiu et al. 2008] and FPL09 [Chiu and Herbordt 2009] which concentrated on
the force and filter pipelines, respectively. Besides combining and augmenting these pieces,
we address here the substantial issues of their integration, as well as data movement
throughout the application: host-accelerator, board-FPGA, and among components on the
FPGA.

2. MD PRELIMINARIES
2.1 MD Review

MD is an iterative application of Newtonian mechanics to ensembles of atoms and
molecules (see, e.g., Rapaport [2004] for details). MD simulations generally proceed in
iterations each of which consists of two phases, force computation and motion integration.
In general, the forces depend on the physical system being simulated and may include LJ,
Coulomb, hydrogen bond, and various covalent bond terms:

(1)

Because the hydrogen bond and covalent terms (bond, angle, and torsion) affect only
neighboring atoms, computing their effect is O(N) in the number of particles N being
simulated. The motion integration computation is also O(N). Although some of these O(N)
terms are easily computed on an FPGA, their low complexity makes them likely candidates
for host processing, which is what we assume here. The LJ force for particle i can be
expressed as:

(2)
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where the ∈ab and σab are parameters related to the types of particles, that is, particle i is
type a and particle j is type b. The Coulombic force can be expressed as:

(3)

A standard way of computing the nonbonded forces (LJ and Coulombic) is by applying a
cut-off. Then the force on each particle is the result of only particles within the cut-off radius
rc. Since this radius is typically less than a tenth of the size per dimension of the system
under study, the savings are tremendous, even given the more complex bookkeeping
required.

The problem with cut-off is that, while it may be sufficiently accurate for the rapidly
decreasing LJ force, the error introduced in the slowly declining Coulombic force may be
unacceptable. A number of methods have been developed to address this issue with some of
the most popular being based on Ewald Sums (see, e.g., Darden et al. [1993]) and multigrid
(see, e.g., Izaguirre et al. [2005] and Skeel et al. [2002]). Here we use the standard
convention of calling short-range the LJ force and the Coulombic force generated within a
cut-off radius. We refer to the Coulombic force generated outside the cut-off radius as long-
range. Since the long-range force computation is generally a small fraction of the total (see,
e.g., Gu and Herbordt [2007] and Scrofano and Prasanna [2006]), we concentrate here on
the short-range force.

2.2 Short-Range Force Computation
As just described, the short-range force computation has two parts, the LJ force and the
rapidly converging part of the Coulomb force. The LJ force is often computed with the so-
called 6-12 approximation given in Eq. (2). This has two terms, the repulsive Pauli exclusion
and the van der Waals attraction. Both require coefficients specific to the component
particles of the particle pair whose interaction is being evaluated. These can be combined
with the other constants (physical and scaling) and stored in coefficient look-up tables. Thus,
the LJ force can be expressed as

(4)

where Aab and Bab are distance-independent coefficient look-up tables indexed with atom
types a and b.

Returning now to the Coulomb force computation, we begin by rewriting Eq. (3) as

(5)

where QQab is a precomputed parameter (analogous to Aab and Bab). Because applying a
cut-off here often causes unacceptable error, and also because the all-to-all direct
computation is too expensive for large simulations, various numerical methods are applied
to solve the Poisson equation that translates charge distribution to potential distribution. To
improve approximation quality and efficiency, these methods split the original Coulomb
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force curve in two parts (with a smoothing function ga(r)): a fast declining short range part
and a flat long range part. For example:

(6)

The short range component can be computed together with Lennard-Jones force using a
third look-up table (for QQab). The entire short range force to be computed is:

(7)

2.3 Computing Short-Range Forces with Table Look-Up
Since these calculations are in the “inner loop,” considerable care is taken in their
implementation: even in serial codes, the LJ equation is often not evaluated directly, but
rather with table look-up and interpolation. Previous implementations of HPRC MD have
used table look-up for the entire LJ force as a function of particle separation [Azizi et al.
2004; Gu et al. 2006a]. The index used is |rji|2 rather than |rji| so as to avoid the costly
square-root operation. This method is efficient for uniform gases where only a single table is
required [Azizi et al. 2004], but is less likely to be preferred in more general cases.

In more recent work [Gu et al. 2008], we use a different method: Instead of implementing
the force pipeline with a single table lookup, we use three, one each for r−14, r−8 and

. Equation (7) can be rewritten as a function of :

(8)

where R14, R8, and R3 are lookup tables indexed with |rji|2.

The intervals in the tables are represented in Figure 1. Each curve is divided into several
sections along the X-axis such that the length of each section is twice that of the previous.
Each section, however, is cut into the same number of intervals N. To improve the accuracy,
higher order terms can be used. When the interpolation is order M, each interval needs M + 1
coefficients, and each section needs N * (M + 1) coefficients:

(9)

shows third order with coefficients ai. Accuracy increases with both the number of intervals
per section and the interpolation order. These issues are discussed in detail in Gu et al.
[2008].

2.4 Filtering Particle Pairs
While MD in general involves all-to-all forces among particles, a cut-off is commonly
applied to restrict the extent of the short-range force to a fraction of the simulation space.
Two methods are used to take advantage of this cut-off: cell lists and neighbor lists (see
Figure 2). With cell lists, the simulation space is typically partitioned into cubes with edge-
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length equal to rc. Non-zero forces on the reference particle P can then only be applied by
other particles in its home cell and in the 26 neighboring cells (the 3x3x3 cell
neighborhood). We refer the second particle of the pair as the partner particle. With
neighbor lists, P has associated with it a list of exactly those partner particles within rc. We
now compare these methods.

• Efficiency. Neighbor lists are by construction 100% efficient: only those particle
pairs with non-zero mutual force are evaluated. Cell lists as just defined are 15.5%
efficient with that number being the ratio of the volumes of the cut-off sphere and
the 27-cell neighborhood.

• Storage. With cell lists, each particle is stored in a single cell’s list. With neighbor
lists, each particle is typically stored in 400-1000 neighbor lists.

• List Creation Complexity. Computing the contents of each cell requires only one
pass through the particle array. Computing the contents of each neighbor list
requires, naively, that each particle be examined with respect to every other
particle: the distance between them is then computed and thresholded. In practice,
however, it makes sense to first compute cell lists anyway. Then, the neighbor lists
can be computed using only the particles in each reference particle’s cell
neighborhood.

From this last point, it appears that the creation of neighbor lists involves not only cell lists,
but also a fraction of the force computation itself. At this point, why not finish computing
the forces of those particles that are within the cut-off? Why save the neighbor list?

Most MD codes reuse the neighbor lists for multiple iterations and so amortize the work in
their creation. But because particles move during each iteration, particles can enter and exit
the cut-off region leading to potential error. The solution is to make the neighborlist cut-off
larger than the force cut-off, for example, 13.5Å versus 12Å (see Figure 3). There is a trade-
off between the increase in neighborhood size, and thus the number of particle pairs
evaluated, and the number of iterations between neighbor list updates.

3. FORCE PIPELINE DESIGN AND OPTIMIZATION
3.1 Overview

In this section, we describe FPGA implementations of Eq. (7). All are pipelined and, on
every cycle, input positions of particle pairs and output corresponding forces. There are
numerous design axes as described in Section 1. The ones that reorder or change the pipeline
components are as follows: the method of computation, Direct versus table lookup with
interpolation (LookUp); for LookUp, order of interpolation; for Direct, whether the Altera
FP Compiler is used or the FP cores directly; and whether integer is used for part of the
computation.

The last two require further explanation. The Altera floating point compiler optimizes
floating point datapaths by removing redundancy among operators and by making trade-offs
in using various component types, for example, using hard or soft components as available
[Langhammer 2008]. What is interesting here is that the use of the compiler results in a
different datapath being optimal.

The second axis requiring explanation is float versus hybrid fixed/float. The problem arises
in the force accumulation at the end of the pipeline. New forces are generated every cycle
and must be added to the appropriate particles running totals. The floating point addition,
however, requires more than a single cycle, although since it is pipelined it does not
necessarily change throughput. But if the same particle’s force is referenced on successive
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cycles a hazard results. There are at least four solutions: (i) the pipeline can stall, (ii) particle
processing can be orchestrated so that hazards are avoided, (iii) forces can be combined in a
more complex structure, such as a reduction tree, or (iv) the force can be saved in integer
format rather than floating point. In the last alternative, addition takes only a single cycle.
Integer operations are also more efficient than floating point, and if done carefully, result in
no loss of precision. The GROMACS code and the Protein Explorer, for example, both use
mixed fixed/floating point [Taiji et al. 2003; van der Spoel et al. 2005].

In the rest of this section, we show how these alternatives cause the force pipeline to vary.
Results are presented in Section 6.

3.2 Direct Computation
The flow of Direct is shown in Figure 4 with detail given in Figure 5. Note that the first two
computations, adjusting for periodic boundary conditions and obtaining r2, can be done in
fixed point. In that case, r2 must be converted to floating point before being combined with
the coefficients (on the smoothing side) and divided (on the Coulomb + LJ side). The
conversion at the output is similar.

Figure 6 shows the Coulomb-plus-LJ block that is used with the compiler. An inverse square
root replaces the original square root and divide saving logic and improving performance.
This works because of the favorable convergence properties of the inverse square root.

3.3 Table Lookup with Interpolation
We now describe the interpolation pipeline (see Figure 7). Assuming that the interpolation
function is third order, it necessarily has the format

where x ≡ r2 = input, a = the index of the interval from the beginning of the section (see
Figure 1), and x − a = the offset into the interval. The coefficients C0, … , C3 are unique to
each interval, and are retrieved by determining the section and interval. Proper encoding
makes trivial the extraction of the section, interval, and offset.

Figure 8 contains the replacement in Figure 5 needed to implement LookUp. For lower order
interpolation, fewer stages are needed.

4. FILTER PIPELINE DESIGN AND OPTIMIZATION
We begin by assuming cell lists with processing concentrating on one home cell at a time.
With no filtering or other optimization, forces are computed between all pairs of particles i
and j, where i must be in the home cell but j can be in any of the 27 cells of the cell
neighborhood, including the home cell. By filtering, we mean the identification of particle
pairs where the mutual short-range force is zero. A perfect filter successfully removes all
such pairs. The efficiency of the filter is the fraction of undesirable particle pairs removed.
The extra work due to imperfection is the ratio of undesirable pairs not removed to the
desirable pairs.

We evaluate three methods, two existing and one new, which trade off filter efficiency for
hardware resources. As motivated in Sections 3 and 6, we store particle positions in three
Cartesian dimensions, each in 32-bit integer. Filter designs have two parameters, precision
and geometry.
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1. Full Precision. Precision = full, Geometry = sphere. This filter computes r2 = x2 +
y2 + z2 and compares whether  using full 32-bit precision. Filtering efficiency
is nearly 100%. Except for the comparison operation, this is the same computation
that is performed in the force pipeline.

2. Reduced.Precision = reduced, Geometry = sphere. This filter, used by D.E. Shaw
[Larson et al. 2008], also computes , , but uses fewer bits and so
substantially reduces the hardware required. Lower precision, however, means that
the cut-off radius must be increased (rounded up to the next bit) so filtering
efficiency goes down: for 8 bits of precision, it is 99.5% for about 3% extra work.

3. Planar. Precision = reduced, Geometry = planes. A disadvantage of the previous
method is its use of multipliers, which are the critical resource in the force pipeline.
This issue can be important because there are likely to be 6 to 10 filter pipelines per
force pipeline. In this method we avoid multiplication by thresholding with planes
rather than a sphere (see Figure 9 for the 2D analog). The formulae are as follows:

With 8 bits, this method achieves 97.5% efficiency for about 13% extra work.

Analysis
Table I summarizes the cost (LUTs, registers, and multipliers) and quality (efficiency and
extra work) of the three filtering methods. Since multipliers are a critical resource, we also
show the two “sphere” filters implemented entirely with logic. The cost of a force pipeline
(from Section 3) is shown for scale.

The most important result is the relative cost of the filters to the force pipeline. Depending
on implementation and load balancing method (see Section 5.4), each force pipeline needs
between 6 and 9 filters to keep it running at full utilization. We refer to that set of filters as a
filter bank. Table I shows that a full precision filter bank takes from 80% and 170% of the
resources of its force pipeline. The reduced (logic only) and planar filter banks, however,
require only a fraction: between 17% and 40% of the logic of the force pipeline and no
multipliers at all. Since the latter is the critical resource, the conclusion is that the filtering
logic itself (not including interfaces) has negligible effect on the number of force pipelines
that can fit on the FPGA.

We now compare the reduced and planar filters. The Extra Work column in Table I shows
that for a planar filter bank to obtain the same performance as logic-only-reduced, the
overall design must have 13% more throughput. This translates, for example, to having 9
force pipelines when using planar rather than 8 for reduced. The total number of filters
remains constant. The choice of filter therefore depends on the FPGA’s resource mix.

5. MD SYSTEM DESIGN
5.1 Architecture of Target Systems

We briefly state our assumptions about the target HPRC architecture: They are typical for
current products; details of appropriate FPGA-based systems can be found, for example, in
Hauck and DeHon [2008] and VanCourt and Herbordt [2009].
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• The overall system consists of a host PC or workstation with an accelerator board
plugged into a high-speed socket (e.g., PCI Express). The host runs the main
application program and communicates with the accelerator through function calls.

• The accelerator board consists of a high-end FPGA, memory, and a bus interface.
On-board memory is tightly coupled to the FPGA either through several interfaces
(e.g., 6 × 32-bit) or a wide bus (128-bit).

• Besides configurable logic, the FPGA has dedicated components such as
independently accessible multiport memories (e.g., 1000 × 1 KB) and a similar
number of multipliers. FPGAs in HPRC typically run at 200 MHz, although with
optimization substantially higher operating frequencies can be achieved. We
assume that 10%-15% of the FPGA’s logic is dedicated to system (nonapplication)
functions such as memory controllers.

5.2 Host/Accelerator Partitioning
The filtering problem was introduced in Section 2.4 and filter designs given in Section 4. In
this section, we present coprocessor-specific considerations and answer the basic question of
why perform filtering on the FPGA at all.

We begin with cell list computation: it is very fast and the data generated small (both O(N))
so it is generally done on the host along with the motion integration. Cell lists are
downloaded to the coprocessor every iteration along with the new particle positions. The
neighbor list computation, however, is much more expensive: if done on the host it could
mitigate any advantage of coprocessing. Moreover, the size of the aggregate neighbor lists is
often hundreds of times that of the cell lists, which makes their transfer impractical. As a
consequence, neighbor list computation, if it is done at all, must be done on the coprocessor.
But even on the coprocessor storage is still a concern.

We now look at MD operation starting with cell lists. For reference we examine the NAMD
benchmark NAMD2.6 on ApoA1. It has 92,224 particles, a bounding box of 108Å × 108Å ×
78Å, and a cut-off radius of 12Å. This yields a simulation space of 9 × 9 × 7 cells with an
average of 175 particles per cell with a uniform distribution. On the FPGA, the working set
is typically a single (home) cell and its cell neighborhood for a total of (naively) 27 cells and
about 4,725 particles.

In actuality, Newton’s 3rd Law (N3L) is used to reduce this number. That is, since each
particle-particle interaction is mutual, it is calculated once per particle pair and recorded for
both particles. To effect the reduction in work, home cell particles are only matched with
particles of part of the cell neighborhood, and with, on average, half of the particles in the
home cell. We refer to the subset of cells in the cell neighborhood that are processed
together with (and including) the home cell as the cell set. For the 14- and 18-cell sets
presented in Section 5.4, the average number of particles to be examined (for each particle in
the home cell) is 2,450 and 3,150, respectively. Given current FPGA technology, any of
these cell sets (14, 18, or the original 27 cells) easily fits in the on-chip BRAMs.

Neighbor lists for a home cell do not fit on the FPGA. For example, the aggregate of the
neighbor lists for 175 home cell particles is over 64,000 particles (one half of 732 for each
of the 175 particles; 732 rather than 4,725 because of increased efficiency of neighbor lists
over cell lists).

The memory requirements are therefore very different for the two methods. For cell lists, we
swap cells onto and off of the FPGA as needed. Because of the high level of reuse, this is
commonly done in the background (see Section 5.3). In contrast, neighbor list particles must
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be streamed from off-chip. This has worked when there are one or two force pipelines
operating at 100 MHz [Kindratenko and Pointer 2006; Scrofano et al. 2006], but is
problematic for current HPRC systems. For example, the Stratix-III/Virtex-5 generation of
FPGAs supports 8 force pipelines operating at 200MHz leading to a bandwidth requirement
of over 20 GB/s. While high-end FPGAs support this easily, memory interfaces in
commercial systems generally do not.

From this discussion, it follows that use of neighbor lists calls for an “on-FPGA” solution,
but that this itself appears to be impracticable due to memory and transfer requirements. At
the same time, however, the 6x potential increase in efficiency cannot be abandoned.

One way to improve efficiency is to reduce the cell size: the smaller the cell size, the finer
the granularity, and the larger the fraction of the cell neighborhood volume guaranteed to be
useful. With a cell edge of rc/2 and a 53 set, efficiency increases to 26.8%. With more
aggressive clipping of the corner cells, efficiency increases a bit more but so does the
control complexity. More important is that reducing cell size also reduces reuse and still
leaves much inefficiency. While reducing cell size is viable, there are better options.

The solution we propose is to use neighbor lists, but to compute them every iteration,
generating them continuously and consuming them almost immediately. In this scenario, the
use of neighbor lists can be viewed as filtering out the zero-force particle pairs: the filter
pipelines feed the force pipelines with minimal buffering in between (see Figure 10).

5.3 Overall Design and Board-Level Issues
In this section, we describe the overall design (see Figure 10), especially how data are
transferred between host and accelerator and between off-chip and on-chip memory. Details
of transfers from stage to stage are presented in the succeeding subsections. For reference,
we assume our current implementation of 8 force and 72 filter pipelines.

Host-Accelerator Data Transfers—At the highest level, processing is built around the
timestep iteration and its two phases: force calculation and motion update. During each
iteration, the host transfers position data to, and acceleration data from, the coprocessor’s
on-board memory (POS SRAM and ACC SRAM, respectively). With 32-bit precision, 12
bytes are transferred per particle. While the phases are necessarily serial, the data transfers
require only a small fraction of the processing time. For example, in Section 6 the short-
range force calculation takes about 22 ms for 100-K particles and increases linearly with
particle count through the memory capacity of the board. The combined data transfers of 2.4
MB take only 2-3ms. Moreover, since simulation proceeds by cell set, processing of the
force calculation phase can begin almost immediately as the data begin to arrive.

Board-Level Data Transfers—Force calculation is built around the processing of
successive home cells. Position and acceleration data of the particles in the cell set are
loaded from board memory into on-chip caches, POS and ACC, respectively. When the
processing of a home cell has completed, ACC data is written back. Focus shifts and a
neighboring cell becomes the new home cell. Its cell set is now loaded; in our current
scheme this is usually nine cells per shift. The transfers are double buffered to hide latency.

The time to process a home cell Tproc is generally greater than the time Ttrans to swap cell
sets with off-chip memory. Let a cell contain an average of Ncell particles. Then, Ttrans = 324
× Ncell/ B (9 cells, 32-bit data, 3 dimensions, 2 reads and 1 write, and transfer bandwidth of
B bytes per cycle). To compute Tproc, assume P pipelines and perfect efficiency. Then,

 cycles. This gives the following bandwidth requirement: B > 155 * P/
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Ncell. For P = 8 and Ncell = 175, B > 7.1 bytes per cycle. For many current FPGA processor
boards, B ≥ 24. Some factors that increase the bandwidth requirement are faster processor
speeds, more pipelines, and lower particle density. A factor that reduces the bandwidth
requirement is better cell reuse.

On-Chip Data Transfers—Force computation has three parts, filtering particle pairs,
computing and accumulating the forces (accelerations) themselves, and combinining the
accumulated accelerations. In the design of the on-chip data transfers, the goals are
simplicity of control and minimization of memory and routing resources.

Processing of a home cell proceeds in cohorts of reference particles that are processed
simultaneously, either 8 or 72 at a time (either one per filter or one per force pipeline, see
Section 5.5). This allows a control with a single state machine, minimizes memory
contention, and simplifies accumulation. For this scheme to run at high efficiency, two types
of load-balancing are required: (i) the work done by various filter banks must be similar and
(ii) filter banks must generate particle pairs having non-trivial interactions on nearly every
cycle. Details are given in the next subsections.

POS Cache to Filter Pipelines—Cell set positions are stored in 54-108 BRAMS, that is,
1-2 BRAMs per dimension per cell. This number depends on the BRAM size, cell size, and
particle density. Reference particles are always from the home cell, partner particles can
come from anywhere in the cell set. Given the flexibility in accessing the BRAMs there are
a number of ways to organize these accesses (see, e.g., Figure 13).

Filter Pipelines to Force Pipelines—Various transfer schemes are described in Section
5.6.

Force Pipelines to ACC Cache—To support N3L, two copies are made of each
computed force. One is accumulated with the current reference particle. The other is stored
by index in one of the large BRAMs on the Stratix-III. Accumulation is described in Section
5.7.

5.4 Balancing Neighbor List Sizes
For efficient access of particle memory and control, and for smooth interaction between
filter and force pipelines, it is preferred to have each force pipeline handle the interactions of
a single reference particle at a time. This preference becomes critical when there are a large
number of force pipelines and a much larger number of filter pipelines. Moreover, it is
highly desirable for all of the neighborlists being created at any one time (by the filter
banks) to be transferred to the force pipelines simultaneously (buffering mechanisms are
described in Section 5.6). It follows that each reference particle should have a similar
number of partner particles (neighbor list size).

The problem addressed in this subsection is that the standard method of choosing a reference
particle’s partner particles leads to a severe imbalance in neighbor list sizes. How this arises
can be seen in Figure 11(a), which illustrates the standard method of optimizing for N3L. So
that a force between a particle pair is computed only once, only a “half shell” of the
surrounding cells is examined (in 2D, this is cells 1–4 plus Home). For forces between the
reference particle and other particles in Home, the particle ID is used to break the tie, with,
for example, the force being computed only when the ID of the reference particle is the
higher. In Figure 11(a), particle B has a much smaller neighborlist than A, especially if B has
a low ID and A a high.
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In fact neighborlist sizes vary from 0 to 2L, where L is the average neighborlist size. The
significance is as follows: Let all force pipelines wait for the last pipeline to finish before
starting work on a new reference particle. Then, if that (last) pipeline’s reference particle has
a neighborlist of size 2L, then the latency will be double that if all neighbor lists were size L.
This distribution has high variance (see Figure 12), meaning that neighbor list sizes greater

than, say,  are likely to occur. A similar situation also occurs in other MD
implementations, with different architectures calling for different solutions [Anderson et al.
2008; Snir 2004].

One way to deal with this load imbalance is to overlap the force pipelines so that they work
independently. While viable, this leads much more complex control.

An alternative is to change the partitioning scheme. Our new N3L partition is shown in
Figure 11(b). There are three new features. The first is that the cell set has been augmented
from a half shell to a prism. In 2D, this increases the cell set from 5 cells to 6; in 3D, the
increase is from 14 to 18. The second is that, rather than forming a neighbor list based on a
cutoff sphere, a hemisphere is used instead (the “half-moons” in Figure 11(b)). The third is
that there is now no need to compare IDs of home cell particles.

We now compare the two partitioning schemes. There are two metrics: the effect on the load
imbalance and the extra resources required to prevent it.

1. Effect of Load Imbalance. We assume that all of the force pipelines begin
computing forces on their reference particles at the same time, and that each force
pipeline waits until the last force pipeline has finished before continuing to the next
reference particle. We call the set of neighbor lists that are thus processed
simultaneously a cohort. With perfect load balancing, all neighbor lists in a cohort
would have the same size, the average L. The effect of the variation in neighbor list
size is in the number of excess cycles—before a new cohort of reference particles
can begin processing—over the number of cycles if each neighborlist were the
same size. The performance cost is therefore the average number of excess cycles
per cohort. This in turn is the average size of the biggest neighbor list in a cohort
minus the average neighbor list size. We find that, for the standard N3L method,
the average excess is nearly 50%, while for the “half-moon” method it is less than
5%.

2. Extra Resources. The extra work required to achieve load balance is proportional to
the extra cells in the cell set: 18 versus 14, or an extra 29%. This drops the fraction
of neighbor list particles in the cell neighborhood from 15.5% to 11.6%, which in
turns increases the number of filters needed to keep the force pipelines fully
utilized (overprovisioned) from 7 to 9. For the reduced and planar filters, this is not
likely to reduce the number of force pipelines.

5.5 Mapping Particle Pairs to Filter Pipelines
From the previous sections, we converge on an efficient design for filtering particle pairs.

• During execution, the working set (data held on the FPGA) consists of the positions
and accelerations of particles in a cell set; that is, a single home cell and its 17
neighbors (in the “half moon” scheme);

• Particles from each cell are stored in a set of BRAMs: this is currently one or two
BRAMs per coordinate, depending on the cell size, for a total of 108-216;

• The N3L partition specifies 7-9 filter pipelines per force pipeline;
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• FPGA resources in the Stratix-III/Virtex-5 generation yield 8-10 force pipelines;
and

• Force pipelines handle at most a small number of reference particles at a time (and
their N3L partners).

We now address the mapping of particle pairs to filter pipelines. There are a (perhaps
surprisingly) large number of ways to do this; finding the optimal mapping is in some ways
analogous to optimizing loop interchanges with respect to a cost function. Figure 13 shows
two possibilities. In particle mapping (a), each filter is responsible for a different reference
particle. Each cycle, a single partner particle from the cell set is broadcast to all of the filters
(in all of the filter banks). In cell mapping (b), each filter bank is collectively responsible for
a different reference particle. Each filter within a bank processes the reference particle with
respect to partners from its own subset of 2 or 3 cells. The issues are as follows:

Force Pipeline Efficiency—Overall performance is proportional to the efficiency of the
force pipelines, that is, the fraction of cycles that they deliver “payload” (pairs with non-zero
forces). Since there are no stalls, the efficiency is thus proportional to the fraction of cycles
that they input (are issued) payload particle pairs from their filter banks.

Payload Generation Rate—Given sufficient filters, a filter bank will generate payload
pairs at an average rate of greater than one per cycle. The variance may be high, however,
which can substantially degrade efficiency.

Distribution of Payload Particle Pairs—While the number of payload particle pairs
from a given cell set—and even from any reference particle (from Section 5.4)—has a small
variance, the number and distribution of payload pairs generated by any particular filter can
vary wildly. For example, in Figure 11(b), let two filters (in a bank) each handle the same
reference particle, but let the partner particles be from different cells, say 3 and 5. Each filter
examines the same number of pairs, but the first filter passes most of its input while the
second passes almost none.

Queueing Particle Pairs—A simple (but costly) solution is to: (i) append a large queue
to each filter and (ii) implement a flexible router from these queues to the force pipeline.
The two mappings lend themselves to multiple more practical queueing methods, the choice
of which depends on the resources available on the FPGA.

In the next section we present two queueing strategies, whole neighborlist and continuous.
We evaluate them with respect to the two particle mapping strategies for performance (force
pipeline efficiency) and hardware cost (queue size and complexity).

5.6 The Filter Pipeline – Force Pipeline Interface
If there are sufficient BRAMs, then particle mapping can be used to generate neighborlists
in their entirety; they are consumed in the same way. Details are as follows.

• A phase begins with a new and distinct reference particle being associated with
each filter.

• Then, on each cycle, a single particle from the 18-cell set is broadcast to all of the
filters.

• Each filter’s output goes to its own set of BRAMs.

• The output of each filter is exactly the neighborlist for its associated reference
particle.
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• Double buffering enables neighborlists to be generated by the filters at the same
time that the previous phase’s neighborlists are being drained by the force
pipelines.

Advantages of this method include:

• Nearly perfect load balance among the filters (from the “half-moon” partition);

• Little overhead: each phase consists of over 3000 cycles before a new set of
reference particles must be loaded;

• Nearly perfect load balancing among the force pipelines: each operates
successively on a single reference particle and its equal-sized neighborlist; and

• Simple queueing and control: neighborlist generation is decoupled from force
computation.

One disadvantage of the whole neighborlist method is that it requires hundreds of BRAMs.
Although there are a thousand or more on some high-end FPGAs, this is still a concern.
Another disadvantage is fragmentation. The number of phases necessary to process the
particles in a single home cell is ⌈|particles-in-home-cell| / |filters|⌉. For small cells or low-
density simulations, the loss of efficiency can become significant. There are, however,
several reasonable solutions.

• Increase the number of filters and further decouple neighbor list generation from
consumption. The reasoning is that as long as the force pipelines are busy, some
inefficiency in filtering is acceptable.

• Overlap processing of two home cells. This increases the working set from 18 to 27
cells for a modest increase in number of BRAMs required. One way to implement
this is to add a second distribution bus.

• Another way to overlap processing of two home cells is to split the filters among
them. This halves the phase granularity, and so the expected inefficiency, without
significantly changing the amount of logic required for the distribution bus.

For the rest of this section, we examine more direct transfers of data from filters to force
pipelines. Figure 13 shows the basic queueing used in both mappings: Some number of
filters N filters in a filter bank feed a single force pipeline. Each filter has a queue to which it
outputs its data. As described in Section 5.3, the force pipelines should be as independent
from one another as possible. This is to constrain the complexity of the routing between
filter and force stages and between force stage and ACC Cache.

At a high-level, this is a typical queueing problem with N filters servers where each has
known arrival and departure rates. An arrival is the generation of a particle pair that has
passed the filter criteria; a departure is when a payload pair is consumed by the force
pipeline. Also, the goal is to minimize idle time (when all of the queues are empty) and
hardware cost. The latter includes queue size, but also complexity of the control and of the
concentrator logic that routes from the filter queues to the force pipeline.

There are also a number of differences, however. These restrict the utility of stochastic
analysis, but also point to implementation methods.

1. Execution Proceeds in Phases. For particle mapping, the filter bank processes a
cohort of N filters reference particles in a phase. For cell mapping, it processes a
single reference particle.

2. Uniformity. The total number of arrivals per reference particle varies only slightly
within a phase (for particle mapping) and among phases (for both mappings).
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3. Nonuniformities. The N filters queues can have highly non-uniform departure rates
and/or high variation in departure rates during a phase. Depending on the position
of the reference particle in the home cell and on the cell of its partner, the a priori
probability of a departure can be anything from 0 to 1.

Some design considerations are as follows: To minimize queue size, there are several
mechanisms including under provisioning (by keeping N filters small) and throttling (when
queues are full). Even if these are used, however, performance is improved by smoothing
and balancing the departure rates (arrivals at the force pipelines). Here are three ways that
help do this.

Fetch Order—Especially for particle mapping, departure rates for each filter vary
considerably during a phase. For example, in Figure 11(b), the filter (of the particle shown)
has a departure rate near 0 when cell 4 is processed, but greater than .5 for cell 3. This
variation can be smoothed by randomizing the order in which the partner particles are
fetched from the cell set. A simple way to approximate this is to fetch particles from cells
round-robin rather than cell-at-a-time.

Mapping Combinations of Cells—For cell mapping, different cells in the cell set vary
widely in the probability that their particles will be part of a neighbor list. For example, in
Figure 11(b), the Home cell and cell 3 are much more likely to provide payload partner
particles than the corner cells (2 and 4). Pairing cells appropriately, for example, one with
much payload potential with one that has little, helps equalize the arrival rates.

Concentrator Logic—Complex logic can completely smooth non-uniformities among
filter queue arrivals (within a cycle) by transferring them to the queues with the most space.
Logic that provides a nearly the same effectiveness but with minimal hardware cost is
shown in Figure 14. Each filter independently enqueues particle pairs that have passed the
selection criteria. An arbiter determines transfer to the force pipeline based on the following
logic.

1. First priority is given to queues that are within one of being full. This is sufficient
to prevent data from being dropped. If multiple queues are nearly full, then priority
is rotated round-robin.

2. Otherwise, priority is given to queues that are not empty. Again, priority is rotated
round-robin.

3. If multiple queues are nearly full, then the filters are throttled. Note that throttling
by itself does not reduce efficiency; the key performance consideration is that the
force pipelines always be active.

Another design consideration is whether to over- or under-provision and whether to throttle
filter pipeline input to reduce the queue size needed to prevent overflow. Having a smaller
or larger number of filters under- or over-provisions the force pipeline. The advantage of
under-provisioning is that simple hardware is adequate for correct execution. The advantage
of the over-provisioning is high utilization of the force pipelines: with nine or more filters in
the Perfect/“half-moon” design option the force pipelines are almost always busy. In this
case the design requires either larger queues or that the filters be throttled.

Table II shows various configurations with no throttling. The maximum queue size is that
required to prevent overflow with very high probability. The utilization is the average
fraction of cycles that the force pipelines are busy. “Cell mapped” requires smaller queues
because it has shorter phases: each filter bank processes one reference particle at a time
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rather than N filters. Even the largest queues require much less storage than the whole
neighborlist method.

We now examine the effect of throttling. In this design, the filters all halt when any is in
danger of overflow. Since the force pipelines consume every cycle, this happens when
multiple queues are within one of full. Figure 15 shows the effect of queue size, number of
filters (queues), and mapping on utilization. Even with over provisioning, utilization can be
less than 100% because of nonuniformities in arrivals, and because of start-up and tear-
down effects. The key result is that with slight over provisioning, that is, 9 filters, particle
mapped yields 99.2% utilization for a (small) queue size of 8. Particle mapped is slightly
better than cell mapped because of its more uniform arrivals and longer phase.

5.7 Accumulating and Combining the Accelerations
The final processing steps are accumulating and combining the accelerations generated by
the force pipelines. Unlike position data, which is read only, acceleration data is read/write.
That is, during the processing of a home cell, each particle’s acceleration accumulates over
this and other cells in the cell set; it is not complete until all 27 cells in the neighborhood
have taken a turn as the home cell. Thus for each new home cell, the running total of
accumulated accelerations of the cell set are read onto the chip in a way analogous to the
position data.

One design constraint is that each force pipeline handles at most a small number of reference
particles Pi at a time. This enables the total forces on the Pis to be accumulated in registers.
Accumulating the mutual forces on the Pis’ N3L partner particles (P js), however, is more
complex as their positions span the cell set. To prevent BRAM access contention, the
following strategy is used. Partner updates are written to BRAMs associated uniquely with
each force pipeline. When processing of a home cell is completed, the partner data from the
various pipeline-specific BRAMs are merged.

This method is depicted in Figure 16. In (a), the running accumulation for a single pipeline
during cell processing is shown. We describe this for particle mapping, cell mapping is
analogous. Recall that each of the N force force pipelines has N filters filters and that each
filter processes a unique reference particle at a time. Also that reference particles are always
from the home cell, but that partner particles come from the entire cell set. For each force
pipeline, there are N filters accumulators for the N filters reference particles being processed at
a time. There are also N force force caches, one for each pipeline. Each force cache has an
accumulator for each particle in the entire cell set.

Processing proceeds as follows: A new home cell and its acompanying cell set (positions
and accelerations) are loaded. From the home cell, a cohort of reference particles is loaded
into the filters. Forces are now computed with respect to all of the cell set particles and sent
to the accumulators. Each force (for particle pair i, j) is added to both the register
corresponding to reference particle i and to the jth slot in that force pipeline’s force cache.
The accesses to the force cache BRAMs are pipelined: the js are sent a few cycles ahead so
that the current accumulated values are available “just in time.” When the cohort of
reference particles has been processed, the reference particle accumulators in the force array
are combined with those in the force cache. When the home cell has been processed, the
N force force caches are combined (see Figure 16(b); the basic design first appeared in Gu
[2008]). This operation is performed during swapping out, so its latency is completely
hidden.
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6. RESULTS
6.1 Overview

We use NAMD [Phillips et al. 2002] and ProtoMol [Matthey 2004] as reference codes, both
to determine the number of short-range particle-particle interactions computed per iteration
as well as the microprocessor time (per iteration per core). NAMD scales well with multiple
cores and multiple processors up to hundreds of processors.

We refer to the NAMD benchmark NAMD2.6 on ApoA1. It has 92,224 particles, a
bounding box of 108Å × 108Å × 78Å, and a cut-off radius of 12Å. By instrumenting the
codes, we determine that on average 33.4M non-trivial particle-particle computations are
performed per iteration. This agrees very closely with the 33.75M computations expected
from the analysis in Section 5.2. According to a study by Stone et al. [2007], this benchmark
is executed at 1.78 seconds per iteration on a single core of an Intel core 2 quad-core 2.66
GHz processor.

The rest of this section is organized as follows: In the next two sections, we evaluate the
force pipelines proposed in Section 3. We do this first for resource utilization and then for
simulation quality. In the final subsection, we describe current status of the overall
implementation and implications for MD on HPRC.

6.2 Performance Comparisons of Force Pipeline Design Alternatives
Results are through post place-and-route (PaR) using the standard Altera tool chain. We
assume the Stratix-III EP3SE260. This method is sufficient to give precisely the resource
usage and the number of pipelines. For operating frequency, true implementations are often
slightly lower. On the other hand, the floating point cores (and code compiled using the
Altera Floating Point Compiler or FPC) are specified to run at more than 250 MHz, so with
some optimization higher performance than what we have achieved so far could be realized.
We first present the best design; it is characterized as follows.

• Direct computation (no table look-up)

• Hybrid fixed and floating point

• Single precision except for force accumulation (36 bit)

• Generated using FPC

1. Hybrid versus Single Precision versus Double Precision. Figure 17 shows resource
usage for a number of arithmetic modes and force pipeline designs. Hybrid uses 32-
bit fixed point for displacement and 36-bit fixed point for force accumulation.
Single and double refer to use of floating point throughout. SemiFP is described in
detail in previous work [Gu et al. 2008]; it has 35 bits of precision. Not shown here
is that LookUp requires significant use of BRAMs (to hold the tables) while Direct
does not.

We observe that while Stratix-III FPGAs have substantial floating point support,
this does not result in direct scaling from single to double precision. The increase in
resources required is 2.5× - 3× for logic, but 4× - 4.5× for the multipliers. Also, the
operating frequency is reduced, but the quality improves.

2. Effect of Arithmetic Implementation. Figure 18 shows the resource usage of various
implementations but this time emphasizing single precision and the variation in
interpolation order in LookUp.
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Direct computation (DC) uses less than 10% of the DSP units and far less of the
remaining logic. The 3rd order LookUp uses a similar fraction of DSP units, but
substantially more logic. Reducing the interpolation order to 2nd and 1st allows the
implementation of perhaps another pipeline or two, but may not be worth the
decrease in simulation quality. Overall, this is a surprising result. In previous
studies we found LookUp to be superior to Direct. We attribute the change to
advances in floating point support in both the FPGA hardware and the tool chain
(cores and floating point compiler).

3. Floating Point Compiler versus Core Only. The effect of using the Altera Floating
Point Compiler is shown in Figure 19. This computation (short-range force
pipeline) does not take advantage of most of the compiler optimizations, but still
results in a substantial reduction in non-DSP logic. This is especially helpful for
saving logic for the filter pipelines.

6.3 Quality Comparisons of Design Alternatives
Direct evaluations of MD simulation quality, such as through validation with wet-lab
experiments, are often impractical. Thus surrogates are often used. One type measures the
errors with respect to a reference computation. Another type monitors the simulation output
to confirm that a physical invariant, such as the total energy, actually is so. Here we use two
of each type.

1. Error per Individual Particle-Particle Force Computation. Figure 20 shows the
relative average error for the individual particle-particle force computations for the
various pipeline implementations. The reference is direct computation using double
precision (DC Double, error = 0). We generate the particle pairs by randomly
selecting particle positions between the cut-off and exclusion radii. For single
precision LookUp, error becomes worse for higher orders. This is because of the
higher precision required for those tables.

2. Error per Total Force on a Particle per Iteration. Figure 21 shows the relative rms
force error of the total force on a particle (see, e.g., Shan et al. [2005]; Skeel et al.
[2002]; Wolff and Rudd [1999]). The reference is direct computation using double
precision (DIR/DP, error = 0). All exceed the quality criteria given in Shaw et al.
[2007].

3. Energy Fluctuation. We simulated BPTI with 14K particles and 26 particle types.
After 37K time steps (see Figure 22), the energy fluctuations [Amisaki et al. 1995]
for direct force computation are 2.48×10−4 and 2.62×10−4 for double precision and
single precision, respectively. The ratios of the fluctuations between total energy
and kinetic energy are 0.0402 and 0.0422; both are better than the .05 suggested in
van der Spoel [2004].

4. Energy Drift. The final quality measure we refer to as “energy drift.” We simulated
400 Argon atoms (as per the ProtoMol test case); the results are shown in Figure
23. Note that while the double precision direct computation remains stable, both
simulations with 1st order LookUp appear to drift. That is, not only is there an
envelope within which the energy fluctuates, the envelope itself fluctuates. This
behavior may be less likely to be acceptable.

6.4 Current Status
We have investigated designs with respect to two high-end FPGAs from the 65nm process
generation, the Altera Stratix-III SL340 and the Altera Stratix-III SE260. The two devices
differ as follows: The SL340 has 30% more logic elements and 20% more BRAMs while the
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SE260 has 33% more multipliers (see Altera Corporation [2009] for details). For both
FPGAs, the best designs have the following characteristics.

• The force pipelines use direct computation, rather than table lookup; hybrid 32/36-
bit fixed point and single precision floating point; and are assembled and optimized
with the Altera Floating Point Compiler.

• The filter pipelines use reduced precision and spherical geometry.

• N3L partitioning is done via the augmented 18-cell “half-moon” scheme.

• Particle pairs are mapped to filter pipelines via particle mapping (Figure 13(a)).

• Filter banks consist of nine filter pipelines for slight over provisioning.

For other FPGAs, planar filtering may be preferred. For queueing method, the choice
depends on the balance between BRAMs on the one hand and logic and DSP units on the
other. For the SL340, queueing full neighbor lists works well; for the SE260, continuous
queueing is preferred (queue size = 8 with throttling). The configurations conservatively fit
7 and 8 force pipelines for the SL340 and the SE260, respectively, while still leaving ample
room ancillary logic. More aggressive designs are possible, for example, by using logic for
multipliers; then 9 force pipelines fit on the SE260 and 8 on the SL340. In all cases the force
pipelines run at over 95% efficiency. The efficiency can be improved by implementing
methods proposed in Section 5.6.

PAR results are shown in Table III. For BRAM utilization the percentages represent the
numbers of BRAMs of which any part is used; most are used at less than 40% of capacity.
This fraction depends only on particles per cell, not problem size. For multipliers, the SE260
8 pipeline design uses almost all of them; this is clearly the critical resource. The reason that
the 9 pipeline version uses fewer multipliers is because there some multipliers are built with
logic. All results in Table III are with no optimization below the architecture level.

Our implementations are currently running in simulation. They have also been validated
with multiple serial reference codes using methods outlined in other work [Gu 2008; Gu et
al. 2008].

These results can be interpreted as follows: A system based on the 8 pipeline SE260 design
system can execute the short-range force calculation in the ApoA1 benchmark in under 22
ms. This performance represents an 80-fold per-core speed-up over the result shown in
[Stone et al. 2007]. Since NAMD scales well, this represents a 20-fold speed-up over a
quadcore implementation. While the NAMD benchmark report is a little dated, its
microprocessor is comparable in process technology to that of the Stratix-III FPGAs used
here (65 nm). For other MD simulations having similar particle density, the FPGA
performance scales linearly with the number of particles up to the memory capacity of the
FPGA board, or several tens of millions particles. For simulations having much lower
density, transfer of cell sets on/off chip becomes the bottleneck (see Section 5.3). This
limitation, however, is a function of current HPRC systems rather than the FPGAs
themselves. Most current HPRC board designs use only a small fraction of the FPGA’s
available bandwidth.

7. SUMMARY AND DISCUSSION
We have presented a new implementation of MD for FPGA-based accelerators. We have
thoroughly explored the design space of force pipeline implementations with respect to both
performance and numerous measures of quality. We have presented a study of filtering that
is the first for FPGAs and one of only very few for hardware implementations of MD. The
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results show that FPGAs are highly competitive with respect to the short-range force
computation in MD simulations.

We summarize the results for the force pipeline. From Figure 18, we see that direct
computation is somewhat favorable to table lookup with interpolation, except when 1st order
is used. The reduction in accuracy, however, may not be acceptable (see Figure 23).
Moreover, the use of BRAMs is a serious drawback given the overall multistage design.
Other results are a demonstration of the Altera floating point compiler, and numerous
observations with respect to datapath design parameters. The most important of these is
probably that simulation quality of the single precision and hybrid (fixed point/single
precision) implementations is comparable to that of full double precision.

In the filtering part of this study, we find that high quality filtering can be achieved with
only a small amount of logic. We present a geometric filtering scheme that is preferable for
FPGA implementation. We also present a new partitioning method for optimizing with
respect to Newton’s 3rd Law. This is essential for the design presented here, but could also
find application in other hardware implementations of MD. And finally, the scheme of
mapping particle pairs to filter pipelines also appears to be new.

An important comparison is with Anton, the ASIC-based MD system from Shaw et al.
[2007] that is designed to support hundreds of MD processor chips. The overall performance
difference is that Anton runs at four times the clock frequency and holds four times as many
force pipelines per chip. There are several design differences. For partitioning, rather than
use either the standard “half shell” method or the “half-moon” method proposed here, Anton
uses a novel “Neutral Territory” scheme. This especially minimizes interprocessor
communication costs. Another consequence is that fewer filters per force pipeline are
needed (normalized for throughput). For mapping particle pairs onto force pipelines, Anton
uses a scheme similar to the “particle mapping” used here.

The design choices in Anton are not all preferred for single chip FPGA versions (in the
current FPGA chip architecture). Some of the architectural differences that lead to different
design choices are as follows: single chip versus multiple chip; limitations of FPGA routing
logic and its implications in control complexity; chip density and therefore the acceleration
(20x speed-up per chip versus 320x); and the number and type of the FPGA’s hard
components, especially BRAMs and multipliers. The effect of the FPGA’s architecture on
HPRC MD design choices are described throughout this article.

We now briefly discuss implications of this work for HPRC MD simulations as a whole. We
have addressed here the short-range non-bonded force computation and associated overhead.
There are typically three other significant computations in MD simulations: bonded forces,
long-range non-bonded forces, and motion integration. Bonded forces and motion
integration are generally computed every timestep while the long-range force may be
computed every fourth timestep or even less frequently.

Can the entire MD simulation be performed with the configuration described in Section 5.1
with no slowdown due to these other computations? All of the force computations in a
timestep can be overlapped with each other immediately; overlapping motion integration
with the forces is also possible, but more complex as it requires pipelining partial results
between phases (force and motion). We have obtained timings with respect to the same 92K
ApoA1 benchmark for a single core of a 3.0 GHz quadcore Xeon processor running
ProtoMol 2.1.1. Motion integration takes 22 ms per timestep while the bonded force
calculation takes 43 ms. If four cores are used, straightforward partitioning allows most of
this latency to be hidden. In the same configuration, the long range force using PME takes
over 200ms (see Phillips [2007] for a similar result). Running with four cores every fourth
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timestep takes this off the critical path (maintaining agreement with a previous conclusion
[Scrofano and Prasanna 2006]). A likely alternative is to also accelerate the long range force
computation: Hardy et al. have demonstrated a GPU version with speed-up of over 20x
[Hardy et al. 2009].
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Fig. 1.
Table look-up varies in precision across r−k. Each section has a fixed number of intervals.
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Fig. 2.
Shown is part of the simulation space about particle P. Its two dimensional cell
neighborhood is shown in white; cells have edge size equal to the cut-off radius. The cut-off
circle is shown; particles within the circle are in P’s neighbor list.
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Fig. 3.
Neighborlists are often computed for a larger radius than the cutoff.
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Fig. 4.
Functional block diagram of the short-range particle-particle datapath.
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Fig. 5.
Shown is the detailed datapath for the direct computation. For hybrid integer/floating point,
the computation is the same, but with data before the first conversion and after the second
being integer.
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Fig. 6.
The Coulomb + LJ block (from Figure 5) modified for the FP Compiler optimization.
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Fig. 7.
The interpolation pipeline: the position of the leading 1 determines the operand format in the
interpolation pipeline.
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Fig. 8.
The Coulomb + LJ block (from Figure 5) modified for Table Lookup with Interpolation.
Interpolation is 3rd order. Represented are three computations being done at once.
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Fig. 9.
Filtering with planes rather than a sphere – 2D analogue.
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Fig. 10.
Schematic of the HPRC MD system.
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Fig. 11.
Shown are two partitioning schemes for using Newton’s 3rd Law. In (a), 1-4 plus home are
examined with a full sphere. In (b), 1-5 plus home are examine, but with a hemisphere
(shaded part of circle).
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Fig. 12.
Distribution of neighborlist sizes for standard partition as derived from Monte Carlo
simulations.
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Fig. 13.
Two mappings of particle pairs onto filters. (a) Particle Mapping: Filters each hold a
different reference particle. Particles in cell set are broadcast one per cycle. (b) Cell
Mapping: Same reference particle held by all filters in a bank. Each filter is responsible for
2-3 cells.
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Fig. 14.
Concentrator logic between filters and force pipeline.
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Fig. 15.
Graph shows the effect of queue size on utilization for various numbers of filters (queues)
and mappings of particles onto filters. PM is particle mapped, CM is cell mapped.
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Fig. 16.
Mechanism for accumulating per particle forces. (a) shows the logic for a single pipeline for
both the reference and partner particles. (b) shows how forces are accumulated across
multiple pipelines.
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Fig. 17.
Resource utilization in registers and logic for the Stratix-III. LUT3 is LookUp with 3rd order
interpolation. DIR is Direct. HYB refers to Direct with partial fixed point.
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Fig. 18.
Resource utilization in registers and logic for the Stratix-III. The LUT number refers to the
order of the interpolation. LUT implementations are for single precision FP.
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Fig. 19.
Effect of using the Altera FPC on logic utilization. For single pipeline, single precision.
Same configurations as in Figure 18.
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Fig. 20.
Relative average force error for the particle-particle force computation for various
implementations and precisions. DIR is direct computation, LUTn refers to LookUp of
various orders.

CHIU and HERBORDT Page 43

ACM Trans Reconfigurable Technol Syst. Author manuscript; available in PMC 2011 June 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 21.
Relative average force error for the total force on a particle per iteration for various
implementations and precisions. DIR is direct computation, LUTn refers to LookUp of
various orders.
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Fig. 22.
Energy profile of BPTI with 14K particles.
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Fig. 23.
Energy profile of argon with 400 particles.
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Table I

Comparison of Three Filtering Schemes with Respect to Quality and Resource Usage

Filtering Method LUTs/Registers Multipliers Filter Eff. Extra Work

Full precision 341/881 0.43% 12 1.6% 100% 0%

Full prec. - logic only muls 2577/2696 1.3% 0 0.0% 100% 0%

Reduced precision 131/266 0.13% 3 0.4% 99.5% 3%

Reduced prec. - logic only muls 303/436 0.21% 0 0.0% 99.5% 3%

Planar 164/279 0.14% 0 0.0% 97.5% 13%

Force pipe 5695/7678 5.0% 70 9.1% NA NA

A force pipeline is shown for reference. Percent utilization is with respect to the Altera Stratix-III EP3SE260.
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Table III

Resource Utilization for Configurations Optimized Variously for Two Altera Stratix-III FPGAs

Configuration Logic ALUTs/Registers Multipliers Memories M9K/M144K Max Frequency

SE260 – 8 force pipelines 78% (43%/71%) 99% 87% (75%/100%) 196 MHz

SE260 – 9 force pipelines 93% (53%/85%) 98% 97% (95%/100%) 190 MHz

SL340 – 6 force pipelines 53% (18%/41%) 85% 97% (94%/100%) 216 MHz

SL340 – 7 force pipelines 69% (24%/52%) 99% 100% (100%/100%) 198 MHz

SL340 – 8 force pipelines 100% (40%/75%) 100% 100% (100%/100%) 122 MHz
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