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Abstract
The complexity of semiparametric models poses new challenges to statistical inference and model
selection that frequently arise from real applications. In this work, we propose new estimation and
variable selection procedures for the semiparametric varying-coefficient partially linear model.
We first study quantile regression estimates for the nonparametric varying-coefficient functions
and the parametric regression coefficients. To achieve nice efficiency properties, we further
develop a semiparametric composite quantile regression procedure. We establish the asymptotic
normality of proposed estimators for both the parametric and nonparametric parts and show that
the estimators achieve the best convergence rate. Moreover, we show that the proposed method is
much more efficient than the least-squares-based method for many non-normal errors and that it
only loses a small amount of efficiency for normal errors. In addition, it is shown that the loss in
efficiency is at most 11.1% for estimating varying coefficient functions and is no greater than
13.6% for estimating parametric components. To achieve sparsity with high-dimensional
covariates, we propose adaptive penalization methods for variable selection in the semiparametric
varying-coefficient partially linear model and prove that the methods possess the oracle property.
Extensive Monte Carlo simulation studies are conducted to examine the finite-sample performance
of the proposed procedures. Finally, we apply the new methods to analyze the plasma beta-
carotene level data.
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1. Introduction
Semiparametric regression modeling has recently become popular in the statistics literature
because it keeps the flexibility of nonparametric models while maintaining the explanatory
power of parametric models. The partially linear model, the most commonly used
semiparametric regression model, has received a lot of attention in the literature; see Härdle,
Liang and Gao [9], Yatchew [32] and references therein for theory and applications of
partially linear models. Various extensions of the partially linear model have been proposed
in the literature; see Ruppert, Wand and Carroll [26] for applications and theoretical
developments of semiparametric regression models. The semiparametric varying-coefficient
partially linear model, as an important extension of the partially linear model, is becoming
popular in the literature. Let Y be a response variable and {U, X, Z} its covariates. The
semiparametric varying-coefficient partially linear model is defined to be

(1.1)

where α0(U) is a baseline function, α(U) = {α1(U),…, αd1(U)}T consists of d1 unknown
varying coefficient functions, β = (β1,…, βd2)T is a d2-dimensional coefficient vector and ε
is random error. In this paper, we will focus on univariate U only, although the proposed
procedure is directly applicable for multivariate U. Zhang, Lee and Song [33] proposed an
estimation procedure for the model (1.1), based on local polynomial regression techniques.
Xia, Zhang and Tong [31] proposed a semilocal estimation procedure to further reduce the
bias of the estimator for β suggested in Zhang, Lee and Song [33]. Fan and Huang [5]
proposed a profile least-squares estimator for model (1.1) and developed statistical inference
procedures. As an extension of Fan and Huang [5], a profile likelihood estimation procedure
was developed in Lam and Fan [18], under the generalized linear model framework with a
diverging number of covariates.

Existing estimation procedures for model (1.1) were built on either least-squares- or
likelihood-based methods. Thus, the existing procedures are expected to be sensitive to
outliers and their efficiency may be significantly improved for many commonly used non-
normal errors. In this paper, we propose new estimation procedures for model (1.1). This
paper contains three major developments: (a) semiparametric quantile regression; (b)
semiparametric composite quantile regression; (c) adaptive penalization methods for
achieving sparsity in semiparametric composite quantile regression.

Quantile regression is often considered as an alternative to least-squares in the literature. For
a complete review on quantile regression, see Koenker [17]. Quantile-regression-based
inference procedures have been considered in the literature; see, for example, Cai and Xu
[2], He and Shi [10], He, Zhu and Fung [11], Lee [19], among others. In Section 2, we
propose a new semiparametric quantile regression procedure for model (1.1). We investigate
the sampling properties of the proposed method and their asymptotic normality. When
applying semiparametric quantile regression to model (1.1), we observe that all quantile
regression estimators can estimate α(u) and β with the optimal rate of convergence. This fact
motivates us to combine the information across multiple quantile estimates to obtain
improved estimates of α(u) and β. Such an idea has been studied for the parametric
regression model in Zou and Yuan [35] and it leads to the composite quantile regression
(CQR) estimator that is shown to enjoy nice asymptotic efficiency properties compared with
the classical least-squares estimator. In Section 3, we propose the semiparametric composite
quantile regression (semi-CQR) estimators for estimating both nonparametric and
parametric parts in model (1.1). We show that the semi-CQR estimators achieve the best
convergence rates. We also prove the asymptotic normality of the semi-CQR estimators.

Kai et al. Page 2

Ann Stat. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The asymptotic theory shows that, compared with the semiparametric least-squares
estimators, the semi-CQR estimators can have substantial efficiency gain for many non-
normal errors and only lose a small amount of efficiency for normal errors. Moreover, the
relative efficiency is at least 88.9% for estimating varying-coefficient functions and is at
least 86.4% for estimating parametric components.

In practice, there are often many covariates in the parametric part of model (1.1). With high-
dimensional covariates, sparse modeling is often considered superior, owing to enhanced
model predictability and interpretability [7]. Variable selection for model (1.1) is
challenging because it involves both nonparametric and parametric parts. Traditional
variable selection methods, such as stepwise regression or best subset variable selection, do
not work effectively for the semiparametric model because they need to choose smoothing
parameters for each sub-model and cannot cope with high-dimensionality. In Section 4, we
develop an effective variable selection procedure to select significant parametric
components in model (1.1). We demonstrate that the proposed procedure possesses the
oracle property, in the sense of Fan and Li [6].

In Section 5, we conduct simulation studies to examine the finite-sample performance of the
proposed procedures. The proposed methods are illustrated with the plasma beta-carotene
level data. Regularity conditions and technical proofs are given in Section 6.

2. Semiparametric quantile regression
In this section, we develop the semiparametric quantile regression method and theory. Let ρτ
(r) = τr − rI (r < 0) be the check loss function at τ ∈ (0, 1). Quantile regression is often used
to estimate the conditional quantile functions of Y,

The semiparametric varying-coefficient partially linear model assumes that the conditional
quantile function is expressed as Qτ (u, x, z) = α0,τ (u) + xT ατ (u) + zT βτ.

Suppose that {Ui,Xi,Zi,Yi}, i = 1, …, n, is an independent and identically distributed sample
from the model

(2.1)

where ετ is random error with conditional τ th quantile being zero. We obtain quantile
regression estimates of α0,τ (·), ατ (·) and βτ by minimizing the quantile loss function

(2.2)

Because (2.2) involves both nonparametric and parametric components, and because they
can be estimated by different rates of convergence, we propose a three-stage estimation
procedure. In the first stage, we employ local linear regression techniques to derive an initial
estimates of α0,τ (·), ατ (·) and βτ. Then, in the second and third stages, we further improve
the estimation efficiency of the initial estimates for βτ and (α0,τ (·),ατ (·)), respectively.

For U in the neighborhood of u, we use a local linear approximation
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for j = 0,…, d1. Let {ã0,τ, b̃0,τ, ãτ, b ̃τ, β̃τ} be the minimizer of the local weighted quantile
loss function

where a = (a1,…, ad1)T, b = (b1,…, bd1)T, K(·) is a given kernel function and Kh(·) = K(·/h)/h
with a bandwidth h. Then,

We take {α̃0,τ (u), α̃τ (u), β̃τ} as the initial estimates.

We now provide theoretical justifications for the initial estimates. First, we give some
notation. Let fτ (·|u, x, z) and Fτ (·|u, x, z) be the density function and cumulative distribution
function of the error conditional on (U, X, Z) = (u, x, z), respectively. Denote by fU(·) the
marginal density function of the covariate U. The kernel K(·) is chosen as a symmetric
density function and we let

We then have the following result.

THEOREM 2.1. Under the regularity conditions given in Section 7, if h →0 and nh → ∞ as
n → ∞, then

(2.3)

where A1(u) = E[fτ (0|U, X, Z) (1, XT, ZT)T (1, XT, ZT)|U = u] and B1(u) = E[(1, XT, ZT)T

(1, XT, ZT)|U = u].

Theorem 2.1 implies that β̃τ is a  -consistent estimator—this is because we only use data

in a local neighborhood of u to estimate βτ. Define  and
compute an improved estimator of βτ by

(2.4)

We call it the semi-QR estimator of βτ. The next theorem shows the asymptotic properties of
β̂τ.
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THEOREM 2.2. Let . Under
the regularity conditions given in Section 7, if nh4→0 and nh2/ log(1/h)→∞ as n → ∞,
then the asymptotic distribution of β̂τ is given by

(2.5)

where Sτ = E[fτ (0|U,X,Z)ZZT] and Ξτ = τ(1 − τ)E[{Z − ξτ (U,X,Z)}{Z − ξτ (U,X,Z)}T].

The optimal bandwidth in Theorem 2.1 is h ~ n−1/5. This bandwidth does not satisfy the
condition in Theorem 2.2. Hence, in order to obtain the root-n consistency and asymptotic
normality for β̂τ, undersmoothing for α̃0,τ (u) and α̃τ (u) is necessary. This is a common
requirement in semiparametric models; see Carroll et al. [3] for a detailed discussion.

After obtaining the root-n consistent estimator β̂τ, we can further improve the efficiency of
α̃0,τ (u) and α̃τ (u). To this end, let {â0,τ, b̂0,τ, âτ, b ̂τ} be the minimizer of

We define

(2.6)

THEOREM 2.3. Under the regularity conditions given in Section 7, if h→0 and nh → ∞ as
n → ∞, then

(2.7)

where A2(u) = E[fτ (0|U,X,Z)(1,XT)T (1, XT)|U = u] and B2(u) = E[(1, XT)T (1, XT)|U = u].

Theorem 2.3 shows that α̂0,τ (u) and α ̂τ (u) have the same conditional asymptotic biases as
α̃0,τ (u) and α̃τ (u), while they have smaller conditional asymptotic variances than α̃0,τ (u)
and α̃τ (u), respectively. Hence, they are asymptotically more efficient than α̃0,τ (u) and α̃τ
(u).

3. Semiparametric composite quantile regression
The analysis of semiparametric quantile regression in Section 2 provides a solid foundation
for developing the semiparametric composite quantile regression (CQR) estimates. We
consider the connection between the quantile regression model (2.1) and model (1.1) in the
situations where the random error ε is independent of (U,X, Z). Let us assume that Y = α0(U)
+ XT α(U) + ZT β + ε, where ε follows a distribution F with mean zero. In such situations,
Qτ (u, x, z) = α0(u) + cτ + xT α(u) + zT β, where cτ = F−1(τ). Thus, all quantile regression
estimates [α ̂τ (u) and β̂τ for all τ] estimate the same target quantities [α(u) and β] with the
optimal rate of convergence. Therefore, we can consider combining the information across
multiple quantile estimates to obtain improved estimates of α(u) and β. Such an idea has
been studied for the parametric regression model, in Zou and Yuan [35], and it leads to the
CQR estimator that is shown to enjoy nice asymptotic efficiency properties compared with
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the classical least-squares estimator. Kai, Li and Zou [13] proposed the local polynomial
CQR estimator for estimating the nonparametric regression function and its derivative. It is
shown that the local CQR method can significantly improve the estimation efficiency of the
local least-squares estimator for commonly used non-normal error distributions. Inspired by
these nice results, we study semiparametric CQR estimates for model (1.1).

Suppose {Ui,Xi,Zi,Yi, i = 1, …, n} is an independent and identically distributed sample from
model (1.1) and ε has mean zero. For a given q, let τk = k/(q + 1) for k = 1, 2, …, q. The
CQR procedure estimates α0(·), α(·) and β by minimizing the CQR loss function,

To this end, we adapt the three-stage estimation procedure from Section 2.

First, we derive good initial semi-CQR estimates. Let {ã0, b̃0, ã, b ̃, β̃} be the minimizer of
the local CQR loss function

where a0 = (a01, …, a0q)T, a = (a1, …, ad1)T and b = (b1, …, bd1)T. Initial estimates of α0(u)
and α (u) are then given by

(3.1)

To investigate asymptotic behaviors of α̃0(u), α̃(u) and β̃, let us begin with some new
notation. Denote by f (·) and F(·) the density function and cumulative distribution function of
the error, respectively. Let ck = F−1(τk) and C be a q × q diagonal matrix with Cjj = f (cj).
Write c = C1, c = 1T C1 and

Let τkk′ = τk ∧ τk′ − τkτk′ and let T be a q × q matrix with the (k, k′) element being τkk′. Write
t = T1, t = 1T T1 and

The following theorem describes the asymptotic sampling distribution of {ã0, b̃0, ã, b ̃, β̃}.

THEOREM 3.1. Under the regularity conditions given in Section 7, if h → 0 and nh → ∞
as n → ∞, then
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where α0(u) = (α0(u)+c1,…, α0(u) + cq)T and β0 is the true value of β.

With the initial estimates in hand, we are now ready to derive a  -consistent estimator of β
by

(3.2)

which is called the semi-CQR estimator of β.

THEOREM 3.2. Under the regularity conditions given in Section 7, if nh4 → 0 and nh2/
log(1/h)→∞ as n → ∞, then the asymptotic distribution of β̂ is given by

(3.3)

where S = E(ZZT) and , with δk(u,
x, z) being the kth column of the d2 × q matrix

Finally, β̂ can also be used to further refine the estimates for the nonparametric part. Let {â0,
b̂0, â, b ̂} be the minimizer of

where a0 = (a01, …, a0q)T. We then define the semi-CQR estimators for α0(u) and α(u) as

(3.4)

We now study the asymptotic properties of α̂0(u) and α ̂(u). Let
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THEOREM 3.3. Under the regularity conditions given in Section 7, if h→0 and nh →∞as
n→∞, the asymptotic distributions of α̂0(u) and α ̂(u) are given by

and

where [·]11 denotes the upper-left q × q submatrix and [·]22 denotes the lower-right d1 × d1
submatrix.

REMARK 1. α(u) and β represent the contributions of covariates. They are the central
quantities of interest in semiparametric inference. Li and Liang [21] studied the least-
squares-based semiparametric estimation, which we will refer to as “semi-LS” in this work.
The major advantage of semi-CQR over the classical semi-LS is that semi-CQR has
competitive asymptotic efficiency. Furthermore, semi-CQR is also more stable and robust.
Intuitively speaking, these advantages come from the fact that semi-CQR utilizes
information shared across multiple quantile functions, whereas semi-LS only uses the
information contained in the mean function.

To elaborate on Remark 1, we discuss the relative efficiency of semi-CQR relative to semi-
LS. Note that E(Y|U) = α0(U) + E(X|U)T α(U) + E(Z|U)T β. It then follows that Y = E(Y|U) +
{X − E(X|U)}T α(U) + {Z − E(Z|U)}T β + ε. Without loss of generality, let us consider the
situation in which E(X|U) = 0 and E(Z|U) = 0. Then, all D1(u),D2(u),Σ1(u) and Σ2(u)
become block diagonal matrices. Thus, from Theorem 3.3, we have

and

where

and
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Note that

with all columns of δ(u, x, z) the same. Thus, Δ = tΔ0 with Δ0 = E[{Z − δ1(U,X,Z)}{Z −
δ1(U,X,Z)}T]. It is easy to show that E{δ1(U,X,Z)ZT} = 0 and we then have

Therefore,

(3.5)

If we replace R2(q) with 1 in equations (23) and (24), we end up with the asymptotic normal
distributions of the semi-LS estimators, as studied in Li and Liang [21]. Thus, R2(q)
determines the asymptotic relative efficiency (ARE) of semi-CQR relative to semi-LS. By
direct calculations, we see that the ARE for estimating α(u) is R2(q)−4/5 and the ARE for
estimating β is R2(q)−1. It is interesting to see that the same factor, R2(q), also appears in the
asymptotic efficiency analysis of parametric CQR [35] and nonparametric local CQR
smoothing [13]. The basic message is that, with a relatively large q (q ≥ 9), R2(q) is very
close to 1 for the normal errors, but can be much smaller than 1, meaning a huge gain in
efficiency, for the commonly seen non-normal errors. It is also shown in [13] that
limq→∞R2(q)−1 ≥ 0.864 and hence limq→∞R2(q)−4/5 ≥ 0.8896, which implies that when a
large q is used, the ARE is at least 88.9% for estimating varying-coefficient functions and at
least 86.4% for estimating parametric components.

REMARK 2. The baseline function estimator α̂0(u) converges to α0(u) plus the average of
uniform quantiles of the error distribution. Therefore, the bias term is zero when the error
distribution is symmetric. Even for nonasymmetric distributions, the additional bias term
converge to the mean of the error, which is zero for a large value of q. Nevertheless, its
asymptotic variance differs from that of the semi-LS estimator by a factor of R1(q). The
study in Kai, Li and Zou [13] shows that R1(q) approaches 1 as q becomes large and R1(q)
could be much smaller than 1 with a smaller q (q ≤ 9) for commonly used non-normal
distributions.

REMARK 3. The factors R1(q) and R2(q) only depend on the error distribution. We have
observed from our simulation study that, as a function of q, the maximum of R2(q) is often
closely approximated by R2 (q = 9). Hence, if we only care about the inference of α(u) and
β, then q = 9 seems to be a good default value. On the other hand, R1 (q = 5) is often close to
the maximum of R1(q) based on our numerical study and hence q = 5 is a good default value
for estimating the baseline function. If prediction accuracy is the primary interest, then we
should use a proper q to maximize the total contributions from R1(q) and R2(q). Practically
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speaking, one can choose a q from the interval [5, 9] by some popular tuning methods such
as K-fold cross-validation. However, we do not expect these CQR models to have significant
differences in terms of model fitting and prediction because, in many cases, R1(q) and R2(q)
vary little in the interval [5, 9].

4. Variable selection
Variable selection is a crucial step in high-dimensional modeling. Various powerful
penalization methods have been developed for variable selection in parametric models; see
Fan and Li [7] for a good review. In the literature, there are only a few papers on variable
selection in semiparametric regression models. Li and Liang [21] proposed the nonconcave
penalized quasi-likelihood method for variable selection in semiparametric varying-
coefficient models. In this section, we study the penalized semiparametric CQR estimator.

Let pλn(·) be a pre-specified penalty function with regularization parameter λn. We consider
the penalized CQR loss

(4.1)

By minimizing the above objective function with a proper penalty parameter λn, we can get
a sparse estimator of β and hence conduct variable selection.

Fan and Li [6] suggested using a concave penalty function since it is able to produce an
oracular estimator, that is, the penalized estimator performs as well as if the subset model
were known in advance. However, optimizing (4.1) with a concave penalty function is very
challenging because the objective function is nonconvex and both loss and penalty parts are
nondifferentiable. Various numerical algorithms have been proposed to address the
computational difficulties. Fan and Li [6] suggested using local quadratic approximation
(LQA) to substitute for the penalty function and then optimizing using the Newton–Raphson
algorithm. Hunter and Li [12] further proposed a perturbed version of LQA to alleviate one
drawback of LQA. Recently, Zou and Li [34] proposed a new unified algorithm based on
local linear approximation (LLA) and further suggested using the one-step LLA estimator
because the one-step LLA automatically adopts a sparse representation and is as efficient as
the fully iterated LLA estimator. Thus, the one-step LLA estimator is computationally and
statistically efficient.

We proposed to follow the one-step sparse estimate scheme in Zou and Li [34] to derive a
one-step sparse semi-CQR estimator, as follows. First, we compute the unpenalized semi-
CQR estimate β̂(0), as described in Section 3. We then define

We define β̂OSE = argminβ Gn(β) and call this the one-step sparse semi-CQR estimator.
Indeed, this is a weighted L1 regularization procedure.

We now show that the one-step sparse semi-CQR estimator β̂OSE enjoys the oracle property.
This property holds for a wide class of concave penalties. To establish the idea, we focus on
the SCAD penalty from Fan and Li [6], which is perhaps the most popular concave penalty
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in the literature. Let  denote the true value of β, where β10 is a s-vector.
Without loss of generality, we assume that β20 = 0 and that β10 contains all nonzero
components of β0. Furthermore, let Z1 be the first s elements of Z and define

THEOREM 4.1 (Oracle property). Let pλ(·) be the SCAD penalty. Assume that the regularity
conditions (B1)–(B6) given in the Appendix hold. If , λn →0, nh4 →0 and nh2/
log(1/h)→∞ as n → ∞, then the one-step semi-CQR estimator β̂OSE must satisfy:

a. sparsity, that is, , with probability tending to one;

b. asymptotic normality, that is,

(4.2)

where 
with λk(u, x, z) being the kth column of the matrix λ(u, x, z).

Theorem 4.1 shows the asymptotic magnitude of the optimal λn. For a given data set with
finite sample, it is practically important to have a data-driven method to select a good λn.
Various techniques have been proposed in previous studies, such as the generalized cross-
validation selector [6] and the BIC selector [27]. In this work, we use a BIC-like criterion to
select the penalization parameter. The BIC criterion is defined as

where dfλ is the number of nonzero coefficients in the parametric part of the fitted model.
We let λ̂BIC = argmin BIC(λ). The performance of λ̂BIC will be examined in our simulation
studies in the next section.

REMARK 4. Variable selection in linear quantile regression has been considered in several
papers; see Li and Zhu [22] and Wu and Liu [30]. The developed method for sparse
semiparametric CQR can be easily adopted for variable selection in semiparametric quantile
regression. Consider the penalized check loss

(4.3)

For its one-step version, we use

(4.4)

Kai et al. Page 11

Ann Stat. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where β̂(0) denotes the unpenalized semiparametric quantile regression estimator defined in
Section 2. We can also prove the oracle property of the one-step sparse semiparametric
quantile regression estimator by following the lines of proof for Theorem 4.1. For reasons of
brevity, we omit the details here.

5. Numerical studies
In this section, we conduct simulation studies to assess the finite-sample performance of the
proposed procedures and illustrate the proposed methodology on a real-world data set in a
health study. In all examples, we fix the kernel function to be the Epanechnikov kernel, that

is, , and we use the SCAD penalty function for variable selection. Note that
all proposed estimators, including semi-QR, semi-CQR and one-step sparse semi-CQR, can
be formulated as linear programming (LP) problems. In our study, we solved these
estimators by using LP tools.

EXAMPLE 1. In this example, we generate 400 random samples, each consisting of n = 200
observations, from the model

where α1(U) = sin(6πU), α2(U) = sin(2πU), β1 = 2, β2 = 1 and β3 = 0.5. The covariate U is
from the uniform distribution on [0, 1]. The covariates X1,X2,Z1,Z2 are jointly normally
distributed with mean 0, variance 1 and correlation 2/3. The covariate Z3 is Bernoulli with
Pr(Z3 = 1) = 0.4. Furthermore, U and (X1,X2,Z1,Z2,Z3) are independent. In our simulation,
we considered the following error distributions: N(0, 1), logistic, standard Cauchy, t-
distribution with 3 degrees of freedom, mixture of normals 0.9N(0, 1) + 0.1N(0, 102) and
log-normal distribution. Because the error is independent of the covariates, the least-squares
(LS), quantile regression (QR) and composite quantile regression (CQR) procedures provide
estimates for the same quantity and hence are directly comparable.

Performance of β ̂τ and β̂
To examine the performance of the proposed procedures with a wide range of bandwidths,
three bandwidths for LS were considered, h = 0.085, 0.128, 0.192, which correspond to the
undersmoothing, appropriate smoothing and oversmoothing, respectively. By
straightforward calculation, as in Kai, Li and Zou [13], we can produce two simple formulas
for the asymptotic optimal bandwidths for QR and CQR: hCQR = hLS · R2(q)1/5 and hQR,τ =
hLS ·{τ(1−τ)/f [F−1(τ)]}1/5, where hLS is the asymptotic optimal bandwidth for LS. We
considered only the case of normal error. The bias and standard deviation based on 400
simulations are reported in Table 1. First, we see that the estimators are not very sensitive to
the choice of bandwidth. As for the estimation accuracy, all three estimators have
comparable bias and the differences are shown in standard deviation. The LS estimates have
the smallest standard deviation, as expected. The CQR estimates are slightly worse than the
LS estimates.

In the second study, we fixed h = 0.128 and compared the efficiency of QR and CQR
relative to LS. Reported in Table 2 are RMSEs, the ratios of the MSEs of the QR and CQR
estimators to the LS estimator for different error distributions. Several observations can be
made from Table 2.When the error follows the normal distribution, the RMSEs of CQR are
slightly less than 1. For all other non-normal distributions in the table, the RMSE can be
much greater than 1, indicating a huge gain in efficiency. These findings agree with the
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asymptotic theory. For QR estimators, their performance varies and depends heavily on the
level of quantile and the error distribution. Overall, CQR outperforms both QR and LS.

Performance of α ̂τ and α̂
We now compare the LS, QR and CQR estimates for α by using the ratio of average squared
errors (RASE). We first compute

where {uk: k = 1, …, ngrid} is a set of grid points uniformly placed on [0, 1] with ngrid = 200.
RASE is then defined to be

(5.1)

for an estimator ĝ, where ĝLS is the least-squares-based estimator.

The sample mean and standard deviation of the RASEs over 400 simulations are presented
in Table 3, where the values in the parentheses are the standard deviations. The findings are
quite similar to those in Table 2. We see that CQR performs almost as well as LS when the
error is normally distributed. Also, its RASEs are much larger than 1 for other non-normal
error distributions. The efficiency gain can be substantial. Note that for the Cauchy
distribution, RASEs of QR and CQR are huge—this is because LS fails when the error
variance is infinite.

EXAMPLE 2. The goal is to compare the proposed one-step sparse semi-CQR estimator
with the one-step sparse semi-LS estimator. In this example, 400 random samples, each
consisting of n = 200 observations, were generated from the varying-coefficient partially
linear model

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and the covariate vector (X1, X2, ZT)T is normally
distributed with mean 0, variance 1 and correlation 0.5|i−j| (i, j = 1,…, 10). Other model
settings are exactly the same as those in Example 1. We use the generalized mean square
error (GMSE), as defined in [21],

(5.2)

to assess the performance of variable selection procedures for the parametric component.
For each procedure, we calculate the relative GMSE (RGMSE), which is defined to be the
ratio of the GMSE of a selected final model to that of the unpenalized least-squares estimate
under the full model.

The results over 400 simulations are summarized in Table 4, where the column “RGMSE”
reports both the median and MAD of 400 RGMSEs. Both columns “C” and “IC” are
measures of model complexity. Column “C” shows the average number of zero coefficients
correctly estimated to be zero and column “IC” presents the average number of nonzero
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coefficients incorrectly estimated to be zero. In the column labeled “U-fit” (short for “under-
fit”), we present the proportion of trials excluding any nonzero coefficients in 400
replications. Likewise, we report the probability of trials selecting the exact subset model
and the probability of trials including all three significant variables and some noise variables
in the columns “C-fit” (“correct-fit”) and “O-fit” (“over-fit”), respectively.

From Table 4, we see that both variable selection procedures dramatically reduce model
errors, which clearly show the virtue of variable selection. Second, the one-step CQR
performs better than the one-step LS in terms of all of the criteria: RGMSE, number of zeros
and proportion of fits, and for all of the error distributions in Table 4. It is also interesting to
see that in the normal error case, the one-step CQR seems to perform no worse than the one-
step LS (or even slightly better). We performed the Mann–Whitney test to compare their
RGM-SEs and the corresponding p-value is 0.0495. This observation appears to be
contradictory to the asymptotic theory. However, this “contradiction” can be explained by
observing that the one-step CQR has better variable selection performance. Note that the
one-step CQR has significantly higher probability of correct-select than the one-step LS,
which also tends to overselect. Thus, the one-step LS needs to estimate a larger model than
the truth, compared to the one-step CQR.

EXAMPLE 3. As an illustration, we apply the proposed procedures to analyze the plasma
beta-carotene level data set collected by a cross-sectional study [24]. This data set consists
of 273 samples. Of interest are the relationships between the plasma beta-carotene level and
the following covariates: age, smoking status, quetelet index (BMI), vitamin use, number of
calories, grams of fat, grams of fiber, number of alcoholic drinks, cholesterol and dietary
beta-carotene. The complete description of the data can be found in the StatLib database via
the link lib.stat.cmu.edu/datasets/Plasma_Retinol.

We fit the data by using a partially linear model with U being “dietary beta-carotene.” The
covariates “smoking status” and “vitamin use” are categorical and are thus replaced with
dummy variables. All of the other covariates are standardized. We applied the one-step
sparse CQR and LS estimators to fit the partially linear regression model. Five-fold cross-
validation was used to select the bandwidths for LS and CQR. We used the first 200
observations as a training data set to fit the model and to select significant variables, then
used the remaining 73 observations to evaluate the predictive ability of the selected model.

The prediction performance is measured by the median absolute prediction error (MAPE),
which is the median of {|yi − ŷi|, i = 1, 2,…, 73}. To see the effect of q on the CQR estimate,
we tried q = 5, 7, 9. We found that the selected Z-variables are the same for these three
values of q and their MAPEs are 58.52, 58.11, 62.43, respectively. Thus, the effect of q is
minor. The resulting model with q = 7 is given in Table 5 and the estimated intercept
function is depicted in Figure 1. From Table 5, it can be seen that the CQR model is much
sparser than the LS model. Only two covariates, “fiber consumption per day” and “fairly
often use of vitamin” are included in the parametric part of the CQR model. Meanwhile, the
CQR model has much better prediction performance than the LS model, whose MAPE is
111.28.

6. Discussion
We discuss some directions in which this work could be further extended. We have focused
on using uniform weights in composite quantile regression. In theory, we can use
nonuniform weights, which may provide an even more efficient estimator when a reliable
estimate of the error distribution is available. Koenker [16] discussed the theoretically
optimal weights. Bradic, Fan and Wang [1] suggested a data-driven weighted CQR for
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parametric linear regression, in which the weights mimic the optimal weights. The idea in
Bradic, Fan and Wang [1] can be easily extended to the semi-CQR estimator, which will be
investigated in detail in a future paper.

Penalized Wilcoxon rank regression has been considered independently in Leng [20] and
Wang and Li [29] and found to achieve a similar efficiency property of CQR for variable
selection in parametric linear regression. We could also generalize rank regression to handle
semiparametric varying-coefficient partially linear models. In a working paper, we show that
rank regression is exactly equivalent to CQR using q = n − 1 quantiles with uniform
weights. This result indicates that CQR is more flexible than rank regression because we can
easily use flexible nonuniform weights in CQR to further improve efficiency, as in Bradic,
Fan and Wang [1]. Obviously, CQR is also computationally more efficient than rank
regression. We note that in parametric linear regression models, rank regression has no
efficiency gain over least-squares for estimating the intercept. This result is expected to hold
for estimating the baseline function in the semiparametric varying-coefficient partially linear
model.

When the number of varying coefficient components is large, it is also desirable to consider
selecting a few important components. This problem was studied in Wang and Xia [28],
where a LASSO-type penalized local least-squares estimator was proposed. It would be
interesting to apply CQR to their method to further improve the estimation efficiency.

7. Proofs
To establish the asymptotic properties of the proposed estimators, the following regularity
conditions are imposed:

(C1) the random variable U has bounded support Ω and its density function fU(·) is
positive and has a continuous second derivative;

(C2) the varying coefficients α0(·) and α(·) have continuous second derivatives in u ∈
Ω;

(C3) K(·) is a symmetric density function with bounded support and satisfies a
Lipschitz condition;

(C4) the random vector Z has bounded support;

(C5) for the semi-QR procedure,

1. Fτ (0|u, x, z) = τ for all (u, x, z), and fτ (·|u, x, z) is bounded away from
zero and has a continuous and uniformly bounded derivative;

2. A1(u) defined in Theorem 2.1 and A2(u) defined in Theorem 2.3 are
nonsingular for all u ∈ Ω;

(C6) for the semi-CQR procedure,

1. f (·) is bounded away from zero and has a continuous and uniformly
bounded derivative;

2. D1(u) defined in Theorem 3.1 and D2(u) defined in Theorem 3.3 are
non-singular for all u ∈ Ω.

Although the proposed semi-QR and semi-CQR procedures require different regularity
conditions, the proofs follow similar strategies. For brevity, we only present the detailed
proofs for the semi-CQR procedure. The detailed proofs for the semi-QR procedure was
given in the earlier version of this paper. Lemma 7.1 below, which is a direct result of Mack
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and Silverman [23], will be used repeatedly in our proofs. Throughout the proofs, identities
of the form G(u) = Op(an) always stand for supu∈Ω |G(u)| = Op(an).

LEMMA 7.1. Let (X1,Y1),…, (Xn,Yn) be i.i.d. random vectors, where the Yi’s are scalar
random variables. Assume, further, that E|Y|r < ∞ and that supx ∫ |y|r f (x, y)dy < ∞, where
f denotes the joint density of (X,Y). Let K be a bounded positive function with bounded
support, satisfying a Lipschitz condition. Then,

provided that n2ε−1h→∞for some ε <1 −r−1.

Let ηi,k = I (εi ≤ ck)−τk and , where

. Furthermore, let

, where ek is a q-vector with 1 at the kth position and 0 elsewhere.

In the proof of Theorem 3.1, we will first show the following asymptotic representation of
{ã0, b̃0, ã, b ̃, β̃}:

(7.1)

where S* (u) = diag{D1(u), cµ2B2(u)} and

The asymptotic normality of {ã0, b̃0, ã, b ̃, β̃} then follows by demonstrating the asymptotic
normality of .

PROOF OF THEOREM 3.1. Recall that {ã0, ã, β̃, b̃0, b ̃} minimizes

We write , where

. Then, θ̃* is also the minimizer of

where Ki(u) = K{(Ui − u)/h}. By applying the identity [14]
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(7.2)

we have

where

Since  is a summation of i.i.d. random variables of the kernel form, it follows, by
Lemma 7.1, that

The conditional expectation of  can be calculated as

Then,
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It can be shown that . Therefore, we can write Ln(θ*) as

By applying the convexity lemma [25] and the quadratic approximation lemma [4], the
minimizer of  can be expressed as

(7.3)

which holds uniformly for u ∈ Ω. Meanwhile, for any point u ∈ Ω, we have

(7.4)

Note that S* (u) = diag{D1(u), cµ2B2(u)} is a quasi-diagonal matrix. So,

(7.5)

where . Let

Note that

By some calculations, we have that . By
the Cramér–Wold theorem, the central limit theorem for Wn,1(u) holds. Therefore,
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Moreover, we have

, thus

So, by Slutsky’s theorem, conditioning on {U,X,Z}, we have

(7.6)

We now calculate the conditional mean of :

(7.7)

The proof is completed by combining (7.5), (7.6) and (7.7).

PROOF OF THEOREM 3.2. Let . Then,

where . Then,

is also the minimizer of

By applying the identity (7.2), we can rewrite Ln(θ) as follows:
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where . Let us now calculate the
conditional expectation of Bn(θ):

Define Rn(θ) = Bn(θ) − E[Bn(θ)|U,X,Z]. It can be shown that Rn(θ) = op(1). Hence,

where . By (7.3), the third term in the previous expression can be
expressed as

where
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Therefore,

It can be shown that Sn = E(Sn)+op(1) = cS + op(1). Hence,

Since the convex function  converges in probability to the convex function

, it follows, by the convexity lemma [25], that the quadratic approximation to Ln(θ)
holds uniformly for θ in any compact set Θ. Thus, it follows that

(7.8)

By the Cramér–Wold theorem, the central limit theorem for Wn holds and

. Therefore, the
asymptotic normality of β̂ is followed by

This completes the proof.

PROOF OF THEOREM 3.3. The asymptotic normality of α̂0(u) and α ̂(u) can be obtained by
following the ideas in the proof of Theorem 3.1.

PROOF OF THEOREM 4.1. Use the same notation as in the proof of Theorem 3.2.
Minimizing

is equivalent to minimizing
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where . Similar to the
derivation in the proof of Theorem 5 in Zou and Li [34], the third term above can be
expressed as

(7.9)

Therefore, by the epiconvergence results [8, 15], we have  and the asymptotic

results for  holds.

To prove sparsity, we only need to show that  with probability tending to 1. It

suffices to prove that if β0j = 0, then . By using the fact that

, if , then we must have .

Thus, we have . However, under the

assumptions, we have . Therefore, . This completes the
proof.
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Fig. 1.
Plot of estimated intercept function of dietary beta-carotene: (a) the estimated intercept
function by LS method; (b) the estimated intercept function by CQR method with q = 7.
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Table 1

Summary of the bias and standard deviation over 400 simulations

Bias(SD)

h Method β̂1 β̂2 β̂3

0.085 LSE −0.012 (0.128) 0.008 (0.121) −0.009 (0.171)

CQR9 −0.009 (0.131) 0.009 (0.125) −0.007 (0.172)

QR0.25 −0.017 (0.163) 0.009 (0.161) −0.151 (0.237)

QR0.50 −0.012 (0.155) 0.011 (0.151) −0.007 (0.198)

QR0.75 −0.007 (0.165) 0.005 (0.158) 0.122 (0.216)

0.128 LSE −0.009 (0.121) 0.005 (0.117) −0.008 (0.164)

CQR9 −0.010 (0.127) 0.008 (0.121) −0.005 (0.163)

QR0.25 −0.010 (0.159) 0.003 (0.152) −0.082 (0.227)

QR0.50 −0.008 (0.154) 0.011 (0.147) −0.004 (0.193)

QR0.75 −0.012 (0.163) 0.003 (0.161) 0.071 (0.207)

0.192 LSE −0.007 (0.128) 0.001 (0.123) −0.008 (0.169)

CQR9 −0.009 (0.131) 0.005 (0.127) −0.005 (0.169)

QR0.25 −0.006 (0.169) −0.004 (0.169) −0.061 (0.230)

QR0.50 −0.005 (0.153) 0.006 (0.152) −0.007 (0.191)

QR0.75 −0.012 (0.170) 0.007 (0.171) 0.049 (0.225)
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Table 2

Summary of the ratio of MSE over 400 simulations

RMSE

Method β̂1 β̂2 β̂3

Standard normal

    CQR9 0.920 0.932 1.011

    QR0.25 0.585 0.594 0.460

    QR0.50 0.621 0.631 0.724

    QR0.75 0.554 0.528 0.561

Logistic

    CQR9 1.044 1.083 1.016

    QR0.25 0.651 0.664 0.502

    QR0.50 0.826 0.871 0.799

    QR0.75 0.661 0.732 0.527

Standard Cauchy

    CQR9 15,246 106,710 52,544

    QR0.25 8894 56,704 24,359

    QR0.50 19,556 137,109 66,560

    QR0.75 8223 62,282 26,210

t-distribution with df = 3

    CQR9 1.554 1.546 1.683

    QR0.25 1.000 0.948 0.819

    QR0.50 1.354 1.333 1.451

    QR0.75 0.935 1.059 0.859

0.9N(0, 1)+ 0.1N(0, 102)

    CQR9 5.752 4.860 5.152

    QR0.25 3.239 3.096 2.300

    QR0.50 5.430 4.730 4.994

    QR0.75 3.790 2.952 2.515

Log-normal

    CQR9 3.079 3.369 3.732

    QR0.25 5.198 5.361 3.006

    QR0.50 2.787 2.829 3.139

    QR0.75 0.819 0.868 0.823
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Table 5

Selected parametric components for plasma beta-carotene level data

Age 0 0

Quetelet index 0 0

Calories −100.47 0

Fat 52.60 0

Fiber 87.51 29.89

Alcohol 44.61 0

Cholesterol 0 0

Smoking status (never) 51.71 0

Smoking status (former) 72.48 0

Vitamin use (yes, fairly often) 130.39 30.21

Vitamin use (yes, not often) 0 0

MAPE 111.28 58.11
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