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Abstract

Image labeling is an essential task for evaluating and analyzing morphometric features in medical 

imaging data. Labels can be obtained by either human interaction or automated segmentation 

algorithms. However, both approaches for labeling suffer from inevitable error due to noise and 

artifact in the acquired data. The Simultaneous Truth And Performance Level Estimation 

(STAPLE) algorithm was developed to combine multiple rater decisions and simultaneously 

estimate unobserved true labels as well as each rater's level of performance (i.e., reliability). A 

generalization of STAPLE for the case of continuous-valued labels has also been proposed. In this 

paper, we first show that with the proposed Gaussian distribution assumption, this continuous 

STAPLE formulation yields equivalent likelihoods for the bias parameter, meaning that the bias 

parameter—one of the key performance indices—is actually indeterminate. We resolve this 

ambiguity by augmenting the STAPLE expectation maximization formulation to include a priori 

probabilities on the performance level parameters, which enables simultaneous, meaningful 

estimation of both the rater bias and variance performance measures. We evaluate and demonstrate 

the efficacy of this approach in simulations and also through a human rater experiment involving 

the identification the intersection points of the right ventricle to the left ventricle in CINE cardiac 

data.
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1. Introduction

Characterization of the morphometric features of the heart to assess its clinical condition 

(e.g., coronary heart disease, arrhythmia, traumatic injury) necessitates the labeling and 
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delineation of structures of interest. Typically, short axis images showing the cross section 

of the heart perpendicular to long axis connecting the heart apex and base are delineated to 

locate the left ventricle and the right ventricle [1]. Many approaches to the clinical and 

scientific analysis of heart motion employ human experts to: (1) delineate the epicardium 

(the outer contour of the left ventricle), (2) delineate the endocardium (the inner contour of 

the left ventricle), and (3) identify the two insertion points where the right ventricle connects 

to the left. Naturally, the raters will introduce errors, generate ambiguous interpretation of 

structures, and (occasionally) make careless mistakes. Hence, performance level assessment 

is an important aspect of interpreting reported structures. Of course, identification of the true 

labels is of central importance as well [2].

The Simultaneous Truth And Performance Level Estimation (STAPLE) algorithm enables 

fusion of labeled datasets created by a number of raters or automated methods [3]. The 

statistical approach involves maximum likelihood function calculation by expectation 

maximization (EM) algorithm [4]. The method iteratively constructs the estimated truth and 

estimated performance parameters in E-step and M-step repeatedly until convergence, which 

works well for volumetric multi-atlas multi-label process [5], in the case where the rater 

performance is characterized by sensitivity and specificity related to the probability whether 

he could assign a voxel with its underlying true label.

The STAPLE algorithm can efficiently characterize multi-rater data for volumetric datasets 

such as the volume of the myocardium. However, label fusion for insertion points is not well 

captured by volumetric labels. The locations of the two RV (right ventricle) insertion points 

are indicated by directional vectors with continuous scalar elements in a K-dimensional 

vector space (usually K=2 in 2-D images). As a result, discrete volumetric label analysis is 

not a reasonable approximation for finding the truth and performance in continuous 

landmark identification.

Previous methods have been proposed to handle a one-dimensional continuous space (a 

single scalar) [6], with rater decisions assumed to follow Gaussian distribution—a 

reasonable assumption for the prior distribution. However, using an analogous 

implementation of EM algorithm as in the classic STAPLE approach, the continuous version 

of STAPLE algorithm yields an equal likelihood for any bias parameter, which means that 

this approach cannot be used to fully evaluate rater performance (i.e., if bias is considered 

part of rater performance). Since the identification of points in space represents a 2D or 3D 

continuous variable and since the existing approach does not handle rater bias correctly, a 

new continuous STAPLE algorithm must be developed.

Herein, we present an extension of the expectation maximization algorithm for continuous 

landmark identification, with Gaussian distribution priors and maximum a posteriori 

function evaluation, in order to achieve a combined result of the locations of RV insertion 

points from various rater decisions. As we will see, by adding another prior for the 

performance parameters and performing a pre-estimation process, the rater bias will update 

and finally converge to a reasonable evaluation result.
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2. Theory

2.1 EM Algorithm for ML Estimation

Suppose we have hired R raters to perform the task of locating landmarks (e.g., the RV 

insertion points in short-axis CINE cardiac images). Let there be N true landmarks in a K-

dimensional space. We assume each rater has constant bias and variance when locating all 

different landmarks.

Therefore, the truth matrix is

(1)

Each rater j gives a 2-D decision matrix point by point, and the 3-D N × K × R decision 

matrix is

(2)

Each rater's performance level is evaluated by θj = {μj, Σj}, where μj is a vector denoting the 

average bias of rater j and Σj is his K × K covariance matrix. Under a Gaussian distribution, 

we can model the probability density function (pdf) of rater j's decision for point i as

(3)

Now with θ = {θ1, …, θj, …, θR}, by EM algorithm we will update θ(n) as the result of the n-

th iteration and finally get θ and T simultaneously.

As developed in the classic STAPLE paper [3], the expectation of the log likelihood 

function, i.e.,

(4)

is to be maximized. Here we assume the distribution of truth ln f(T) is constant, such that it 

is the same as maximizing
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(5)

Assuming independence among different raters and among different landmarks, the first 

term in the integrand of (5) is just the Gaussian we assumed. The second term is

(6)

The weight of each landmark can be defined as

(7)

where  and . After sufficient number 

of iterations, , which is the estimated true position of landmark i.

This completes the so-called E-step. For the M-step, we need to update the performance 

parameters  and Σj
(n) in each iteration. From (5) we have

(8)

For each rater,

(9)

To find the maximum point of Fj, take the partial derivatives and set them to zero,

(10)
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Use these new parameters in E-step of next iteration for a new estimate of the truth, which is 

then used in calculation of newer parameters until convergence. Convergence is guaranteed 

by the nature of EM algorithm [7].

2.2 Bias Update Failure

By examining Equation (10) in detail, we see:

(11)

Replacing  by  yields

(12)

While the right side appears to be related to j, the left side is independent of j, which means 

that regardless of having different raters this quantity is always going to be the same after 

each iteration. We should also note that  is actually not dependent on i. As a result, by 

plugging in the definition of  and  into Equation (11) we can deduce that

(13)

Therefore, the first iteration (initialization) is going to determine the bias and it will not 

change from then on. Unless we are able to initialize the iteration with the correct bias, there 

will always be constant error from the truth.

This phenomenon can be interpreted in two ways. Intuitively, as each rater generates his 

“cluster” of points by making multiple decisions, the relative positions of all clusters is 

going to form a pattern. While the pattern shape is reflected in the variance, which can be 

evaluated by the EM algorithm, the pattern position can be located anywhere in the space. 

Corresponding to any point as truth in the space, there is a set of biases, which is acting 

equally in giving us the maximum likelihood function, as long as the pattern shape is not 

changed. There was no assumption to determine whether the true point location should be 

within the clusters or outside of them. Mathematically, according to [8], the EM algorithm is 

guaranteed to converge to a local optimum, while here any bias indicates a constant local 
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optimum. This means that any bias is equivalent in characterizing the maximum of the 

likelihood function.

Since any bias will maximize the likelihood function, more assumptions are needed to 

further restrict the estimated bias.

2.3 EM Algorithm for MAP Estimation

Let us add a Gaussian prior for the bias parameter as follows

(14)

where μμj and σμj are the mean and standard deviation of rater j's bias parameter.

Now we seek to maximize the log of the a posteriori function [9-11]

(15)

In equation (9), function Fj now becomes

(16)

The E-step is the same as above but the M-step becomes

(17)

so that the constant bias problem no longer exists and we can get a meaningful solution for 

the MAP biases.

To perform this technique, μμj,  has to be determined in advance. Here we suggest two 

ways of doing this:

1. The Weak Prior – to assign the most probable values to them. Usually the rater may 

not deviate too far from the truth and their biases are very close to the zero vector. 

It is reasonable to let μμj be zero and σμj be large (e.g., 10 voxels etc.). As long as 

σμj is large enough, the estimated result will be good. However, if one rater has too 

large of a bias, which might happen when he misunderstands the labeling 

instructions or deliberately performs badly, the weak prior will probably cause the 

later EM iteration to misinterpret his large bias as a large variance.
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2. The Data Adaptive Prior – to use a pre-estimation process to obtain a coarse 

estimate of the truth before EM iterations. The pre-estimation takes all rater 

decisions for one landmark and calculates a weighted average of its position 

iteratively, then uses the average rater deviation from the coarse truth as μμj. In 

each iteration, the distance of the rater decision from the current averaged coarse 

truth is computed, whose inverse is going to act as a weight of this rater in next 

iteration. Therefore, if the rater constantly deviates from the majority decisions, his 

decision will not affect the coarse truth very much and his pre-estimated bias μμj is 

going to be large, which distinguishes his large bias for later EM iterations.

3. Results

3.1 Rater Performance Simulations

To simulate the truth and rater performance, a random pattern with 50 point locations is 

drawn from a uniform independent 2-D random distribution in the range of [0, 100], which 

is represented in Figure 1 by circles. Meanwhile, 20 raters with manually chosen biases and 

variances are generated (Table 1 shows the first 4 rater parameters), as well as their 

performances (dots in Figure 1) on identifying all of the 50 points. The performances in this 

experiment are actually the deviations of the point position vectors from the 50 generated 

true locations and are drawn randomly from a 2-D Gaussian distribution density with means 

and variances the same as rater parameters. For visualization purposes 4 of the rater 

performances are shown with different symbols. It is easily seen the “triangle rater” (No.3 in 

Table 1) has a large bias and therefore his decision pattern is shifted toward the upper right 

corner, while the “x rater” (No.4 in Table 1) has a large variance and therefore his decision 

pattern is seriously scattered around.

Figure 2 shows the estimated truth denoted by stars via EM ML estimation as in classic 

STAPLE comparing to the estimated truth using EM MAP estimation with data adaptive 

prior. In ML approach, since bias is not correctly updated, although the estimated 

distribution pattern is correct, this entire pattern is shifted by a certain amount dependent on 

initialization. In MAP approach however, the bias is dragged into the iteration process and 

everything is updating and converging to a reasonable result. The estimated parameters and 

the mean square errors are shown in Table 2 and 3, from which one can also observe the 

obvious correction introduced by EM MAP estimation.

3.2 Real Data Testing on Identification of RV Insertion Points

The high-resolution CINE MRI short axis images of the heart of a pig are obtained in a 

steady-state free suppression (SSFP) acquisition with breath holds on a commercial Philips 

3T-Achieva whole body system. With 6 raters hired to identify 82 RV insertion points in 41 

randomly selected slices, the ML MAP estimation process with data adaptive prior is 

implemented to analyze the underlying truth and rater performance level. From the 41 slices, 

the estimated results of 3 of them are shown in Figure 3, where the red “x” demonstrates all 

rater decisions, and the green “o” shows the EM MAP Continuous STAPLE fusion 

comparing to an expert's decision (yellow “x”) regarded as the underlying truth. The 3 

examples are selected specifically to demonstrate cases in various practical situations. In the 

first image, although one rater deviates too much to the right, the fusion corrects his mistake 
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and the estimated truth is put on the correct spot, almost hitting the expert decision. In the 

second image, when the raters' decisions are scattered around, fusion brings the result closer 

to the expert decision. In the last image, every rater deviates a certain amount to the same 

direction from the expert, inevitably causing the fusion also to deviate, while it is still 

brought close to the expert as much as possible by the estimation process.

4. Conclusion

This paper extends the classic STAPLE approach to continuous label spaces under a 

Gaussian distribution prior assumption. First, we described the EM algorithm for ML 

estimation in multi-dimensional continuous spaces. Then we stated the problem of the 

constant bias and demonstrated if nothing was to be done to prevent it, the result was going 

to deviate in any direction uncontrollably. Finally we suggested a solution by switching to 

MAP estimation and presented two techniques to obtain priors for the performance 

parameters.

It is essential to note that for a deviated pattern resulted from ML estimation, the unexpected 

shifting will not be easily predicted. The shifting depends on initialization and different 

initializations will cause different shifted positions (reflected in bias). However the 

estimated landmark distribution pattern, which reflects the relative positions among 

landmarks, is determined by the EM iterations, and it will not be affected by initialization 

(reflected in variance). Although the pattern is fixed by EM, the shifting cannot be ignored 

as it determines the real location, which is why classic ML estimation should be considered 

wrong in this case, or at least not sufficient.

With the MAP prior added, the bias problem is eventually fixed so that it can be considered 

a proper solution. For convenience, one could consider assigning only reasonable values for 

the bias mean and bias standard deviation as a weak prior, which is not only time-preserving 

but also appropriate as the raters usually do not have very large biases (large bias can only 

be achieved by a constant error). However, when a large bias case does appear, as a rater 

deliberately shifts his decision for whatever reason, the weak prior will be affected by this 

rater and not give as good result as a data adaptive prior obtained by weighted average pre-

estimation process. The two approaches for getting MAP prior should be carefully 

considered before doing the analysis.

Future work includes finding a continuum between the two MAP priors, or any other 

possible relationship. Different priors will also affect the value of the likelihood function, as 

some prior will give larger likelihood value than others. Whether there exists a certain prior 

able to maximize the likelihood function among various priors is worth to explore. 

Moreover, when there is missing, partial, or repeated data existing, by simply ignoring the 

missing “holes” and recounting the repeated performances, this approach is no longer 

converging to the expected result. Comparing to the STAPLER solution developed recently 

[12], the approach is not robust enough since it requires too tight restrictions for rater 

performance times. A better solution to deal with the missing, partial, and repeated data in a 

continuous landmark space is still yet to be found.
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Figure 1. 
Simulated truth (circles) and rater decisions (dots) on the left and four of the raters' decisions 

denoted by different symbols (+, square, triangle, x). There are 50 points and 20 raters 

simulated. The “triangle rater” (No.3 below) has a large bias. Therefore his decision pattern 

is shifted toward the upper right corner.
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Figure 2. 
Estimated truth denoted by stars using EM ML estimation as in classic STAPLE (left) 

comparing to estimated truth using EM MAP estimation with data adaptive prior (right). In 

ML approach, the estimated distribution pattern seems to be correct, but is shifted to the 

upper right. In MAP approach, the bias gets properly estimated and everything is converging 

to a reasonable result.
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Figure 3. 
With 6 raters hired to identify 82 RV insertion points in 41 randomly selected pig heart 

slices, the analyzed results of 3 of the slices are shown, where the red “x” are all rater 

decisions, and the green “o” show the MAP Continuous STAPLE fusion comparing to an 

expert's decision (yellow “x”). In the first image, the fusion corrects the one rater's mistake 

that has deviated too much. In the second image, fusion brings the result closer to the expert 

decision than the scattered rater decisions. In the last image, although rater deviations cause 

the fusion also to deviate, it is still close to the expert decision.
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Table 1

The first four simulated rater performance parameters (biases and variances). Rater 3 has a large bias and rater 

4 has a large variance.

Raters 1 2 3 4

Bias [1,2] [-3,1] [15,15] [-1,-1]

Variance
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