
AN EFFICIENT HIGHER-ORDER FAST MULTIPOLE BOUNDARY
ELEMENT SOLUTION FOR POISSON-BOLTZMANN BASED
MOLECULAR ELECTROSTATICS

Chandrajit Bajaj, Shun-Chuan Chen, and Alexander Rand

Abstract
In order to compute polarization energy of biomolecules, we describe a boundary element approach
to solving the linearized Poisson-Boltzmann equation. Our approach combines several important
features including the derivative boundary formulation of the problem and a smooth approximation
of the molecular surface based on the algebraic spline molecular surface. State of the art software
for numerical linear algebra and the kernel independent fast multipole method is used for both
simplicity and efficiency of our implementation. We perform a variety of computational experiments,
testing our method on a number of actual proteins involved in molecular docking and demonstrating
the effectiveness of our solver for computing molecular polarization energy.

1. Introduction
Models of molecular potential energy are often used in biology to understand the structure-
function relationships of proteins. Computation of molecular binding affinities and molecular
dynamics [28,57,58] involves repeated evaluation of molecular energy or forces as dynamic
molecular configurations are simulated and analyzed. Electrostatic interactions of a molecule
with an ionic solution are captured in the polarization term of the total potential energy. Since
treating each solvent molecule discretely is extremely computationally expensive for a realistic
number of molecules, a common and experimentally useful model for this polarization
interaction is the Poisson-Boltzmann equation which treats the solvent as a continuous medium
[29,32].

Finite difference, finite element, and boundary element methods have all been used to solve
the linearized Poisson-Boltzmann equation numerically [53]. Discretizing space with a regular
lattice, the earliest solvers were based on finite difference methods [33,56,65]. Later, finite
difference approaches incorporated multigrid techniques [39,41] and an alternate formulation
[62] to improve efficiency. However, discontinuous coefficients and Dirac point charges often
limit the accuracy of these methods.

Finite element methods eliminate some of these challenges by allowing the domain to be
discretized with a more geometrically accurate mesh. Finite element methods have been
developed and analyzed for the linearized [10,20,24,25] and nonlinear Poisson-Boltzmann
equation [9,10,22,40]. Both finite difference and finite element methods require a discretization
of three-dimensional space. If a uniform mesh of size h is used, then the number of degrees of
freedom is O(h−3). Boundary element methods provide an alternative in which all degrees of
freedom lie on the molecular boundary and (for a uniform mesh) only O(h−2) degrees of
freedom are needed.

Zauhar and Morgan [75,76,77] formulated the linearized Poisson-Boltzmann equation as a
system of boundary integral equations (the nonderivative boundary integral equations, nBIE)
and solved this system numerically. The original system has been observed to exhibit poor
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conditioning for iterative linear solvers [50], but an alternative formulation (the derivative
boundary integral equations, dBIE) first stated by Juffer et al. [43] is well conditioned. Since
the boundary element method leads to a dense linear system, and these and other [81] early
methods suffer from need to compute this entire matrix.

Due to the special structure of the boundary element system, the fast multipole method [36]
can be used to efficiently approximate the necessary matrix-vector products without creating
the full matrix. This has been applied to several formulations of the molecular electrostatics
problem: nBIE [1,46,51], dBIE [19,52], models involving only Poisson’s equation [15,69] and
a formulation involving only single layer densities [17]. Nearly all of these codes utilize the
solvent-exposed surface produced by MSMS [61], which is composed of spherical and toroidal
patches but in some cases contains sharp corners, and some codes approximate this surface
with a at triangulation [19]. This can give hypersingular integrals which are challenging to
discretize and a resulting solution error which is dominated by the geometric approximation.

For the linearized Poisson-Boltzmann equation we have designed and implemented a boundary
element method and additionally studied its accuracy and efficiency on real protein structures.
Our solver combines several key features which produce meaningful electrostatics calculations
with modest surface mesh sizes. First, the dBIE formulation of the problem is used providing
a well conditioned system for iterative methods in linear algebra. Second, by defining the
molecular domain using the C1 algebraic spline molecular surface, solutions only reflect a
second order geometric error from the domain approximation and numerically problematic
hypersingular integrals are avoided. Third, a general purpose fast multipole package,
KIFMM3d, is used to efficiently approximate dense matrix computations simplifying the
algorithm by separating the details of the fast multipole method from the rest of the scheme.
Our freely available solver (http://cvcweb.ices.utexas.edu/software) is tested on a suite of
actual proteins important in molecular docking. We show that our software outperforms several
alternative approaches (the nonderivative boundary integral formulation and linear or
nondifferentiable surface geometry) and demonstrate benefits compared to a finite difference
solver. For practical examples, key parameters including singular and non-singular quadrature
orders, fast multipole approximation order, and GMRES termination tolerance are tuned to
greatly improve the method efficiency with minimal impact on the solution error.

Motivation for computing the molecular polarization energy is contained in Section 2. In
Section 3 the nonlinear and linearized Poisson-Boltzmann equations are stated and then the
latter equation is formulated as a pair of boundary integral equations. Our numerical scheme
for solving these equations is described in Section 4. Polarization energy is formulated as a
post-processes to the Poisson-Boltzmann solution in Section 5. Sections 6 and 7 contain
implementation details and computational experiments, respectively.

2. Motivation
We begin with a general outline of the molecular energetics problem including a description
of the specific role of the polarization energy.

Molecular Potential Energy
The total free energy of the system G is given be G = U − TS where U is the potential energy,
T is the temperature of the system, and S is the solute entropy. The potential energy of a
molecule in solution is divided into two components: U = EMM + Gsol, where EMM is the
molecular mechanical energy, and Gsol is the solvation energy. A common model for the
molecular mechanical energy EMM is given in [48]. For a molecule in solution, additional
potential energy resulting from interaction of the solute and solvent is called the solvation
energy Gsol. The solvation energy is often modeled by three terms:
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(2.1)

where Gcav is the energy to form a cavity in the solvent, Gvdw is the van der Waals interaction
energy between solute and solvent atoms, and the polarization energy Gpol is the electrostatic
energy due to solvation [28,32,38,64,66].

Polarization Energy
The polarization energy of a molecule occupying region Ω is the change in the electrostatic
energy due to the induced polarization of the solvent,

(2.2)

where ρ(z) is the charge density at position z and the reaction electrostatic potential ϕrxn(z)
indicates the change in electrostatic potential caused by solvation, i.e., ϕrxn = ϕsol − ϕgas where
ϕsol and ϕgas are the potential of the molecular in solution and in a gas, respectively.

A number of applications involve the computation of polarization energy. For example, the
binding effect of a drug (molecule 1) and its target (molecule 2) is the difference between the
potential energy of the complex of the two molecules minus the sum of the potential energy
of the individual molecules:

Polarization energy is an important component of each of these energy calculations.

Different theoretical approaches for computing binding solvation energy can be divided into
two broad categories: explicit[13,34,49,54] and implicit [28,32,60,68]. Explicit solvent models
adopt an atomistic treatment of both solvent and solute. Explicit approaches sample the solute-
solvent space by molecular dynamics or Monte Carlo techniques which involve a large number
of ions, water molecules, and molecular atoms [68]. This requires considerable computational
effort, and explicit solutions are often not practical especially for large domains [70].

Implicit solvent models treat the solvent as a featureless dielectric material and adopt a semi-
microscopic representation of the solute. The effects of the solvent are modeled in terms of
dielectric and ionic physical properties. The most widely used implicit model for molecular
electrostatics is the Poisson-Boltzmann equation: it possesses a solid theoretical justification
and has been used to explain a number of experimental observations [28,29,30,60,66,70]. Since
the solution to partial differential equations still requires substantial computational effort,
several other implicit models have been developed to approximate results of the Poisson-
Boltzmann model. The most common of these models is the Generalized Born formula [68,
5] which has also been used to successfully approximate polarization energy for some
applications [2,31].

3. The Poisson-Boltzmann Equation
A molecule is defined as a stable group of at least two atoms in a definite arrangement held
together by very strong chemical covalent bonds. For a molecule embedded in an ionic solution,
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the domain (ℝ3) is separated into open interior (Ω) and exterior regions (ℝ3 \ Ω) divided by
the molecular surface  [47]; see Figure 3.1.

Two important coefficients, the dielectric coefficient ε(z) and the ion strength z), are assumed
to be constant over Ω and ℝ3 \ Ω:

The electrostatic potential in the interior and exterior of a molecule is governed by Poisson’s
equation,

(3.1)

where ρ(z) is a variable charge density. This charge density contains two components: charged
atoms belonging to the molecule itself and mobile ions as part of the solution. Atomic charges
are assumed to be Dirac distributions while mobile ions in solution are modeled with the
Boltzmann distribution,

(3.2)

Since ρ(z) depends on ϕ, (3.1) is the nonlinear Poisson-Boltzmann equation rather than merely
Poisson’s equation. Definitions of each of the parameters in (3.2) and a few other parameters
needed for the linearized equation and its numerical discretization are in the table of variables
below.

ε(z) dielectric coefficient at z

qk charge of the atom k

zk location of charge qk

nc number of point charges

λ(z) characteristic function of the set ℝ3 \ Ω

ec charge of an electron

kB Boltzmann’s constant

T absolute temperature

ionic strength

ci, zi concentration and charge of ith ionic species

modified Debye-Huckel parameter

nd number of basis functions

nq number of quadrature points

nb number of molecular surface mesh patches

Selecting a linear approximation to the nonlinear term ρb produces the linearized Poisson-
Boltzmann equation,
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(3.3)

where  is the first term of the Taylor expansion of ρb(z). In many cases the
linearized Poisson-Boltzmann equation provides a sufficiently accurate approximation of the
nonlinear Poisson-Boltzmann equation; see [30] and references therein.

3.1. Boundary Integral Formulation
Potential theory [44,67] provides the tools needed to derive a boundary integral formulation
of the linearized Poisson-Boltzmann equation. We begin by separating (3.3) into the interior
and exterior regions and explicitly stating interface conditions which must hold on molecular
boundary Γ:

(3.4)

(3.5)

(3.6)

(3.7)

Carefully applying Green’s second identity to the interior and exterior regions and taking limits
approaching Γ yields the boundary integral equations,

(3.8)

(3.9)

where G0 and Gκ denote the fundamental solutions of the Poisson-Boltzmann equations,

Recall Figure 3.1 for an example domain including normal vectors at labeled boundary points
x and y.
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An alternative boundary element formulation of the linearized Poisson-Boltzmann equation
was proposed by Juffer et al. [43]. This system (dBIE) is produced by taking linear
combinations of the original boundary integral equations and their derivatives.

(3.10)

(3.11)

This combination of the derivatives of (3.8) and (3.9) has been selected so the kernel

 in (3.11) is not hypersingular. For certain numerical schemes, this
reformulation has been observed to produce a better well-conditioned linear system and fast
convergence of iterative linear solvers when compared to the original boundary integral
equations [50].

3.2. Discretization by the Collocation Method
The boundary integral equations (either dBIE or nBIE) are discretized by selecting a finite-
dimensional function space and a set of collocation points. Each unknown function is required
to belong to the selected function space and the integral equations are required to hold exactly
at the collocation points. The most commonly selected pairs of function spaces and collocation
points are piecewise constant functions with triangle centroid collocation points and piecewise
linear functions with mesh vertex collocation points. Let  be a basis for the finite-

dimensional function space, i.e., , and let xi
denote the collocation points. Then the nBIE formulation becomes a linear system of equations,

(3.12)

(3.13)

A similar system can be derived for the dBIE system. Solving this dense linear system (for
unknowns ϕi and ∂ϕi) involves a number of complications and simplifications. We briefly
outlines the general issues here and in the next section describe our specific approaches as
applied to realistic proteins.
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The integrals in (3.12) and (3.13) must be discretized by some quadrature rules, but the singular
kernels prevent the use of a fixed quadrature rule over a triangulation (or similar discretization)
of the boundary. For a boundary subdivided into patches , the integral is usually broken
into three parts: nonsingular, nearly singular and singular components. A different quadrature
rule is used for each type of boundary patch based on which component of the integral it belongs
to. The singular and non-singular integrals are usually performed only in a small neighborhood
of the singulatity xi. The remaining integrals are evaluated using a fixed nonsingular quadrature
rule and due to the rapid decay of the kernels, the simultaneous computation of these integrals
for each collocation point can be accelerated with the fast multipole method [36]. For example,

if the first integral in (3.12) is discretized using a quadrature rule  then the resulting
summations,

(3.14)

can be accurately approximated via the fast multipole in O(max(nq, nd)) operations assuming
that the support of each basis function intersects a bounded number of boundary patches, i.e.,
the sum in j in (3.14) involves a bounded number of terms.

Following the fast multipole calculation, each of the values is corrected to include accurate
singular and nearly singular quadrature rules for the appropriate boundary patches. Singular
integration is usually performed with by quadrature rules tailored to the position of the
singularity [27,37,42] while nearly singular integration usually involves (possibly adaptive)
refinement of the boundary patches [18,37,42,63]. In some cases singular and nearly singular
integration has been studied with respect to certain specific surfaces associated with the
linearized Poisson-Boltzmann equation [12,71].

4. BEM for Molecular Surfaces
We describe the details of our boundary element method: how the molecular surface is defined
and discretized, what basis functions are selected and how quadrature is performed.

4.1. Construction of the Molecular Surface
To define the molecular surface Γ, we begin with an experimentally derived protein structure
from the RCSB Protein Data Bank (PDB) [14], a worldwide data repository containing
thousands of large bio-molecules. Each PDB structure contains of list of spacial locations for
each of the atoms in a molecule. The molecular model for electrostatic calculations is obtained
from a PDB file by assigning charge and radius parameters derived from a variety of force
fields, e.g., AMBER [58], CHARMM [21], etc. For example, the adaptive Poisson-Boltzmann
solver, APBS, applies the all-atom AMBER 99 force field [26].

From a configuration of atomic positions and radii a molecular surface can be defined. The
simplest surfaces, the van der Waals and solvent accessible surfaces, are merely the boundary
of a union of balls [47]; see Figure 4.1(a). Alternatively, the solvent excluded surface [23,59]
is defined to be the boundary of the region outside this union of balls which is accessible by a
probe sphere. The solvent excluded surface eliminates many, but not all, of the non-
differentiable cusps which occur in the union-of-balls surfaces. For a smooth surface, the level-
set of a sum of Gaussian functions associated with each atom is often considered; see [16,
35], for example.
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We utilize the molecular surface constructed in [7,8]; the surface is generated by constructing
a Gaussian density function for the atom based on atomic positions and radii, evolving this
function according to a variational formulation and then considering a level-set of this function;
see Figure 4.1(b). For the resulting surface, a triangular mesh with surface normal vectors at
the vertices is constructed using a dual contouring method [78]. If the surface mesh generated
contains too many triangles, it is decimated following the approach in [4] and further mesh
smoothing is performed as necessary; see Figure 4.1(c).

4.2. Surface Parametrization
To provide a smooth surface which interpolates mesh vertices and prescribed surface normals,
we utilize the algebraic spline molecular surface (ASMS) [79]. This surface is constructed from
algebraic patches or A-patches which are a kind of low degree algebraic surface with dual
implicit and rational parametric representations [3]. The result is a molecular surface depicted
in Figure 4.1(d) which can be parametrized in terms of the barycentric coordinates of the
triangles allowing for easy construction of basis functions as described in the next section. We
give a brief overview of this construction; complete details can be found in [79,80].

For some triangle element Γj with vertices v1, v2, and v3 and normals n ⃗1, n ⃗2 and n ⃗3, the A-
patch Γ̄j is defined on this prism,

where vi(λ) = vi + λn ⃗i and (b1, b2, b3) are the barycentric coordinates of the triangle; see Figure
4.2. We define a function over the prism D(Γj) in Benstein-Bezier spline form by

where . For d ≥ 3 coefficients bijk(λ) can be selected so that Fd is
continuous between adjacent patches and for each vertex Fd(vi) = 0 and ∇Fd(vi) = n ⃗i.

The molecular surface Γ̄j is the zero level-set of Fd,

(4.1)

This can be viewed as a parametric representation in two parameters b1 and b2. The third
barycentric coordinate can be computed from the first two, b3 = 1 − b1 − b2 and under some
mild restrictions on the mesh shape and vertex normals, Fd(b1, b2, b3, λ) = 0 can be solved for
λ in terms of b1 and b2. In practice this nonlinear equation is solved numerically with Newton’s
method.

4.3. Selection of Basis Functions
We consider two different types of basis functions for the solution space and associated
collocation points: piecewise constant basis functions with triangle centroids as collocation
points and piecewise linear basis functions with mesh vertices as collocation points. In both
cases these functions are defined based on the barycentric coordinates of an underlying
triangular mesh. Since the A-patches can be parametrized by the barycentric coordinates, this
construction can be directly applied to the ASMS.
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4.4. Quadrature

Let  be a (generic) quadrature rule for a reference triangle T where bq denote the
barycentric coordinates. Using a change of variables, this rule can be transferred to an arbitrary
A-patch using the parametrization (4.1). The resulting quadrature rule on Γ̄j is

 where J(bq) denotes the Jacobian of the parametrization.

Next we outline the quadrature rules for nonsingular, singular, and nearly singular integrals to
be computed. In each case, quadrature rules on a reference triangle can be transferred to the
curved molecular surface using the aforementioned change of variables.

Nonsingular Quadrature and the Fast Multipole Method—Nonsingular quadrature is
performed using a fixed Gaussian quadrature rule. This gives a single quadrature rule for the
entire surface producing integrals of the form of (3.14). The source density

 must be computed at each quadrature point yq. Since the basis functions are
locally supported, the summation over j only involves a bounded number of terms for any
particular quadrature point. Then for all collocation points xi the summation in q can be
approximated by the fast multipole method in O(nq · nb) operations.

Singular Quadrature—For smooth surfaces, the kernels in (3.8)–(3.11) are all integrable.
By performing a change of variables to polar coordinates around the singularity, a smooth
integrand is produced. For singularities occurring at a vertex of a triangle, a more
computationally useful change of variables is described clearly in [27]. This coordinate change
maps the a triangle into a square where a tensor-product Gaussian quadrature rule can be
applied; see Figure 4.3(a).

When a triangle centroid is selected to be a collocation point, the integrand singularity occurs
in the interior of the triangle. Suitable quadrature rules are formed by subdividing the triangle
into three new triangles with the singularity as a new vertex; see Figure 4.3(b). Then the
previous quadrature rule (which was designed for triangles with singularities at a vertex) can
be applied to each of the three new triangles.

Nearly Singular Quadrature—Nearly singular quadrature is performed by subdivision. On
each subdivided triangle a Gaussian quadrature rule is applied. Precise convergence analysis
imposes many restrictions on how this refinement should be performed and which integrals
must be considered nearly singular; for examples, see [42,73]. In Section 7 we demonstrate
that nearly singular quadrature has limited importance for molecular structures and thus have
avoided implementing a more complex (and computationally demanding) quadrature
procedure.

5. Polarization Energy Computation

After solving for the electrostatic potential ϕ and its normal derivative , the total polarization
energy can be computed. Combining the expressions for the polarization energy (2.2) and the
charge density (3.2) gives

(5.1)
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where ϕrxn(x) = ϕ(x) − ϕgas(x) is the difference between the potential induced by the molecule
in solution and the molecule in a gas.

Using Green’s second identity as in the derivation of the boundary integral equations, formulas
for the potential both inside and outside the molecule can be obtained; see [43] for complete
details. For a point z ∈ ℝ3 \ Γ,

(5.2)

The potential of the molecule in a gas is the solution to Poisson’s equation (3.1) with constant
dielectric ε(z) ≔ εI, and no charge density due to mobile ions ρ(z) = ρc(z). As the right hand
side contains only a sum of Dirac functions, ϕgas is the sum of fundamental solutions to
Poisson’s equation,

(5.3)

Subtracting (5.3) from (5.2) yields

for all z ∈ Ω The fast multipole method is then used to efficiently evaluate ϕrxn at each atomic
position zk for the energy computation (5.1).

6. Implementation Details
Here we outline the steps in our software pipeline followed by a description of the key
parameters to the algorithm.

6.1. Data Pipeline and Software Architecture
Given a molecular structure, a force field, and the concentrations of ions in solution, our code
computes polarization energy in the following steps.

1. Molecular Structure Preparation. Molecular structures contained in the Protein Data
Bank [14] contain the types and positions of most of the atoms in a molecule. The
software package PDB2PQR [26] places missing hydrogen atoms in the original
structure and assigns partial charges and atomic radii based on the force field selected.

2. Molecular Surface and Triangular Surface Mesh Construction. Based on the positions
and radii of the atoms, a molecular surface is constructed through a level-set
formulation with software described in [7,8]. The level-set surface is approximated
as a quality triangular mesh with surface normal directions specified at the vertices
using a dual contouring method [78]. If necessary, this triangular mesh is decimated,
and a geometric flow algorithm is applied to improve mesh quality [4].

3. Surface Parametrization. The molecular surface is locally parametrized using the
algebraic spline construction described in Section 4.2. Quadrature points are
computed for each type of integral listed in Section 4.4.
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4. Numerical Solution. The linear system (equations (3.12) and (3.13) or the equivalent
system for the dBIE formulation) is solved using the GMRES routine provided by
PETSc (Portable, Extensible Toolkit for Scientific Computation) [11]. Matrix-vector
products are implemented manually using PETSc’s shell matrix construction. Inside
each matrix-vector product, KIFMM3d (Kernel-Independent Fast Multipole 3d
Method) [72] is used to efficiently perform summations for a fixed quadrature rule
and then singular and near field quadrature rules are used to provide a local correction
to the least accurate portions of the integrals.

5. Energy Computation. The polarization energy is computed using the formulation in
Section 5. Numerical integration is again performed using KIFMM3d with local
quadrature corrections to singular or nearly singular integrals.

6. User Interface and Visualization. The molecular visualization and computation
package TexMol [6] provides a graphical interface for the algorithm parameters as
well as immediate visualization of the results.

6.2. Algorithm Parameters
When running the algorithm, a particular formulation must be selected and a number of
parameters must be set. One boundary integral formulation (nBIE or dBIE) must be selected
and either piecewise constant or piecewise linear basis functions can be used. Additionally,
the following parameters must be selected.

Ng Number of points in triangular Gaussian quadrature rule

Ns Number of points in triangular singular quadrature rule

Nns Number of subdivisions for the nearly singular quadrature rule

Dns Depth of triangles for the nearly singular quadrature rule

εtol Tolerance for terminating PETSc GMRES routine

Nfmm KIFMM3d accuracy parameter

The parameter Nfmm is the number of points used by KIFMM3d to represent equivalent densities

and effects the accuracy of the fast multipole evaluations. KIFMM3d runs in  time.

7. Experimental Results
Two types of experiments are considered: a simple example with a known solution and realistic
protein complexes from the ZDOCK benchmark [55]. Results are compared to solutions of the
linearized Poisson-Boltzmann equations produced by the multigrid finite difference method
provided in APBS version 1.2.1 [10,41].

7.1. Single Ion Model
We begin by studying the simplest molecule: a single atom with radius r and charge q. In this
case an explicit solution to the linearized Poisson-Boltzmann equation is known [45]:

(7.1)

The resulting polarization energy is
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(7.2)

This example is used to test the various parameter settings for PB-CFMM. Relative error between
the exact solution ϕ* and the numerical solution ϕ is measured in the L2-norm,

(7.3)

While derivatives of ϕ suggest that this expression is more closely related to the H1-norm, ϕ

and  are independent unknowns in the boundary integral formulation. So (7.3) is the L2-

norm of the unknown vector .

We begin by selecting acceptable quadrature rules. Table 7.1 contains a comparison of the
solution error under different quadrature configurations. The simplified nature of our nearly
singular quadrature scheme means that eventually (i.e., when the size of the triangles in the
surface mesh becomes small enough) the quadratic convergence rate of the method will be
lost. The table demonstrates that if the nonsingular and singular quadrature rules are of high
enough order, nearly singular quadrature can be avoided. In practice we see that the three-point
Gaussian quadrature rule for nonsingular integrals and the nine-point (i.e., three by three) rule
for singular integrals are sufficient to preserve the convergence rate in the typical ranges that
we consider. Higher degree integration rules do not reduce the solution error for the mesh sizes
listed.

Table 7.2 contains a comparison of nonderivative ((3.8) and (3.9)) and derivative ((3.10) and
((3.11)) boundary integral formulations. In [50] it is reported that matrices corresponding to
the derivative boundary integral equations are better conditioned for iterative solvers. We
observe this when performing the computation for small εtol. However for modest εtol values
we find that both formulations terminate in many fewer iterations without an impact on the
solution error. Since the dBIE formulation requires four times as many fast multipole calls as
the nBIE formulation (and thus typically four times the runtime), it can be desirable to use the
nBIE formulation in certain situations. This likely explains how the nBIE formulation has been
used successfully by some research groups; e.g. [1].

Table 7.3 contains a comparison of a curved A-spline molecular surface and a linear
approximation of the geometry. Polarization energy converges at the expected quadratic rate
for the curved geometry and at a linear rate for the linear geometry. Even for very coarse meshes
(i.e., before the faster convergence rate has taken effect) the curved geometry performs much
better. This is likely due to the hypersingular integrals associated with corners of the polygonal
domain. Since the A-spline molecular surface is differentiable, it produces no hypersingular
integrals and thus no associated numerical problems.

Table 7.4 contains a comparison of our solver with APBS for the single ion example. While the
computational time for each method is linear in the number of degrees of freedom, the number
of degrees of freedom grows at O(h−3) for the finite difference solver compared to O(h−2) for
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the boundary element solver. The finite difference solver is much more efficient per degree of
freedom: this is expected because the linearity of the fast multipole method involves a larger
constant then the local finite difference computations. The boundary element method gives a
more accurate result when compared to finite difference grids with the same length scale.

7.2. Protein Binding Examples
We focus our experiments on a set of 212 ligand-receptor protein complexes from the
ZDOCK benchmark [55]. Based on our experiments on the single ion model, we choose a
conservative parameter set for PB-CFMM: Ng = 3, Ns = 9, Dns = 0, εtol = 10−5, and Nfmm = 6.
These parameter settings were seen to preserve the expected convergence rates for the single
ion model at small length scales. Atomic charge and radius information is generated using the
AMBER 99 force field.

Table 7.5 contains a summary of the results of running PB-CFMM and APBS on the set of test
molecules. The runtime of both solvers is observed to be linear in the number of degrees of
freedom as expected. Error in the energy values is computed with respect to the energy
computed at the finest level. We see that PB-CFMM-computed energy values are more consistent
than those computed with APBS.

Note that the median difference between the finest scale PB-CFMM and APBS results is 3.15%.
This appears to be much higher than the error in the PB-CFMM computations. Some of this
discrepancy is due to the differences in the molecular surfaces used by the two solvers since
the surfaces given to PB-CFMM involve some pre-processing; recall Section 4.1. Figure 7.1
contains plots of the energy values computed under the different solvers and mesh sizes.

For a more detailed look at the results, we consider the per-atom energy values (i.e. individual
terms in the summation (5.1)) for a particular molecule, nuclear transport factor 2 (PDB id:
1A2K). Figure 7.2 contains plots of the per-atom energy values for different mesh resolutions.
The per-atom energies are consistent, especially between the highest resolution meshes. The
median error over all atoms is 0.03 kcal/mol while the maximum error is 3.29 kcal/mol. Of the
3; 179 atoms, 46 have errors larger than 1 kcal/mol, and only two atoms have error larger than
2 kcal/mol. Figure 7.3 contains comparisons of per-atom energies resulting from the APBS
solver.

Figure 7.4 demonstrates an electric potential computation for a typical protein complex. Figures
7.4(a–c) depict electric potential a molecule using different resolution surfaces meshes. These
results can be compared to those produces by APBS shown in Figure 7.4(d). Figures 7.4(e–f)
depict the potential computed separately for the two components. Finally Figure 7.4(g) contains
the surface potential for the entire complex. An example of a pentamer (a complex of five
identical proteins) from the Cucumber Mosaic Virus is given in Figure 7.5. Each of the five
monomers in the pentamer contain 2,486 atoms. The full viral capsid contains 180 monomers
highlighting the need for scalable methods to process molecules with millions of atoms and
surfaces discretized with a comparable number of triangles.

We demonstrate the need for the derivative boundary formulation and a curved approximation
of the geometry by comparison to simpler alternatives. For this task we considered a set of 20
proteins from the ZDOCK benchmark. The derivative boundary integral formulation requires
fewer iterations to terminate and for a fixed tolerance εtol, gives a more accurate solution.
Specifically we compared the dBIE and nBIE formulations for a very modest GMRES
tolerance, εtol = 10−3. The results are tabulated in Table 7.6. The dBIE formulation requires
noticeably fewer GMRES iterations, but the dBIE formulation requires more computation time
because it requires 16 fast multipole calls per iterations compared to only four required in the
nBIE formulation. However, the advantage is of the dBIE formulation is seen by looking at
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the error in the energy value computed after termination: the dBIE energy values are very near
the final value for a large εtol while the nBIE energy values contain substantial error.

The curved representation of the geometry yields a similar, yet more dramatic, impact on the
energy computation: the computation requires more GMRES iterations while yielding much
poorer energy values.

Table 7.7 contains results of our algorithm on the 20 protein test set when varying the fast
multipole accuracy parameter Nfmm. Meaningful differences in the final energy computation
are only apparent for the lowest Nfmm value and even then these differences are small. In
practice, we observe that polarization energy computations are not very sensitive to the fast
multipole accuracy, especially when compared to the effects of the problem formulation and
the molecular surface selection.

8. Final Remarks
We have described a complete software pipeline for computing the electrostatic potential and
polarization energy of biomolecules based on atomic descriptions. Our software is based on
general purpose scientific computing codes PETSc and KIFMM3d, and performs favorably
against a specialized linearized Poisson-Boltzmann solver. Our experiments demonstrate the
benefits of the dBIE formulation of the Poisson-Boltzmann equation and a smooth
representation of the molecular surface when simulating actual proteins.

In a similar fashion to the polarization energy, interior and exterior electrostatic potential and
per-atom forces can also be computed as a post-process to the Poisson-Boltzmann solver.
Integral formulations of the interior and exterior electrostatic potential are given in [43] while
a derivation of the atomic forces can be found in [32]. Also worth consideration are more
detailed models of molecular electrostatics including an ion exclusion layer surrounding the
molecule and regions of differing dielectric constant. Altman et al. [1] formulate a system
including these features with respect to the nBIEs and a similar extension should apply to the
dBIE system. Moreover, the construction of the ASMS [80] should be useful in generating
parallel surfaces required by the ion exclusion layer by picking different level sets a single
function over the prismatic scaffold region.

Both PETSc and KIFMM3d are designed for parallel computation [74] and can be applied to
our solution approach. However, for a number of problems the Poisson-Boltzmann equation
must be solved many times; for example, the molecular docking problem requires polarization
energy to be computed over many potential docked configurations. In such cases it is often
more natural to find separate Poisson-Boltzmann solutions in parallel rather than parallelize
the individual computations.
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FIG. 3.1.
Molecular domain Ω for the boundary element formulation. Γ denotes the surface of molecular
interior Ω. Atomic centers zk are contained inside Ω while mobile ions in solution occur outside
Ω. x and y are used to denote points on the molecular surface and the surface normal are denoted
n ⃗(x) and n ⃗(y). In the discrete system, x is typically used to identify a collocation point while
y usually represents a quadrature point.
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FIG. 4.1.
Molecular model of a protein (PDB id:1PPE, 436 atoms). (a) The van der Waals surface of the
protein which models the molecule as a union of balls. (b) The variational molecular surface
gives a smooth approximation of the van der Waals surface. (c) The variational surface is then
triangulated and then decimated to produce a smaller mesh. This decimated mesh contains
1,000 triangles. (d) The algebraic spline molecular surface (ASMS) fits a smooth surface over
the triangular mesh. (e) Electrostatic potential computed using the 1,000 patch ASMS. (f)
Electrostatic potential using an ASMS with 74,812 patches. The surfaces in (e) and (f) are
colored by the electrostatic potential, ranging from −3.8 kbT/ec (red) to +3.8 kbT/ec (blue).
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FIG. 4.2.
(a) A single prismatic scaffold region for the triangle with vertices v1, v2, and v3 and associated
surface normals n ⃗1, n ⃗2, and n ⃗3. The surface patch Γ ̄i interpolates these normals. (b) The ASMS
is smooth between two scaffold patches Γ1 and Γ2.
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FIG. 4.3.
Singular quadrature rules. (a) Quadrature rule for a triangle with a weak singularity at a triangle
vertex. (b) When singularity occurs in the triangle interior, the triangle is divided into three
subtriangles at the singularity and then the scheme depicted in (a) can be applied to each
subtriangle.
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FIG. 7.1.
Scatter plots of polarization energy values computed for 212 proteins using different solvers
and mesh sizes.
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FIG. 7.2.
Per-atom polarization energy values are compared for nuclear transport factor 2 (PDB id:
1A2K). Polarization energy is computed using surface meshes with 2,000, 8,000, and 32,000
mesh vertices. The energy values for the high-resolution (32,000 vertex) mesh are given on
the horizontal axis.
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FIG. 7.3.
Per-atom polarization energy values are compared for nuclear transport factor 2 (PDB id:
1A2K). Polarization energy is compared between PB-CFMM and APBS.
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FIG. 7.4.
The electrostatic potential on molecular surface for the complex between nuclear transport
factor 2 and GTPase Ran (PDB id: 1A2K). In all cases, the potential is between −3.8 kbT/ec
(red) and +3.8 kbT/ec (blue). (a–c) Electric potential of the nuclear transport factor 2 molecule
using surface meshes containing 8,000, 32,000, and 113,998 vertices. (d) The surface potential
computed by APBS. (e–f) Electric potential of the two component molecules. (g) Electric
potential of the molecular complex.
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FIG. 7.5.
Pentamer of the Cucumber Mosaic Virus (PDB id: 1F15). Electrostatic potential for each of
the monomers computed separately (a) and as a single subunit (b). Energy (in kcal/mol) and
runtime (in seconds) for the combined subunit is given for several different resolution surface
meshes.
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TABLE 7.6

Comparison of nBIE and dBIE formulations on 20 example proteins. Error is computed with respect to the
numerical solutions on the same mesh using a much lower GMRES tolerance (10−7).

geometry
formulation

A-Spline
nBIE

A-Spline
dBIE

Linear
dBIE

median # iterations 40 17 *

max # iterations 47 26 *

median energy error 11.28 0.12 50.65

max energy error 17.55 0.46 61.92

*
Computation was halted after 100 GMRES iterations: each computation involving linear geometry reached 100 iterations.

SIAM J Sci Comput. Author manuscript; available in PMC 2011 June 7.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bajaj et al. Page 34

TABLE 7.7

Results of polarization energy computation on 20 example proteins when varying Nfmm. Error in the energy
computation is reported as a percentage.

Nfmm 2 4 6 8

median energy error 0.77 4.21 × 10−3 1.24 × 10−4 -

median compute time 316 493 737 1151
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