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Abstract
Because many illnesses show heterogeneous response to treatment, there is increasing interest in
individualizing treatment to patients [11]. An individualized treatment rule is a decision rule that
recommends treatment according to patient characteristics. We consider the use of clinical trial
data in the construction of an individualized treatment rule leading to highest mean response. This
is a difficult computational problem because the objective function is the expectation of a
weighted indicator function that is non-concave in the parameters. Furthermore there are
frequently many pretreatment variables that may or may not be useful in constructing an optimal
individualized treatment rule yet cost and interpretability considerations imply that only a few
variables should be used by the individualized treatment rule. To address these challenges we
consider estimation based on l1 penalized least squares. This approach is justified via a finite
sample upper bound on the difference between the mean response due to the estimated
individualized treatment rule and the mean response due to the optimal individualized treatment
rule.
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1. Introduction
Many illnesses show heterogeneous response to treatment. For example, a study on
schizophrenia [12] found that patients who take the same antipsychotic (olanzapine) may
have very different responses. Some may have to discontinue the treatment due to serious
adverse events and/or acutely worsened symptoms, while others may experience few if any
adverse events and have improved clinical outcomes. Results of this type have motivated
researchers to advocate the individualization of treatment to each patient [16,24,11]. One
step in this direction is to estimate each patient’s risk level and then match treatment to risk
category [5,6]. However, this approach is best used to decide whether to treat; otherwise it
assumes the knowledge of the best treatment for each risk category. Alternately, there is an
abundance of literature focusing on predicting each patient’s prognosis under a particular
treatment [10,28]. Thus an obvious way to individualize treatment is to recommend the
treatment achieving the best predicted prognosis for that patient. In general the goal is to use
data to construct individualized treatment rules that, if implemented in future, will optimize
the mean response.
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Consider data from a single stage randomized trial involving several active treatments. A
first natural procedure to construct the optimal individualized treatment rule is to maximize
an empirical version of the mean response over a class of treatment rules (assuming larger
responses are preferred). As will be seen, this maximization is computationally difficult
because the mean response of a treatment rule is the expectation of a weighted indicator that
is non-continuous and non-concave in the parameters. To address this challenge we make a
substitution. That is, instead of directly maximizing the empirical mean response to estimate
the treatment rule, we use a two-step procedure that first estimates a conditional mean and
then from this estimated conditional mean derives the estimated treatment rule. As will be
seen in Section 3, even if the optimal treatment rule is contained in the space of treatment
rules considered by the substitute two-step procedure, the estimator derived from the two-
step procedure may not be consistent. However if the conditional mean is modeled correctly,
then the two-step procedure consistently estimates the optimal individualized treatment rule.
This motivates consideration of rich conditional mean models with many unknown
parameters. Furthermore there are frequently many pretreatment variables that may or may
not be useful in constructing an optimal individualized treatment rule, yet cost and
interpretability considerations imply that fewer rather than more variables should be used by
the treatment rule. This consideration motivates the use of l1 penalized least squares (l1-
PLS).

We propose to estimate an optimal individualized treatment rule using a two step procedure
that first estimates the conditional mean response using l1-PLS with a rich linear model and
second, derives the estimated treatment rule from estimated conditional mean. For brevity,
throughout, we call the two step procedure the l1-PLS method. We derive several finite
sample upper bounds on the difference between the mean response to the optimal treatment
rule and the mean response to the estimated treatment rule. All of the upper bounds hold
even if our linear model for the conditional mean response is incorrect and to our knowledge
are, up to constants, the best available. We use the upper bounds in Section 3 to illuminate
the potential mismatch between using least squares in the two-step procedure and the goal of
maximizing mean response. The upper bounds in Section 4.1 involve a minimized sum of
the approximation error and estimation error; both errors result from the estimation of the
conditional mean response. We shall see that l1-PLS estimates a linear model that minimizes
this approximation plus estimation error sum among a set of suitably sparse linear models.

If the part of the model for the conditional mean involving the treatment effect is correct,
then the upper bounds imply that, although a surrogate two-step procedure is used, the
estimated treatment rule is consistent. The upper bounds provide a convergence rate as well.
Furthermore in this setting the upper bounds can be used to inform how to choose the tuning
parameter involved in the l1-penalty to achieve the best rate of convergence. As a by-
product, this paper also contributes to existing literature on l1-PLS by providing a finite
sample prediction error bound for the l1-PLS estimator in the random design setting without
assuming the model class contains or is close to the true model.

The paper is organized as follows. In Section 2, we formulate the decision making problem.
In Section 3, for any given decision, e.g. individualized treatment rule, we relate the
reduction in mean response to the excess prediction error. In Section 4, we estimate an
optimal individualized treatment rule via l1-PLS and provide a finite sample upper bound on
the maximal reduction in optimal mean response achieved by the estimated rule. In Section
5, we consider a data dependent tuning parameter selection criterion. This method is
evaluated using simulation studies and illustrated with data from the Nefazodone-CBASP
trial [13]. Discussions and future work are presented in Section 6.
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2. Individualized treatment rules
We use upper case letters to denote random variables and lower case letters to denote values
of the random variables. Consider data from a randomized trial. On each subject we have the
pretreatment variables X ∈ , treatment A taking values in a finite, discrete treatment space

, and a real-valued response R (assuming large values are desirable). An individualized
treatment rule (ITR) d is a deterministic decision rule from  into the treatment space .

Denote the distribution of (X, A, R) by P. This is the distribution of the clinical trial data; in
particular, denote the known randomization distribution of A given X by p(·|X). The
likelihood of (X, A, R) under P is then f0(x)p(a|x)f1(r|x, a), where f0 is the unknown density
of X and f1 is the unknown density of R conditional on (X, A). Denote the expectations with
respect to the distribution P by an E. For any ITR d :  → , let Pd denote the distribution
of (X, A, R) in which d is used to assign treatments. Then the likelihood of (X, A, R) under Pd

is f0(x)1a=d(x)f1(r|x, a). Denote expectations with respect to the distribution Pd by an Ed. The
Value of d is defined as V (d) = Ed(R). An optimal ITR, d0, is a rule that has the maximal
Value, i.e.

where the argmax is over all possible decision rules. The Value of d0, V(d0), is the optimal
Value.

Assume P[p(a|X) > 0] = 1 for all a ∈  (i.e. all treatments in  are possible for all values of
X a.s.). Then Pd is absolutely continuous with respect to P and a version of the Radon-
Nikodym derivative is dPd/dP = 1a=d(x)/p(a|x). Thus the Value of d satisfies

(2.1)

Our goal is to estimate d0, i.e. the ITR that maximizes (2.1), using data from distribution P.
When X is low dimensional and the best rule within a simple class of ITRs is desired,
empirical versions of the Value can be used to construct estimators [21,27]. However if the
best rule within a larger class of ITRs is of interest, these approaches are no longer feasible.

Define Q0(X,A) ≜ E(R|X,A) (Q0(X,A) is sometimes called the “Quality” of treatment a at
observation x). It follows from (2.1) that for any ITR d,

Thus V (d0) = E[Q0(X, d0(X))] ≤ E[maxa∈ Q0(X, a)]. On the other hand, by the definition of
d0,
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Hence an optimal ITR satisfies d0(X) ∈ arg maxa∈  Q0(X, a) a.s.

3. Relating the reduction in Value to excess prediction error
The above argument indicates that the estimated ITR will be of high quality (i.e. have high
Value) if we can estimate Q0 accurately. In this section, we justify this by providing a
quantitative relationship between the Value and the prediction error.

Because  is a finite, discrete treatment space, given any ITR, d, there exists a square
integrable function Q :  ×  → ℝ for which d(X) ∈ arg maxa Q(X, a) a.s. Let L(Q) ≜ E[R
− Q(X,A)]2 denote the prediction error of Q (also called the mean quadratic loss). Suppose
that Q0 is square integrable and that the randomization probability satisfies p(a|x) ≥ S−1 for
an S > 0 and all (x, a) pairs. Murphy [23] showed that

(3.1)

Intuitively, this upper bound means that if the excess prediction error of Q (i.e. E(R − Q)2 −
E(R − Q0)2) is small, then the reduction in Value of the associated ITR d (i.e. V(d0) − V(d))
is small. Furthermore the upper bound provides a rate of convergence for an estimated ITR.
For example, suppose Q0 is linear, that is Q0 = Φ(X, A)θ0 for a given vector-valued basis
function Φ on  ×  and an unknown parameter θ0. And Suppose we use a correct linear
model for Q0 (here “linear” means linear in parameters), say the model  = {Φ(X, A)θ : θ →
ℝdim(Φ)} or a linear model containing  with dimension of parameters fixed in n. If we
estimate θ by least squares and denote the estimator by θ ̂, then the prediction error of Q ̂ =
Φθ ̂ converges to L(Q0) at rate 1/n under mild regularity conditions. This together with
inequality (3.1) implies that the Value obtained by the estimated ITR, d̂(X) ∈ arg maxa Q ̂(X,
a), will converge to the optimal Value at rate at least .

In the following theorem, we improve this upper bound in two aspects. First, we show that
an upper bound with exponent larger than 1/2 can be obtained under a margin condition,
which implicitly implies a faster rate of convergence. Second, it turns out that the upper
bound need only depend on one term in the function Q; we call this the treatment effect
term, T. For any square integrable Q, the associated treatment effect term is defined as
T(X,A) ≜ Q(X,A) − E[Q(X,A)|X]. Note that d(X) ∈ arg maxa T(X, a) = arg maxa Q(X, a) a.s.
Similarly, the true treatment effect term is given by

(3.2)

T0(x, a) is the centered effect of treatment A = a at observation X = x; d0(X) ∈ arg maxa
T0(X, a).

Theorem 3.1—Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs. Assume
there exists some constants C > 0 and α ≥ 0 such that

(3.3)
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for all positive ε. Then for any ITR d :  →  and square integrable function Q : ×  →
ℝ such that d(X) ∈ arg maxa∈  Q(X, a) a.s., we have

(3.4)

and

(3.5)

where C′ = (22+3αS1+αC)1/(2+α).

The proof of Theorem 3.1 is in Appendix A.1.

Remarks
1. We set the second maximum in (3.3) to −∞ if for an x, T0(x, a) is constant in a and

thus the set \arg maxa∈  T0(x, a) = ∅.

2. Condition (3.3) is similar to the margin condition in classification [25,18,32]; in
classification this assumption is often used to obtain sharp upper bounds on the
excess 0 − 1 risk in terms of other surrogate risks [1]. Here

can be viewed as the “margin” of T0 at observation X = x. It measures the
difference in mean responses between the optimal treatment(s) and the best
suboptimal treatment(s) at x. For example, suppose X ~ U[−1, 1], P(A = 1|X) = P(A
= −1|X) = 1/2 and T0(X, A) = XA. Then the margin condition holds with C = 1/2 and
α = 1. Note the margin condition does not exclude multiple optimal treatments for
any observation x. However, when α > 0, it does exclude suboptimal treatments
that yield a conditional mean response very close to the largest conditional mean
response for a set of x with nonzero probability.

3. For C = 1, α = 0, Condition (3.3) always holds for all ε > 0; in this case (3.4)
reduces to (3.1).

4. The larger the α, the larger the exponent (1 + α)/(2 + α) and thus the stronger the
upper bounds in (3.4) and (3.5). However the margin condition is unlikely to hold
for all ε if α is very large. An alternate margin condition and upper bound are as
follows.

Suppose p(a|x) ≥ S−1 for all (x, a) pairs. Assume there is an ε > 0, such that

(3.6)

Then V(d0) − V(d) ≤ 4S[L(Q) − L(Q0)]/ε and V(d0) − V(d) ≤ 4SE(T − T0)2/ε.

The proof is essentially the same as that of Theorem 3.1 and is omitted. Condition
(3.6) means that T0 evaluated at the optimal treatment(s) minus T0 evaluated at the
best suboptimal treatment(s) is bounded below by a positive constant for almost all
X observations. If X assumes only a finite number of values, then this condition
always holds, because we can take ε to be the smallest difference in T0 when
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evaluated at the optimal treatment(s) and the suboptimal treatment(s) (note that if
T0(x, a) is constant for all a ∈  for some observation X = x, then all treatments are
optimal for that observation).

5. Inequality (3.5) cannot be improved in the sense that choosing T = T0 yields zero
on both sides of the inequality. Moreover an inequality in the opposite direction is
not possible, since each ITR is associated with many non-trivial T-functions. For
example, suppose X ~ U[−1, 1], P(A = 1|X) = P(A = −1|X) = 1/2 and T0(X, A) = (X
− 1/3)2A. The optimal ITR is d0(X) = 1 a.s. Consider T (X, A) = θA. Then
maximizing T(X, A) yields the optimal ITR as long as θ > 0. This means that the
left hand side (LHS) of (3.5) is zero, while the right hand side (RHS) is always
positive no matter what value θ takes.

Theorem 3.1 supports the approach of minimizing the estimated prediction error to estimate
Q0 or T0 and then maximizing this estimator over a ∈  to obtain an ITR. It is natural to
expect that even when the approximation space used in estimating Q0 or T0 does not contain
the truth, this approach will provide the best (highest Value) of the considered ITRs.
Unfortunately this does not occur due to the mismatch between the loss functions (weighted
0–1 loss and the quadratic loss). This mismatch is indicated by remark 5 above. More
precisely, note that the approximation space, say  for Q0, places implicit restrictions on the
class of ITRs that will be considered. In effect the class of ITRs is  = {d(X) ∈ arg maxa
Q(X, a) : Q ∈ }. It turns out that minimizing the prediction error may not result in the ITR
in  that maximizes the Value. This occurs when the approximation space  does not
provide a treatment effect term close to the treatment effect term in Q0. In the following toy
example, the optimal ITR d0 belongs to , yet the prediction error minimizer over  does
not yield d0.

A toy example
Suppose X is uniformly distributed in [−1, 1], A is binary {−1, 1} with probability 1/2 each
and is independent of X, and R is normally distributed with mean Q0(X, A) = (X −1/3)2A and
variance 1. It is easy to see that the optimal ITR satisfies d0(X) = 1 a.s. and V(d0) = 4/9.
Consider approximation space  = {Q(X, A; θ) = (1, X, A, XA)θ : θ ∈ ℝ4} for Q0. Thus the
space of ITRs under consideration is  = {d(X) = sign(θ3+θ4X) : θ3, θ4 ∈ ℝ}. Note that d0
∈  since d0(X) can be written as sign(θ3 + θ4X) for any θ3 > 0 and θ4 = 0. d0 is the best
treatment rule in . However, minimizing the prediction error L(Q) over  yields Q*(X, A)
= (4/9−2/3X)A. The ITR associated with Q* is d*(X) = arg maxa∈{−1,1} Q*(X, a) = sign(2/3

− X), which has lower Value than .

4. Estimation via l1-penalized least squares
To deal with the mismatch between minimizing the prediction error and maximizing the
Value discussed in the prior section, we consider a large linear approximation space  for
Q0. Since overfitting is likely (due to the potentially large number of pretreatment variables
and/or large approximation space for Q0) we use penalized least squares (see Section S.1 of
the supplementary material for further discussion of the overfitting problem). Furthermore
we use l1 penalized least squares (l1-PLS, [31]) as the l1 penalty does some variable
selection and as a result will lead to ITRs that are cheaper to implement (fewer variables to
collect per patient) and easier to interpret. See Section 6 for the discussion of other potential
penalization methods.

Let  represent i.i.d. observations on n subjects in a randomized trial. For
convenience, we use En to denote the associated empirical expectation (i.e.
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 for any real-valued function f on  ×  × ℝ). Let := {Q(X, A; θ)
= Φ(X, A) θ, θ ∈ ℝJ} be the approximation space for Q0, where φ(X, A) = (φ1(X, A), …, φJ
(X, A)) is a 1 by J vector composed of basis functions on  × , θ is a J by 1 parameter
vector, and J is the number of basis functions (for clarity here J will be fixed in n, see
Appendix A.2 for results with J increasing as n increases). The l1-PLS estimator of θ is

(4.1)

where σ ̂j = [Enφj(X, A)2]1/2, θj is the jth component of θ and λn is a tuning parameter that
controls the amount of penalization. The weights σ ̂j’s are used to balance the scale of
different basis functions; these weights were used in Bunea et al. [4] and van de Geer [33].
In some situations, it is natural to penalize only a subset of coefficients and/or use different
weights in the penalty; see Section S.2 of the supplementary material for required
modifications. The resulting estimated ITR satisfies

(4.2)

4.1. Performance guarantee for the l1-PLS
In this section we provide finite sample upper bounds on the difference between the optimal
Value and the Value obtained by the l1-PLS estimator in terms of the prediction errors
resulting from the estimation of Q0 and T0. These upper bounds guarantee that if Q0 (or T0)
is consistently estimated, the estimator of d0 will be consistent and will inherit a rate of
convergence from the rate of convergence of the estimator of Q0 (or T0). Perhaps more
importantly, the finite sample upper bounds provided below do not require the assumption
that either Q0 or T0 is consistently estimated. Thus each upper bound includes
approximation error as well as estimation error. The estimation error decreases with
decreasing model sparsity and increasing sample size. An “oracle” model for Q0 (or T0)
minimizes the sum of these two errors among suitably sparse linear models (see remark 2
after Theorem 4.3 for a precise definition of the oracle model). In finite samples, the upper
bounds imply that d̂n, the ITR produced by the l1-PLS method, will have Value roughly as if
the l1-PLS method detects the sparsity of the oracle model and then estimates from the
oracle model using ordinary least squares (see remark 3 below).

Define the prediction error minimizer θ* ∈ ℝJ by

(4.3)

For expositional simplicity assume that θ* is unique, and define the sparsity of θ ∈ ℝJ by its
l0 norm, ||θ||0 (see Appendix A.2 for a more general setting, where θ* is not unique and a
laxer definition of sparsity is used). As discussed above, for finite n, instead of estimating
θ*, the l1-PLS estimator θ ̂n estimates a parameter, , possessing small prediction error but
with controlled sparsity. For any bounded function f on  × , let ||f||∞ ≜ supx∈ ,a∈ |
f(x,a)|.  lies in the set of parameters Θn defined by
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(4.4)

where , and η, β and U are positive constants that will be defined in Theorem
4.1.

The first two conditions in (4.4) restrict Θn to θ’s with controlled distance in sup norm and
with controlled distance in prediction error via first order derivatives (note that

. The third condition restricts Θn to
sparse θ’s. Note that as n increases this sparsity requirement becomes laxer, ensuring that θ*

∈ Θn for sufficiently large n.

When Θn is non-empty,  is given by

(4.5)

Note that  is at least as sparse as θ* since by (4.3), 
for any θ such that ||θ||0 > ||θ*||0.

The following theorem provides a finite sample performance guarantee for the ITR
produced by l1-PLS method. Intuitively, this result implies that if Q0 can be well

approximated by the sparse linear representation  (so that both  and 
are small), then d̂n will have Value close to the optimal Value in finite samples.

Theorem 4.1—Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs and the
margin condition (3.3) holds for some C > 0, α ≥ 0 and all positive ε. Assume

1. the error terms εi = Ri − Q0(Xi, Ai), i = 1, …, n, are independent of (Xi, Ai), i …, n
and are i.i.d. with E(εi) = 0 and  for some c, σ2 > 0 for all l ≥ 2;

2. there exist finite, positive constants U and η such that maxj=1,…,J ||φj||∞/σj ≤ U and
||Q0 − Φθ*||∞ ≤ η; and

3. E[(φ1/σ1, …, φJ/σJ )T (φ1/σ1,…, φJ/σJ)] is positive definite, and the smallest
eigenvalue is denoted by β.

Consider the estimated ITR d̂n defined by (4.2) with tuning parameter

(4.6)

where k = 82 max{c, σ, η}. Let Θn be the set defined in (4.4). Then for any n ≥ 24U2 log(Jn)
and for which Θn is non-empty, we have, with probability at least 1 − 1/n, that
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(4.7)

where C′ = (22+3αS1+αC)1/(2+α).

The result follows from inequality (3.4) in Theorem 3.1 and inequality (4.10) in Theorem
4.3. Similar results in a more general setting can be obtained by combining (3.4) with
inequality (A.7) in Appendix A.2.

Remarks
1. Note that  is the minimizer of the upper bound on the RHS of (4.7) and that  is

contained in the set { : m ⊂ {1, …, J}}. Each  satisfies

; that is,  minimizes the prediction error
of the model indexed by the set m (i.e. model {Σj∈m φjθj : θj ∈ ℝ}) (within Θn). For
each , the first term in the upper bound in (4.7) (i.e. ) is the
approximation error of the model indexed by m within Θn. As in van de Geer [33],

we call the second term  the estimation error of the model indexed by
m. To see why, first put . Then, ignoring the log(n) factor, the
second term is a function of the sparsity of model m relative to the sample size, n.
Up to constants, the second term is a “tight” upper bound for the estimation error of
the OLS estimator from model m, where “tight” means that the convergence rate in
the bound is the best known rate. Note that  is the parameter that minimizes the
sum of the two errors over all models. Such a model (the model corresponding to

) is called an oracle model. The log(n) factor in the estimation error is the price
paid for not knowing the sparsity of the oracle model. By using the l1-PLS method,
we pay by a factor of log(n) in the estimation error and as an exchange, the l1-PLS
estimator behaves roughly as if it knew the sparsity of the oracle model and as if is
was estimated from the oracle model using OLS. Thus the log(n) factor can be
viewed as the price paid for not knowing the sparsity of the oracle model and thus
having to conduct model selection. See remark 2 after Theorem A.1 for the precise
definition of the oracle model and its relationship to .

2. Suppose λn = o(1). Then in large samples the estimation error term  is
negligible. In this case,  is close to θ*. When the model Φθ* approximates Q0
sufficiently well, we see that setting λn equal to its lower bound in (4.6) provides
the fastest rate of convergence of the upper bound to zero. More precisely, suppose
Q0 = Φθ* (i.e. L(Φθ*) − L((Q0) = 0). Then inequality (4.7) implies that V(d0) −
V(d̂n) ≤ Op ((log n/n)(1+α)/(2+α)). A convergence in mean result is presented in
Corollary 4.1.

3. In finite samples, the estimation error  is nonnegligible. The argument of
the minimum in the upper bound (4.7), , minimizes prediction error among
parameters with controlled sparsity. In remark 2 after Theorem 4.3, we discuss how
this upper bound is a tight upper bound for the OLS estimator from an oracle model
in the step-wise model selection setting. In this sense, inequality (4.7) implies that
decision rule produced by the l1-PLS method will have a reduction in Value
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roughly as if it knew the sparsity of the oracle model and were estimated from the
oracle model using OLS.

4. Assumptions 1–3 in Theorem 4.1 are employed to derive the finite sample
prediction error bound for the l1-PLS estimator θ ̂n defined in (4.1). Below we
briefly discuss these assumptions.

Assumption 1 implicitly implies that the error terms do not have heavy tails. This
condition is often assumed to show that the sample mean of a variable is
concentrated around its true mean with a high probability. It is easy to verify that
this assumption holds if each εi is bounded. Moreover, it also holds for some
commonly used error distributions that have unbounded support, such as the
normal or double exponential.

Assumption 2 is also used to show the concentration of the sample mean around the
true mean. It is possible to replace the boundedness condition by a moment
condition similar to Assumption 1. This assumption requires that all basis functions
and the difference between Q0 and its best linear approximation are bounded. Note
that we do not assume  to be a good approximation space for Q0. However, if Φθ*
approximates Q0 well, η will be small, which will result in a smaller upper bound in
(4.7). In fact, in the generalized result (Theorem A.1) we allow U and η to increase
in n.

Assumption 3 is employed to avoid collinearity. In fact, we only need

(4.8)

for θ, θ′ belonging to a subset of ℝJ (see Assumption A.3), where M0(θ) ≜ {j = 1,
…, J: θj ≠ 0}. Condition (4.8) has been used in van de Geer [33]. This condition is
also similar to the restricted eigenvalue assumption in Bickel et al. [3] in which E is
replaced by En, and a fixed design matrix is considered. Clearly, Assumption 3 is a
sufficient condition for (4.8). In addition, condition (4.8) is satisfied if the
correlation |Eφjφk|/(σjσk) is small for all k ∈ M0(θ), j ≠ k and a subset of θ’s (similar
results in a fixed design setting have been proved in Bickel et al. [3]. The condition
on correlation is also known as “mutual coherence” condition in Bunea at al. [4]).
See Bickel et al. [3] for other sufficient conditions for (4.8).

The above upper bound for V (d0) − V (d̂n) involves L(Φθ) − L(Q0), which measures how
well the conditional mean function Q0 is approximated by . As we have seen in Section 3,
the quality of the estimated ITR only depends on the estimator of the treatment effect term
T0. Below we provide a strengthened result in the sense that the upper bound depends only
on how well we approximate the treatment effect term.

First we identify terms in the linear model  that approximate T0 (recall that T0(X,A) ≜
Q0(X,A) − E[Q0(X,A)|X]). Without loss of generality, we rewrite the vector of basis
functions as Φ(X, A) = (Φ(1)(X), Φ(2)(X, A)), where Φ(1) = (φ1(X), …, φJ(1)(X)) is composed
of all components in Φ that do not contain A and Φ(2) = (φJ(1)+1(X, A), …, φJ (X, A)) is
composed of all components in Φ that contain A. Since A takes only finite values and the
randomization distribution p(a|x) is known, we can code A so that E[Φ(2)(X, A)T|X] = 0 a.s.
(see Section 5.2 and Appendix A.3 for examples). For any θ = (θ1, …, θJ)T ∈ ℝJ, denote θ(1)

= (θ1, …, θJ(1))T and θ(2) = (θJ(1)+1, …, θJ)T. Then Φ(1)θ(1) approximates E(Q0(X, A)|X) and
Φ(2)θ(2) approximates T0.
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The following theorem implies that if the treatment effect term T0 can be well approximated
by a sparse representation, then d̂n will have Value close to the optimal Value.

Theorem 4.2—Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs and the
margin condition (3.3) holds for some C > 0, α ≥ 0 and all positive ε. Assume E[Φ(2)(X,
A)T|X] = 0 a.s. Suppose Assumptions 1 – 3 in Theorem 4.1 hold. Let d̂n be the estimated
ITR with λn satisfying condition (4.6). Let Θn be the set defined in (4.4). Then for any n ≥
24U2 log(Jn) and for which Θn is non-empty, we have, with probability at least 1 − 1/n, that

(4.9)

where C′ = (22+3αS1+αC)1/(2+α).

The result follows from inequality (3.5) in Theorem 3.1 and inequality (4.11) in Theorem
4.3.

Remarks
1. Inequality (4.9) improves inequality (4.7) in the sense that it guarantees a small

reduction in Value of d̂n as long as the treatment effect term T0 is well
approximated by a sparse linear representation; it does not require that the entire
conditional mean function Q0 be well approximated. In many situations Q0 may be
very complex, but T0 could be very simple. This means that T0 is much more likely
to be well approximated as compared to Q0 (indeed, if there is no difference
between treatments, then T0 ≡ 0).

2. Inequality (4.9) cannot be improved in the sense that if there is no treatment effect
(i.e. T0 ≡ 0), then both sides of the inequality are zero. This result implies that
minimizing the penalized empirical prediction error indeed yields high Value (at
least asymptotically) if T0 can be well approximated.

The following asymptotic result follows from Theorem 4.2. Note that when E[Φ(2)(X, A)T|X]
= 0 a.s. (see Section 5 for examples), E(Φθ − Q0)2 = E(Φ(1)θ(1) − [Q0 − E(Q0|X)])2 +
E(Φ(2)θ(2) − T0)2. Thus the estimation of the treatment effect term T0 is asymptotically
separated from the estimation of the main effect term Q0 − E(Q0|X). In this case, Φ(2)θ(2),* is
the best linear approximation of the treatment effect term T0, where θ(2),* is the vector of
components in θ* corresponding to Φ(2).

Corollary 4.1—Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs and the
margin condition (3.3) holds for some C > 0, α ≥ 0 and all positive ε. Assume E[Φ(2)(X,
A)T|X] = 0 a.s. In addition, suppose Assumptions 1 – 3 in Theorem 4.1 hold. Let d̂n be the
estimated ITR with tuning parameter  for a constant k1 ≥ 82 max{c, σ, η}.
If T0(X, A) = Φ(2)θ(2),*, then

This result provides a guarantee on the convergence rate of V (d̂n) to the optimal Value.
More specifically, it means that if T0 is correctly approximated, then the Value of d̂n will

Qian and Murphy Page 11

Ann Stat. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



converge to the optimal Value in mean at rate at least as fast as (log n/n)(1+α)/(2+α) with
appropriate choice of λn.

4.2. Prediction error bound for the l1-PLS estimator
In this section we provide a finite sample upper bound for the prediction error of the l1-PLS
estimator θ ̂n. This result is needed to prove Theorem 4.1. Furthermore this result strengthens
existing literature on l1-PLS method in prediction. Finite sample prediction error bounds for
the l1-PLS estimator in the random design setting have been provided in Bunea et al. [4] for
quadratic loss, van de Geer [33] mainly for Lipschitz loss, and Koltchinskii [15] for a variety
of loss functions. With regards quadratic loss, Koltchinskii [15] requires the response Y is
bounded, while both Bunea et al. [4] and van de Geer [33] assumed the existence of a sparse
θ ∈ ℝJ such that E(Φθ − Q0)2 is upper bounded by a quantity that decreases to 0 at a certain
rate as n → ∞ (by permitting J to increase with n so Φ depends on n as well). We improve
the results in the sense that we do not make such assumptions (see Appendix A.2 for results
when Φ, J are indexed by n and J increases with n).

As in the prior sections, the sparsity of θ is measured by its l0 norm, ||θ||0 (see the Appendix
A.2 for proofs with a laxer definition of sparsity). Recall that the parameter,  defined in
(4.5) has small prediction error and controlled sparsity.

Theorem 4.3—Suppose Assumptions 1–3 in Theorem 4.1 hold. For any η1 ≥ 0, Let θ̂n be
the l1-PLS estimator defined by (4.1) with tuning parameter λn satisfying condition (4.6).
Let Θn be the set defined in (4.4). Then for any n ≥ 24U2 log(Jn) and for which Θn is non-
empty, we have, with probability at least 1 − 1/n, that

(4.10)

Furthermore, suppose E[Φ(2)(X, A)T|X] = 0 a.s. Then with probability at least 1 − 1/n,

(4.11)

The results follow from Theorem A.1 in Appendix A.2 with ρ = 0, γ= 1/8, η1 = η2 = η, t =
log 2n and some simple algebra (notice that Assumption 3 in Theorem 4.1 is a sufficient
condition for Assumptions A.3 and A.4).

Remarks: Inequality (4.11) provides a finite sample upper bound on the mean square
difference between T0 and its estimator. This result is used to prove Theorem 4.2. The
remarks below discuss how inequality (4.10) contributes to the l1-penalization literature in
prediction.

1. The conclusion of Theorem 4.3 holds for all choices of λn that satisfy (4.6).
Suppose λn = o(1), then  as n → ∞ (since ||θ||0 is bounded).
Then (4.10) implies that L(Φθ ̂n) − L(Φθ*) → 0 in probability. To achieve the best
rate of convergence, equal sign should be taken in (4.6).

2. Note that  minimizes . Below we demonstrate that the

minimum of  can be viewed as the approximation error
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plus a “tight” upper bound of the estimation error of an “oracle” in the stepwise
model selection framework (when “=” is taken in (4.6)). Here “tight” means the
convergence rate in the bound is the best known rate, and “oracle” is defined as
follows. Let m denote a non-empty subset of the index set {1, …, J}. Then each m
represents a model which uses a non-empty subset of {φ1, …, φJ} as basis
functions (there are 2J − 1 such subsets). Define

 and θ*,(m) = arg min{θ ∈ ℝJ:θj=0 for
all j∉ m}L(Φθ). In this setting, an ideal model selection criterion will pick model m*

such that .  is referred as an “oracle” in Massart [20].
Note that the excess prediction error of each  can be written as

where the first term is called the approximation error of model m and the second
term is the estimation error. It can be shown that [2] for each model m and xm > 0,
with probability at least 1 − exp(−xm),

under appropriate technical conditions, where |m| is the cardinality of the index set
m. To our knowledge this is the best rate known so far. Taking xm = log n + |m| log
J and using the union bound argument, we have with probability at least 1 − O(1/
n),

(4.12)

On the other hand, take λn so that condition (4.6) holds with “=”. (4.10) implies
that, with probability at least 1 − 1/n,

which is essentially (4.12) with the constraint of θ ∈ Θn. (The “constant” in the
above inequalities may take different values.) Since  minimizes the
approximation error plus a tight upper bound for the estimation error in the oracle
model, within θ ∈ Θn, we refer to  as an oracle.

3. The result can be used to emphasize that l1 penalty behaves similarly as the l0
penalty. Note that θ ̂n minimizes the empirical prediction error, En(R − Θθ)2, plus
an l1 penalty whereas θ**(un) minimizes the prediction error L(Φθ) plus an l0
penalty. We provide an intuitive connection between these two quantities. First
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note that En(R − Φθ)2 estimates L(Φθ) and σ ̂j estimates σj. We use “≈” to denote
this relationship. Thus

(4.13)

where θ ̂n,j is the jth component of θ ̂n. In Appendix B we show that for any θ ∈ Θn,

 is upper bounded by  up to a constant with a high
probability. Thus θ ̂n minimizes (4.13) and θ**(un) roughly minimizes an upper
bound of (4.13).

4. The constants involved in the theorem can be improved; we focused on readability
as opposed to providing the best constants.

5. A Practical Implementation and an Evaluation
In this section we develop a practical implementation of the l1-PLS method, compare this
method to two commonly used alternatives and lastly illustrate the method using the
motivating data from the Nefazodone-CBASP trial [13].

A realistic implementation of l1-PLS method should use a data-dependent method to select
the tuning parameter, λn. Since the primary goal is to maximize the Value, we select λn to
maximize a cross validated Value estimator. For any ITR d, it is easy to verify that E[(R − V
(d))1A=d(X)/p(A|X)] = 0. Thus an unbiased estimator of V (d) is

[21] (recall that the randomization distribution p(a|X) is known). We split the data into 10
roughly equal-sized parts; then for each λn we apply the l1-PLS based method on each 9
parts of the data to obtain an ITR, and estimate the Value of this ITR using the remaining
part; the λn that maximizes the average of the 10 estimated Values is selected. Since the
Value of an ITR is noncontinuous in the parameters, this usually results in a set of candidate
λn’s achieving maximal Value. In the simulations below the resulting λn is nonunique in
around 97% of the data sets. If necessary, as a second step we reduce the set of λn’s by
including only λn’s leading to the ITR’s using the least number of variables. In the
simulations below this second criterion effectively reduced the number of candidate λn’s in
around 25% of the data sets, however multiple λn’s still remained in around 90% of the data
sets. This is not surprising since the Value of an ITR only depends on the relative
magnitudes of parameters in the ITR. In the third step we select the λn that minimizes the
10-fold cross validated prediction error estimator from the remaining candidate λn’s; that is,
minimization of the empirical prediction error is used as a final tie breaker.

5.1. Simulations
A first alternative to l1-PLS is to use ordinary least squares (OLS). The estimated ITR is
d̂OLS ∈ arg maxa Φ(X, a)θ ̂OLS where θ ̂OLS is the OLS estimator of θ. A second alternative is
called “prognosis prediction” [14]. Usually this method employees multiple data sets, each
of which involves one active treatment. Then the treatment that is associated with the best
predicted prognosis [14] is selected. We implement this method by estimating E(R|X, A = a)
via least squares with l1 penalization for each treatment group (each a ∈ ) separately. The
tuning parameter involved in each treatment group is selected by minimizing the 10-fold
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cross-validated prediction error estimator. The resulting ITR satisfies d̂PP (X) ∈ arg maxa∈
Ê(R|X, A = a) where the subscript “PP” denotes prognosis prediction.

For simplicity we consider binary A. All three methods use the same number of data points
and the same number of basis functions but use these data points/basis functions differently.
l1-PLS and OLS use all J basis functions to conduct estimation with all n data points
whereas the prognosis prediction method splits the data into the two treatment groups and
uses J/2 basis functions to conduct estimation with the n/2 data points in each of the two
treatment groups. To ensure the comparison is fair across the three methods, the
approximation model for each treatment group is consistent with the approximation model
used in both l1-PLS and OLS (e.g. if Q0 is approximated by (1, X, A, XA)θ in l1-PLS and
OLS, then in prognosis prediction we approximate E(R|X, A = a) by (1, X)θPP for each
treatment group). We do not penalize the intercept coefficient in either prognosis prediction
or l1-PLS.

The three methods are compared using two criteria: 1) Value maximization; and 2)
simplicity of the estimated ITRs (measured by the number of variables/basis functions used
in the rule).

We illustrate the comparison of the three methods using 4 examples selected to reflect three
scenarios; please see Section S.3 of the supplementary material for 4 further examples.

1. There is no treatment effect (i.e. Q0 is constructed so that T0 = 0; example 1). In
this case, all ITRs yield the same Value. Thus the simplest rule is preferred.

2. There is a treatment effect and the treatment effect term T0 is correctly modeled
(example 4 for large n, and example 2). In this case, minimizing the prediction
error will yield the ITR that maximizes the Value.

3. There is a treatment effect and the treatment effect term T0 is misspecified
(example 4 for small n, and example 3). In this case, there might be a mismatch
between prediction error minimization and Value maximization.

The examples are generated as follows. The treatment A is generated uniformly from {−1,
1} independent of X and the response R. The response R is normally distributed with mean
Q0(X, A). In examples 1–3, X ~ U [−1, 1]5 and we consider three simple examples for Q0. In
example 4, X ~ U [0, 1] and we use a complex Q0, where Q0(X, 1) and Q(X, −1) are similar
to the blocks function used in Donoho and Johnstone [8]. Further details of the simulation
design are provided in Appendix A.3.

We consider two types of approximation models for Q0. In examples 1–3, we approximate
Q0 by (1, X, A, XA)θ. In example 4, we approximate Q0 by Haar wavelets. The number of
basis functions may increase as n increases (we index J, Φ and θ* by n in this case). Plots for
Q0(X, A) and the associated best wavelet fits  are provided in Figure 1.

For each example, we simulate data sets of sizes n = 2k for k = 5, …, 10. 1000 data sets are
generated for each sample size. The Value of each estimated ITR is evaluated via Monte
Carlo using a test set of size 10, 000. The Value of the optimal ITR is also evaluated using
the test set.

Simulation results are presented in Figure 2. When the approximation model is of high
quality, all methods produce ITRs with similar Value (see examples 1, 2 and example 4 for
large n). However, when the approximation model is poor, the l1-PLS method may produce
highest Value (see example 3). Note that in example 3 settings in which the sample size is
small, the Value of the ITR produced by l1-PLS method has larger median absolute
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deviation (MAD) than the other two methods. One possible reason is that due to the
mismatch between maximizing the Value and minimizing the prediction error, the Value
estimator plays a strong role in selecting λn. The non-smoothness of the Value estimator
combined with the mismatch results in very different λns and thus the estimated decision
rules vary greatly from data set to data set in this example. Nonetheless, the l1-PLS method
is still preferred after taking the variation into account; indeed l1-PLS produces ITRs with
higher Value than both OLS and PP in around 46%, 55% and 67% in data sets of sizes n =
32, 64 and 128, respectively. Furthermore, in general the l1-PLS method uses much fewer
variables for treatment assignment than the other two methods. This is expected because the
OLS method does not have variable selection functionality and the PP method will use all
variables that are predictive of the response R whereas the use of the Value in selecting the
tuning parameter in l1-PLS discounts variables that are only useful in predicting the response
(and less useful in selecting the best treatment).

5.2. Nefazodone-CBASP trial example
The Nefazodone-CBASP trial was conducted to compare the efficacy of several alternate
treatments for patients with chronic depression. The study randomized 681 patients with
non-psychotic chronic major depressive disorder (MDD) to either Nefazodone, cognitive
behavioral-analysis system of psychotherapy (CBASP) or the combination of the two
treatments. Various assessments were taken throughout the study, among which the score on
the 24-item Hamilton Rating Scale for Depression (HRSD) was the primary outcome. Low
HRSD scores are desirable. See Keller et al. [13] for more detail of the study design and the
primary analysis.

In the data analysis, we use a subset of the Nefazodone-CBASP data consisting of 656
patients for whom the response HRSD score was observed. In this trial, pairwise
comparisons show that the combination treatment resulted in significantly lower HRSD
scores than either of the single treatments. There was no overall difference between the
single treatments.

We use l1-PLS to develop an ITR. In the analysis the HRSD score is reverse coded so that
higher is better. We consider 50 pretreatment variables X = (X1,…, X50). Treatments are
coded using contrast coding of dummy variables A = (A1, A2), where A1 = 2 if the
combination treatment is assigned and −1 otherwise and A2 = 1 if CBASP is assigned, −1 if
nefazodone and 0 otherwise. The vector of basis functions, Φ(X, A), is of the form (1, X, A1,
XA1, A2, XA2). So the number of basis functions is J = 153. As a contrast, we also consider
the OLS method and the PP method (separate prognosis prediction for each treatment). The
vector of basis functions used in PP is (1, X) for each of the three treatment groups. Neither
the intercept term nor the main treatment effect terms in l1-PLS or PP is penalized (see
Section S.2 of the supplementary material for the modification of the weights σ ̂j used in
(4.1)).

The ITR given by the l1-PLS method recommends the combination treatment to all (so none
of the pretreatment variables enter the rule). On the other hand, the PP method produces an
ITR that uses 29 variables. If the rule produced by PP were used to assign treatment for the
656 patients in the trial, it would recommend the combination treatment for 614 patients and
nefazodone for the other 42 patients. In addition, the OLS method will use all the 50
variables. If the ITR produced by OLS were used to assign treatment for the 656 patients in
the trial, it would recommend the combination treatment for 429 patients, nefazodone for the
145 patients and CBASP for the other 82 patients.
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6. Discussion
Our goal is to construct a high quality ITR that will benefit future patients. We considered
an l1-PLS based method and provided a finite sample upper bound for V (d0) − V (d̂n), the
excess Value of the estimated ITR.

The use of an l1 penalty allows us to consider a large model for the conditional mean
function Q0 yet permits a sparse estimated ITR. In fact, many other penalization methods
such as SCAD [9] and l1 penalty with adaptive weights (adaptive Lasso; [37]) also have this
property. We choose the non-adaptive l1 penalty to represent these methods. Interested
readers may justify other PLS methods using similar proof techniques.

The high probability finite sample upper bounds (i.e. (4.7) and (4.9)) cannot be used to
construct a prediction/confidence interval for V (d0) − V (d̂n) due to the unknown quantities
in the bound. How to develop a tight computable upper bound to assess the quality of d̂n is
an open question.

We used cross validation with Value maximization to select the tuning parameter involved
in the l1-PLS method. As compared to the OLS method and the PP method, this method may
yield higher Value when T0 is misspecified. However, since only the Value is used to select
the tuning parameter, this method may produce a complex ITR for which the Value is only
slightly higher than that of a much simpler ITR. In this case, a simpler rule may be preferred
due to the interpretability and cost of collecting the variables. Investigation of a tuning
parameter selection criterion that trades off the Value with the number of variables in an ITR
is needed.

This paper studied a one stage decision problem. However, it is evident that some diseases
require time-varying treatment. For example, individuals with a chronic disease often
experience a waxing and waning course of illness. In these settings the goal is to construct a
sequence of ITRs that tailor the type and dosage of treatment through time according to an
individual’s changing status. There is an abundance of statistical literature in this area
[29,30,22,23,26,17,34,35]. Extension of the least squares based method to the multi-stage
decision problem has been presented in Murphy [23]. The performance of l1 penalization in
this setting is unclear and worth investigation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A.1. Proof of Theorem 3.1
For any ITR d:  → , denote ΔTd(X) ≜ maxa∈ T0(X, a) − T0(X, d(X)). Using similar
arguments to that in Section 2, we have V (d0) − V (d) = E(ΔTd). If V (d0) − V (d) = 0, then
(3.4) and (3.5) automatically hold. Otherwise, E(ΔTd)2 ≥ (EΔTd)2 > 0. In this case, for any ε
> 0, define the event

Then ΔTd ≤ (ΔTd)2/ε on the event . This together with the fact that ΔTd ≤ (ΔTd)2/ε + ε/4
implies
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where the last inequality follows from the margin condition (3.3). Choosing ε = (4E(ΔTd)2/
C)1/(2+α) to minimize the above upper bound yields

(A.1)

Next, for any d and Q such that d(X) ∈ maxa∈  Q(X, a) and decomposition Q(X, A) into
W(X) + T(X, A),

where the last inequality follows from the fact that neither |maxa T0(X, a)− maxa T (X, a)|
nor |T (X, d(X))−T0(X, d(X))| is larger than maxa |T (X, a)− T0(X, a)|. Since p(a|x) ≥ S−1 for
all (x, a) pairs, we have

(A.2)

Inequality (3.5) follows by substituting (A.2) into (A.1) and setting W(X, A) = E[Q(X, A)|X].
Inequality (3.4) follows by setting W(X) = 0 and noticing that ΔTd(X) = maxa∈  Q0(X, a) −
Q0(X, d(X)).

A.2. Generalization of Theorem 4.3
In this section, we present a generalization of Theorem 4.3 where J may depend on n and the
sparsity of any θ ∈ ℝJ is measured by the number of “large” components in θ as described
in Zhang and Huang [36]. In this case, J, F and the prediction error minimizer θ* are denoted
as Jn, Φn and , respectively. All relevant quantities and assumptions are re-stated below.

Let |M| denote the cardinality of any index set M ⊆ {1,…, Jn}. For any θ ∈ ℝJn and constant
ρ ≥ 0, define

Then Mρλn (θ) is the smallest index set that contains only “large” components in θ. |Mρλn (θ)|
measures the sparsity of θ. It is easy to see that when ρ = 0, M0(θ) is the index set of nonzero
components in θ and |M0(θ)| = ||θ||0. Moreover, Mρλn (θ) is an empty set if and only if θ = 0.

Let [ ] be the set of most sparse prediction error minimizers in the linear model, i.e.
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(A.3)

Note that [ ] depends on ρλn.

To derive the finite sample upper bound for L(Φnθ ̂n), we need the following assumptions.

Assumption A.1
The error terms εi, i = 1,…, n are independent of (Xi, Ai), i = 1,…, n and are i.i.d. with E(εi)
= 0 and  for some c, σ2 > 0 for all l ≥ 2.

Assumption A.2
For all n ≥ 1,

a. there exists an 1 ≤ Un < ∞ such that maxj=1,…,Jn ||φj||∞/σj ≤ Un, where

.

b. there exists an 0 < η1,n < ∞, such that .

For any 0 ≤ γ < 1/2, η2,n ≥ 0 (which may depend on n) and tuning parameter λn, define

Assumption A.3
For any n ≥ 1, there exists a βn > 0 such that

for all , θ̃ ∈ ℝJn and .

When  a.s. (  is defined in Section 4.1), we need an extra assumption
to derive the finite sample upper bound for the mean square error of the treatment effect

estimator,  (recall that T0(X,A) ≜ Q0(X, A) − E[Q0(X,A)|X]).

Assumption A.4
For any n ≥ 1, there exists a βn > 0 such that
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for all , θ̃ ∈ ℝJn and ,
where

is the smallest index set that contains only large components in θ(2).

Note that here for simplicity, we assume that Assumptions A.3 and A.4 hold with the same
value of βn. And with out loss of generality, we can always choose a small enough βn so that
ρβn ≤ 1 for a given ρ.

For any t > 0, define

(A.4)

Note that we allow Un, η1,n, η2,n and  to increase as n increases. However, if those
quantities are small, the upper bound in (A.7) will be tighter.

Theorem A.1
Suppose Assumptions A.1 and A.2 hold. For any given 0 ≤ γ < 1/2, η2,n > 0, ρ ≥ 0 and t > 0,
let θ̂n be the l1-PLS estimator defined in (4.1) with tuning parameter

(A.5)

Suppose Assumption A.3 holds with ρβn ≤ 1. Let Θn be the set defined in (A.4) and assume
Θn is non-empty. If

(A.6)

then with probability at least , we have
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(A.7)

where  and Kn = [40γ(12βnρ + 2γ + 5)]/[(1 − 2γ)(2γ +
19)] + 130(12βnρ + 2γ + 5)2/[9(2γ + 19)2].

Furthermore, suppose  a.s. If Assumption A.4 holds with ρβn ≤ 1, then
with probability at least , we have

where .

Remark
1. Note that Kn is upper bounded by a constant under the assumption βnρ ≤ 1. In the

asymptotic setting when n → ∞ and Jn → ∞, (A.7) implies that with probability
tending to 1,  if (i) , (ii) 

and  for some sufficiently small positive constants
k1 and k2, and (iii)  for a sufficiently large
constant k3, where  (take t = log Jn).

2. Below we briefly discuss Assumptions A.2 – A.4.

Assumption A.2 is very similar to Assumption 2 in Theorem 4.1 (which is used to
prove the concentration of the sample mean around the true mean), except that Un
and η1,n may increase as n increases. This relaxation allows the use of basis
functions for which the sup norm maxj ||φj||∞ is increasing in n (e.g. the wavelet
basis used in example 4 of the simulation studies).

Assumption A.3 is a generalization of condition (4.8) (which has been discussed in
remark 4 following Theorem Theorem 4.1)) to the case where Jn may increase in n
and the sparsity of a parameter is measured by the number of “large” components
as described at the beginning of this section. This condition is used to avoid the
collinearity problem. It is easy to see that when ρ = 0 and βn is fixed in n, this
assumption simplifies to condition (4.8).

Assumption A.4 puts a strengthened constraint on the linear model of the treatment
effect part, as compared to Assumption A.3. This assumption, together with
Assumption A.3, is needed in deriving the upper bound for the mean square error
of the treatment effect estimator. It is easy to verify that if  is positive
definite, then both A.3 and A.4 hold. Although the result is about the treatment
effect part, which is asymptotically independent of the main effect of X (when

 a.s.), we still need Assumption A.3 to show that the cross
product term  is upper bounded by a
quantity converging to 0 at the desired rate. We may use a really poor model for the
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main effect part E(Q0(X, A)|X) (e.g. ), and Assumption A.4 implies
Assumption A.3 when ρ = 0. This poor model only effects the constants involved in
the result. When the sample size is large (so that λn is small), the estimated ITR will
be of high quality as long as T0 is well approximated.

Proof
For any θ ∈ Θn, define the events

Then there exists a  such that

where the first equality follows from the fact that E[(R − Φnθo)φj] = 0 for any  for j
= 1,…, Jn and the last inequality follows from the definition of .

Based on Lemma A.1 below, we have that on the event Ω1 ∩ Ω2(θ) ∩Ω3(θ),

Similarly, when , by Lemma A.2, we have that on the event Ω1 ∩ Ω2(θ)
∩ Ω3(θ),

The conclusion of the theorem follows from the union probability bounds of the events Ω1,
Ω2(θ) and Ω3(θ) provided in Lemmas A.3, A.4 and A.5.

Below we state the lemmas used in the proof of Theorem A.1. The proofs of the lemmas are
given in Section S.3 of the supplementary material.
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Lemma A.1
Suppose Assumption A.3 holds with ρβn ≤ 1. Then for any θ ∈ Θn, on the event Ω1 ∩ Ω2(θ)
∩ Ω3(θ), we have

(A.8)

and

(A.9)

Remark—This lemma implies that θ ̂n is close to each θ ∈ Θn on the event Ω1 ∩ Ω2(θ) ∩
Ω3(θ). The intuition is as follows. Since θ ̂n minimizes (4.1), the first order conditions imply
that maxj |En(R −Φnθ ̂n)φj/σ ̂j| ≤ λn/2. Similar property holds for θ on the event Ω1 ∩ Ω3(θ).
Assumption A.3 together with event Ω2(θ) ensures that there is no collinearity in the n × Jn
design matrix . These two aspects guarantee the closeness of θ ̂n to θ.

Lemma A.2

Suppose  a.s. and Assumption A.4 holds with ρβn ≤ 1. Then for any θ ∈
Θn, on the event Ω1 ∩ Ω2(θ) ∩ Ω3(θ), we have

(A.10)

and

(A.11)

Lemma A.3

Suppose Assumption A.2(a) and inequality (A.6) hold. Then , where
.

Lemma A.4
Suppose Assumption A.2(a) holds. Then for any t > 0 and θ ∈ Θn, P({Ω2(θ)}C) ≤ 2 exp(−t)/
3.

Lemma A.5
Suppose Assumptions A.1 and A.2 hold. For any t > 0, if λn satisfies condition (A.5), then
for any θ ∈ Θn, we have P({Ω3(θ)}C) ≤ 2 exp(−t)/3.

Qian and Murphy Page 25

Ann Stat. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A.3. Design of simulations in Section 5.1
In this section, we present the detailed simulation design of the examples used in Section
5.1. These examples satisfy all assumptions listed in the Theorems (it is easy to verify that
for examples 1–3. Validity of the assumptions for example 4 is addressed in the remark after
example 4). In addition, Θn defined in (4.4) is non-empty as long as n is sufficiently large
(note that the constants involved in Θn can be improved and are not that meaningful. We
focused on a presentable result instead of finding the best constants).

In examples 1 – 3, X = (X1,…, X5) is uniformly distributed on [−1, 1]5. The treatment A is
then generated independently of X uniformly from {−1, 1}. Given X and A, the response R is
generated from a normal distribution with mean Q0(X, A) = 1+2X1 +X2 +0.5X3 +T0(X, A)
and variance 1. We consider the following three examples for T0.

1. T0(X, A) = 0 (i.e. there is no treatment effect).

2. T0(X, A) = 0.424(1 − X1 − X2)A.

3. T0(X, A) = 0.446sign(X1)(1 − X1)2A.

Note that in each example T0(X, A) is equal to the treatment effect term, Q0(X, A) − E[Q0(X,
A)|X]. We approximate Q0 by  = {(1, X, A, XA)θ: θ ∈ ℝ12}. Thus in examples 1 and 2 the
treatment effect term T0 is correctly modeled, while in example 3 the treatment effect term
T0 is misspecified.

The parameters in examples 2 and 3 are chosen to reflect a medium effect size according to
Cohen’s d index. When there are two treatments, the Cohen’s d effect size index is defined
as the standardized difference in mean responses between two treatment groups, i.e.

Cohen [7] tentatively defined the effect size as “small” if the Cohen’s d index is 0.2,
“medium” if the index is 0.5 and “large” if the index is 0.8.

In example 4, X is uniformly distributed on [0, 1]. Treatment A is generated independently
of X uniformly from {−1, 1}. The response R is generated from a normal distribution with
mean Q0(X, A) and variance 1, where

, and ϑ’s and u’s are parameters
specified in (A.12). The effect size is small.

(A.12)

We approximate Q0 by Haar wavelets
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where h0(x) = 1x∈[0,1] and hlk(x) = 2l/2 (12lx∈[k+1/2,k+1) − 12lx∈[k,k+1/2)) for l = 0,…, l̄n. We
choose l̄n = ⌊3log2 n/4⌋ − 2. For a given l and sample , k takes integer values
from ⌊2l mini Xi⌋ to ⌈2l maxi Xi⌉ − 1. Then Jn = 2⌊3 log2n/4⌋ ≤ n3/4.

Remark
In example 4, we allow the number of basis functions Jn to increase with n. The
corresponding theoretical result can be obtained by combining Theorem 3.1 and Theorem A.
1. Below we demonstrate the validation of the assumptions used in the theorems.

Theorem 3.1 requires that the randomization probability p(a|x) ≥ S−1 for a positive constant
for all (x, a) pairs and the margin condition (3.3) or (3.6) holds. According the generative
model, we have that p(a|x) = 1/2 and condition (3.6) holds.

Theorem A.1 requires Assumptions A.1 - Assumptions A.4 hold and Θn defined in (A.4) is
non-empty. Since we consider normal error terms, Assumption A.1 holds. Note that the
basis functions used in Haar wavelet are orthogonal. It is also easy to verify that
Assumptions A.3 and A.4 hold with βn = 1 and Assumption A.2 holds with Un = n3/8/2 and

 (since each
). Since Q0 is piece-wise constant, we can

also verify that . Thus for sufficiently large n, Θn is non-empty and (A.6)
holds. The RHS of (A.5) converges to zero as n → ∞.
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Fig 1.
Plots for: the conditional mean function Q0(X; A) (left), Q0(X; A) and the associated best
wavelet fit when Jn = 8 (middle), and Q0(X; A) and the associated best wavelet fit when Jn =
128 (right) (example 4).
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Fig 2.
Comparison of the l1-PLS based method with the OLS method and the PP method
(examples 1 – 4): Plots for medians and median absolute deviations (MAD) of the Value of
the estimated decision rules (top panels) and the number of variables (terms) needed for
treatment assignment (including the main treatment effect term, bottom panels) over 1000
samples versus sample size on the log scale. The black dash-dotted line in each plot on the
first row denotes the Value of the optimal treatment rule, V (d0), for each example. (n = 32;
64; 128; 256; 512; 1024. The corresponding numbers of basis functions in example 4 are Jn
= 8; 16; 32; 64; 64; 128).
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