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Abstract

Effective component relabeling in Bayesian analyses of mixture models is critical to the routine
use of mixtures in classification with analysis based on Markov chain Monte Carlo methods. The
classification-based relabeling approach here is computationally attractive and statistically
effective, and scales well with sample size and number of mixture components concordant with
enabling routine analyses of increasingly large data sets. Building on the best of existing methods,
practical relabeling aims to match data:component classification indicators in MCMC iterates with
those of a defined reference mixture distribution. The method performs as well as or better than
existing methods in small dimensional problems, while being practically superior in problems with
larger data sets as the approach is scalable. We describe examples and computational benchmarks,
and provide supporting code with efficient computational implementation of the algorithm that
will be of use to others in practical applications of mixture models.
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1 Introduction

Component label switching has long been known to be a practically challenging problem in
Bayesian analyses of mixture models using MCMC posterior simulation methods (e.g.
Lavine and West, 1992; West, 1997; Stephens, 2000; Jasra et al., 2005; Yao and Lindsay,
2009). The problem arises due to the inherent lack of practical model identification under
priors that treat the parameters of components exchangeably. In a mixture model with k
components, these priors and hence the resulting posteriors for the set of parameters of the
mixture components are symmetric with respect to permutations of the mixture component
labels 1,..., k (e.g. West, 1997). As a result, model fitting using nowadays standard MCMC
methods suffer from label switching as the posterior simulation algorithm explores the k!
symmetric regions; the resulting posterior simulation outputs lose interpretation without
some relabeling intervention to enforce practical identification.

As we address problems in increasing dimension and with increasingly large sample sizes
using mixture models for classification and discrimination (e.g. Suchard et al., 2010), the
need for computationally efficient as well as statistically effective strategies for relabeling of
MCMC output streams is increasingly pressing. For example, biological studies using flow
cytometry methods (e.g. Boedigheimer and Ferbas, 2008; Chan et al., 2008) generate sample
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sizes n ~ 104 — 107 from distributions in p ~ 5 — 20 dimensions and in which the
distributional structure can require k ~ 50 — 00s of mixture components. These data sets are
routinely generated in many contexts in experimental biology, and posterior samplers
require effective relabeling strategies that can be executed in real time.

The mixture model context is general but for focus here we use the example of normal
mixture components. In this example, we have a random sample of size n from a p—
dimensional, k-component normal mixture

k k
g(.x|®):znj1vj(.\-w i Zi) with Zn =1
J=1 ’ J=1

where © = {01k} with 0j = {m, pj, %;} for each j = 1 : k. The likelihood function based on the
observed data set is invariant under permutations of the mixture component labels 1 : k,
leading to k! regions in ® space that are reflections of each other under permutations of
component indices, denoted by 1 : k — o(1 : k). Under commonly used exchangeable priors
on the 0 ; the same is true of the posterior. With the popular priors based on Dirichlet
process models (MacEachern and Mller, 1998a,b) this symmetry is reduced as the =; are no
longer exchangeable, although the inherent identification problem and the resulting random
switching of component labels through MCMC iterates remains.

Stephens (2000) pioneered relabeling strategies based on decision analytic considerations,
and his methods can work well in situations with a relatively small number of components
and samples. These and a number of later strategies were reviewed in Jasra et al. (2005),
while Lau and Green (2006) discuss related strategies in a more general mixture modeling
context. More recently, Yao and Lindsay (2009) presented successful results based on
matching posterior modes between successive iterates, but the method requires subsidiary
iterative computations at every posterior sampled © in order to identify local modes and
then match between iterates. Unfortunately, none of these methods scales well with the
number of components or the number of observations; as computations required for
relabeling can dominate those required for the basic MCMC calculations themselves, these
existing approaches quickly become unattractive from a practical viewpoint.

The new strategy developed here builds on these previous ideas for statistical efficacy while
being computationally very efficient, scalable with sample size and complexity (in terms of
the number of components) and unaffected computationally by dimension. We summarize
the approach and provide examples and computational benchmarks. Code implementing the
relabeling method is available as free-standing software as well as being integrated into
efficient MCMC code for mixture model analyses; the implementation uses serial and
distributed processing with both CGP and GPU implementations.

2 Classification-Based Relabeling in Gibbs Sampling

In widely-used Gibbs sampling approaches to posterior simulation, each MCMC iterate
generates a realization of the set of n data:component classification indicators, or
configuration indicators, allocating each observation x; to a specific normal component.
That is, for each observation x;; indicator z; = j corresponds to Xj ~ N(y;, £ j). MCMC and
Bayesian EM computations for MAP estimation rely heavily on these indicators. In the
MCMC analysis, the imputed values are drawn from complete conditionals with Pr(z; = j|x;,
®) = mj(xj) where mj(x) & mN(X|yj, Z;)/9(x|®) for each j=1:k.
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Stephens (2000) considers a post-processing algorithm to relabel all of the MCMC samples
simultaneously while aiming to minimize a predetermined loss function. While this
algorithm is reasonable for moderate k and n, the computational complexity grows very
quickly. Stephens also considers an online version where the current MCMC iterate is
matched with a cumulative mean. This can be an effective approach. However, we have
found that high correlations in MCMC streams makes matching with the previous iteration a
poor strategy, and it can also be difficult to identify sets of samples for which no label
switching had occurred, an ingredient of the algorithm. Moreover, computation becomes
seriously demanding beyond rather small problems.

2.1 Reference Mixture Distribution

Building on the basic idea of Stephens, we focus on the essential role of data:component
match in mixture models based on the imputed integer configuration indicators z;
themselves. Using the indicators yields immediate computational benefits. Coupled with this
focus is the key concept of using a pre-evaluated reference mixture distribution to define the
comparison basis for relabeling. This idea, introduced to alleviate the impact of
autocorrelation and subjectivity issues, suggests comparing the labels at a current MCMC
iterate with those of a specific mixture g(x|®R) at a reference parameter set ®R. Ideally, @R
is taken as a posterior mode identified by modal search such as Bayesian EM. To aid in
identification of local posterior modes, a very effective and easily implemented strategy is to
run multiple, long MCMC chains, and initiate local EM-style search at multiple resulting
posterior samples in order to explore the posterior and avoid local traps. EM-style modal
search for Bayesian mixture models is standard; see Lin et al. (2010) for the extension to
Bayesian mixtures using truncated Dirichlet process (TDP) priors. The resulting highest
posterior mode so identified (whether or not it represents the actual global posterior mode)
defines a reference ®R. Note that the identification issue due to label switching is of no
relevance whatsoever in this strategy.

2.2 Mixture Density Summary

Given a current MCMC iterate ®, a metric is needed to measure match/mismatch relative to
the reference @R that will underlie relabeling. The two key desiderata are that: a metric (i)
focuses on configuration indicators as canonical ingredients, and that (ii) the resulting
optimal label matching to the reference can be computed very quickly even with very large
data sets and many mixture components. These are satisfied as follows.

Given the current parameter draw ©, define the corresponding classification vector 2 with n
elements Z = argmaXxje 1:k mj(Xj); thus Z assigns each observation to its modal component
under the current set of classification probabilities. Define ZR as the corresponding

classification vector with elements Z* at the reference ®R. Note that each classification
vector can be stored as n short integers, compared to the kn floats or doubles required for
component classification probabilities mj(x;). In terms of memory requirements, we can scale
indefinitely in k and very substantially in n; holding 107 short integers translates to only ~
20Mb, for example, for a problem with k = 10 components and n = 10% samples, in whatever
the dimension may be.

2.3 Loss Function

The focus on Z leads to a natural, intuitive loss function: the misclassifications that 2
implies relative to ZR. Permuting the component labels in Z to maximize the match with ZR
then minimizes the misclassification.
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Formally, define the k x k misclassification matrix C via

Cri=lli € I:nl'z‘fzh A 7z # DY, (j, h=1:k). This matrix carries full information on
sample:component classifications to compare the current MCMC state with the reference,
and can be calculated swiftly even with very large sample sizes. Relabeling is now a
question of permuting the columns of C. Relative to the reference, Cp; counts misclassified
observations when we identify MCMC component j with reference component h; so, we
seek a column permutation to minimize tr(C). It turns out that this can be done very
efficiently using the so-called Hungarian Algorithm (Munkres, 1957); this achieves the
optimal permutation in polynomial time (Munkres, 1957) and is used in our implementation.

3 Relabeling Algorithm

The resulting algorithm can be performed completely on-line, computing optimal
component permutations to minimize referenced misclassification costs at each iterate
within the MCMC. In summary:

1. Given the current MCMC iterate, ®, calculate Z.
2. Calculate the misclassification cost matrix C.

3. Apply the Hungarian Algorithm to identify the optimal permutation of component
indices, denoted by o(1 : k); in the current MCMC state.

4. Permute, 01:x — O5(1:x), accordingly.
5.  Move to the next MCMC iterate.

This algorithm can be implemented simply and efficiently in any MCMC sampler.

4 Examples

4.1 Synthetic Data Example

The first example uses synthetic data from a simple univariate example in Yao and Lindsay

8
(2009), drawing n = 400 observations from g(x|®)=zl,~:]0-1251v(ﬂj’ D with wj=3*(G-1)
for j=1: 8. After a long run for burn-in of the MCMC, several EM solutions were identified
by running iterative posterior mode searches from the MCMC parameters at every 1,000
iterates. The highest posterior mode so identified defined ®R. This reference point was also
used as a starting point for 100,000 MCMC iterates, resulting in the summaries in Figure 1.
We can see that there is a good deal of label switching in the marginal posterior density
estimates based on the raw MCMC output, while those under relabeling are all unimodal and
capture the true values.

Further evaluations show performance similar to the preceding approaches of Stephens
(2000) and Yao and Lindsay (2009) in this simple setting. It is worth repeating that the
computations are substantially more burdensome in these earlier approaches, even in this
“low p; low k, low n” context.

4.2 Flow Cytometry Example

The second example uses a subset of flow cytometry data from Suchard et al. (2010). The
applied context being one of identifying sub-populations in distributions of several cell
surface proteins (Boedigheimer and Ferbas, 2008; Chan et al., 2008). We selected p = 2
marker proteins on n ~ 100,000 cells from that immune response assay data set, choosing
proteins CD8 and CDSE that are often critically relevant in identifying functional subtypes
of immune cells. The scatter plot of measured levels in Figure 2 shows evidence of subtypes
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of cells with expected non-normal scatter within subtype. The applied strategy is that of
fitting an encompassing normal mixture model and then grouping subsets of normal
components to define subtypes (Chan et al., 2008; Lin et al., 2010). Dealing adequately with
label switching is critical to this enterprise.

The mixture model uses a truncated Dirichlet process prior with an encompassing k = 32
components; the prior structure allows for fewer than this upper bound k to be represented in
the data reflecting the use of these models to automatically cut-back to fewer components
(e.g. Escobar and West, 1995; MacEachern and Miiller, 1998a,b; Ishwaran and James, 2001;
Chan et al., 2008; Ji et al., 2009). As in the previous example, the Gibbs sampler was run for
thousands of iterations to ensure convergence; this was followed by many local searches
using Bayesian EM to identify local posterior modes and so fix a reference ®R as the highest
posterior mode so identified. Initializing at this set of parameters, we then ran the Gibbs
sampler to identify and save a posterior sample of size 50,000. Figure 3 shows trace plots for
the means of 8 (of the 32 components) on the CFSE dimension, with these 8 components
selected according to their EM summary starting points. Figure 4 shows the corresponding
estimates of marginal posterior densities for both the raw MCMC results and for the
relabeled results.

4.3 Compute Time Benchmarks and Higher Dimensions

Computational efficiency and ability to scale with the number of mixture components k and,
critically, the sample size n is a major concern. Investigations of this explored analyses in
several contexts with data randomly sub-sampled from the above flow cytometry data set for
realism. The C++ code is available stand-alone as well as integrated with the Duke CDP
software for MCMC and Bayesian EM in truncated Dirichlet process mixture models
(among other models)(Suchard et al., 2010). The test machine used was configured with a
CPU (Intel Core i7-975 Extreme Quad-Core 3.33 GHz Processor) and GPU (Nvidia GTX
285 graphics card), and the software used core code in C++ and CUDA.

The example data set is in p = 15 dimensions. The number of observations and components
analyzed were varied as in Table 1 that also summarizes running time results.

5 Further Comments

A number of other examples and studies bear out the results exemplified above. This
classificationbased relabeling strategy has the ability to perform as or better than existing
methods with major computational advantages, and an ability to move beyond the very
modest dimensions (p, k, n) that prior methods can address at all. As data sets increase in
size and complexity, use of mixture models for sub-structure identification is increasing, and
having effective, automatic relabeling is fundamental to practical utility. We have provided
efficient code to enable interested readers to explore and evaluate the method presented and
expect that it will find broad utility.

No method of relabeling will work wholly and consistently well. Overlapping components,
that may be overlapping in a subset of the p dimensions, bedevil any method of addressing
the inherent identification problem. The realization of label switching is increasingly hard to
diagnose as p increases, and looking at marginal dimensions under one or more relabeling
methods can mask the realities of random label switches in higher dimensions. Low
probability components, sometimes “real” and of key applied interest (e.g. Manolopolou et
al., 2010), though sometimes simply reflecting noise, can exacerbate the problem. One area
of future potential development is to explore Yao and Lindsay’s idea of identifying with
multiple posterior modes integrated with classification-based ideas. Perhaps more
immediately, since the method here is computationally cheap, using several reference
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summaries would not be too costly and offers additional opportunity to dissect and resolve
labeling identification ambiguities. The approach is also general with respect to component
distributional form; the underlying ideas and strategy can be applied to more complex
mixtures with hierarchical structure as well as non-normal and mixed components.
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Figure 1.

Plots of estimated marginal posterior densities for the component mean in the 8—component
univariate mixture, simulated data example. Plots for py.g show results based on the raw
MCMC samples, clearly and strongly evidencing the label switching issues via multimodal
margins. Plots for py.g show results under the relabeling strategy, resulting in unambiguous
and accurate (since the ground-truth is known in this synthetic example) identification of
posteriors.
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Figure 2.
Flow cytometry data on standardized levels of proteins CFSE and CD8
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Figure 3.
Trace plots of 8 component means in the CFSE dimension of the flow cytometry example.
Plots for pq.g are raw Gibbs sampler output and p1;.g the relabeled outputs.
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Figure 4.

Marginal density estimates for 8 component means in the CFSE dimension of the flow
cytometry example, based on raw (u1.g) and relabeled (uy.g) MCMC outputs.
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Table 1

A simulation study to illustrate the percent computation time occupied by the relabeling algorithm for 1000
iterations of MCMC using a C++ extension of efficient CPU/GPU code for Bayesian analysis of truncated
Dirichlet process mixture models (Suchard et al., 2010). This example uses data in p = 15 dimensions and
examines running times for numbers of components k and sample sizes n that range across practically relevant
values. All times are in seconds (real time).

n k Total Time Relabeling %

32 28.03 0.29 1.04

64 53.83 146 271
10*

128 114.9 10.28  8.94

256 287.4 78.87 274

32 77.82 0.94 121

64 118.01 2.10 1.78
10°

128 206.80 1093  5.28

256 452.09 79.59 176

32 511.97 7.23 141

64 734.13 8.29 113
108

128 1156.16 17.16 1.48

256 2100.11 85.78  4.08
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