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Imputation of low-frequency variants using the
HapMap3 benefits from large, diverse reference sets

Luke Jostins1, Katherine I Morley1,2 and Jeffrey C Barrett*,1

Imputation allows the inference of unobserved genotypes in low-density data sets, and is often used to test for disease

association at variants that are poorly captured by standard genotyping chips (such as low-frequency variants). Although much

effort has gone into developing the best imputation algorithms, less is known about the effects of reference set choice on

imputation accuracy. We assess the improvements afforded by increases in reference size and diversity, specifically comparing

the HapMap2 data set, which has been used to date for imputation, and the new HapMap3 data set, which contains more

samples from a more diverse range of populations. We find that, for imputation into Western European samples, the HapMap3

reference provides more accurate imputation with better-calibrated quality scores than HapMap2, and that increasing the

number of HapMap3 populations included in the reference set grant further improvements. Improvements are most pronounced

for low-frequency variants (frequency o5%), with the largest and most diverse reference sets bringing the accuracy of

imputation of low-frequency variants close to that of common ones. For low-frequency variants, reference set diversity can

improve the accuracy of imputation, independent of reference sample size. HapMap3 reference sets provide significant increases

in imputation accuracy relative to HapMap2, and are of particular use if highly accurate imputation of low-frequency variants

is required. Our results suggest that, although the sample sizes from the 1000 Genomes Pilot Project will not allow reliable

imputation of low-frequency variants, the larger sample sizes of the main project will allow.
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INTRODUCTION

Genome-wide association studies (GWAS) comparing thousands of
disease cases and healthy controls at hundreds of thousands of single-
nucleotide polymorphisms (SNPs) have led to the recent discovery
of hundreds of bona fide associations between common SNPs and risk
for complex human diseases.1,2 To add further value, a wide variety
of statistical refinements have been applied to maximize the power
of these studies. Genotype imputation is one such approach, which
predicts untyped markers in target (ie, GWAS) samples using a
densely typed reference set (eg, the HapMap3,4). Imputation allows
meta-analysis of studies genotyped on different commercial SNP
chips, and allows association testing of variants, which are not in high
LD, with any single genotyped SNPs, and are thus not well captured by
the chips (such as rare mutations5).

Many recent papers have investigated various factors that influence
imputation performance; these include method used,7–9 SNP density
in target sample,7,11 quality of reference haplotype phasing8,9 and
settings of method-specific parameters.6,8 Many studies have measured
how imputation performance increases with reference sample size.9–11

Other studies have investigated the specific composition of the
reference set: Huang et al11 showed that specific mixtures of HapMap
2 populations gave better performance than any single population
when performing imputation in 29 target populations from around
the world. These results were reviewed by Li et al,12 who recom-
mended a combination of all HapMap2 samples for imputing into

samples from certain populations. Similarly, Marchini and Howie6

showed that combining all HapMap2 samples from all populations
increased imputation performance for low-frequency SNPs. More
recently, the HapMap3 data set was used3 to show that a mixture
of samples from two European populations (CEU and TSI) could give
improvements in imputation performance for target samples from
Western Europe.

Most imputation work, to date, has used the HapMap2 reference
panel,2 which comprises 60 unrelated individuals each of European
and African origin, and 90 of East Asian origin, genotyped at over
2 million sites. Although this reference set has been shown to provide
highly accurate imputation for nearly all common variation in samples
of European origin, an open question remains about how the size
(in terms of number of samples and number of SNPs), and quality of
new and planned reference data sets will affect imputation. Specifically,
the HapMap33 reference set contains more samples (over 1000 indivi-
duals from 11 sample collections with diverse ancestry) genotyped at a
restricted set of approximately 1.5 million variants. Conversely, the pilot
phase of the 1000 genomes project plans to release genotypes at many
millions of novel sites in the relatively small HapMap2 sample set. The
full project will sequence nearly all of the HapMap3 samples, as well as a
number of samples from other populations, to give a high-density
reference set greater in size than the HapMap.

To date, no in-depth analysis has been performed to investigate the
effect of reference set size and diversity in mixed-population reference
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sets. The release of the large, diverse HapMap3 data set allows such an
investigation. We perform imputation into European target samples
using HapMap2 and HapMap3 reference sets of various sizes and
population diversities, and measure the difference in imputation
accuracy, quality score performance and computational resources
required. We also perform experiments to tease out the effect of
reference set size, diversity and closeness of genetic match to the target
population. Our comparative analysis focuses on three areas: (1) What
effect does the higher quality of genotyping from HapMap3 compared
with HapMap2 have on imputation? (2) What improvements can the
large increase in sample size and diversity of mixed reference sets have
on imputation accuracy and predicted quality scores, especially for
low-frequency SNPs? and (3) What can we infer about the relationship
between imputation performance and closeness of match between the
ancestry of reference and target samples?

MATERIALS AND METHODS

Performing and scoring imputation
For the target set, we used 1374 individuals from the 1958 British Birth Cohort,13

genotyped on both the Illumina (San Diego, CA, USA) HumanHap550

BeadChip and Affymetrix (Santa Clara, CA, USA) GeneChip Human Mapping

500-k chips as our target set. We used the Illumina data to perform imputation,

and checked the answers using the Affymetrix data (Illumina chips having been

previously shown to be more powerful for imputation14). For the target

reference sets, we used the approximately 2.5 million polymorphic SNPs of

the HapMap2 CEU samples, and various mixtures of HapMap3 samples, with

approximately 1.4 million polymorphic SNPs (Table 1).

To perform the imputation, we used the imputation program Beagle.9,10

We also tested a subset of our results using IMPUTE v115 and IMPUTE v2,7

and compared the computation requirements of all three programs (Supple-

mentary Table 2). For some of our analyses, we removed poorly imputed SNP

by applying a filter that removed SNPs with a predicted dosage r2 of less than

0.9. For several analyses, we compare common (MAF45%) and low-frequency

(MAFr5%) SNPs.

To score the imputation results, we measured both the accuracy of imputa-

tion and the usefulness of the predicted quality scores that the imputation

method provides. Accuracy was measured using dosage r2, which measures the

correlation between the actual gene dosages and those predicted by imputation.

The dosage r2 is useful, as it is not confounded by minor allele frequency, and

thus can be used to compare rare and common SNPs, as well as having a simple

relationship to power in a GWAS.12 For predicted quality scores, both Beagle

and IMPUTE give a predicted dosage r2 for each SNP (a prediction of what the

dosage r2 would be for that SNP), which was evaluated using four criteria:

(1) the calibration, or mean difference between predicted and actual dosage r2,

(2) the quality r2, or the correlation between predicted and actual dosage r2,

(3) the number of overconfident calls, that is, the number of SNPs that are

poorly imputed, despite having high-predicted dosage r2 and vice versa and

(4) the number of underconfident calls. We are particularly interested in the

number of overconfident SNPs, as when genotypes are incorrectly imputed

with high confidence, any differential effect of these errors between cases and

controls can give false-positive associations. Following up these errors in

replication studies can be a costly waste of time.

Reference set quality
Although the majority of SNPs in both HapMap2 and HapMap3 are of high

quality, HapMap2 data were generated using a variety of genotyping technol-

ogies in the period from 2003 to 2007, some of which were not as robust as the

GWAS chips used to generate the HapMap3 data in 2008. To investigate

whether this increase in reference set quality had a significant effect on

imputation, we performed genome-wide imputation on the target set using

two ‘reduced’ HapMap reference sets, and measured differences in dosage r2.

These reduced sets contained only the 56 CEU samples and 1 million SNPs that

HapMap2 and HapMap3 have in common.

Reference set size
To assess the effect of larger HapMap sample sizes, we performed genome-wide

imputation on the target set, using five reference sets of increasing size and

diversity. We used the HapMap2 and HapMap3 CEU samples (HM2CEU and

HM3CEU), which should be the best match to the UK target set, as well as a

mixed reference set of HapMap3 European samples (CEU and TSI). To give a

large, but still partially matched reference set, we used the HapMap3 European

samples mixed with the Indian and Mexican samples (CEU + TSI + GIH +

MEX), as these populations cluster together on the first two principal

components (Supplementary Figure 2 from The International HapMap3

Consortium3). Finally, we examined all HapMap3 individuals (WORLD) to

assess a very large and diverse reference set. Sample sizes are shown in Table 2.

Reference set diversity
We investigated the importance of population matching, independent of

sample size, in two ways. First, we compared genome-wide imputation using

the HapMap3 CEU and TSI reference set to a CEU + JPT + CHB reference set

of the same size and non-CEU proportion. This allows us to investigate the

effect of adding poorly matched samples on imputation. Second, we created a

number of equally sized reference sets for chromosome 17 by combining a

range of mixture proportions of either CEU and TSI, or CEU and CHB + JPT.

We measured the accuracy of imputation using these reference sets for low-

frequency variants. We denote these constant sized mixed reference sets as

CEU/TSI and CEU/CHB + JPT, to distinguish between reference sets in which

sample size is not held constant (eg, CEU and TSI).

RESULTS

Reference set quality
We found a small but significant difference because of genotyping
quality (unfiltered mean dosage r2 0.841 vs 0.84, Supplementary

Table 1 HapMap samples

Population Code HapMap2 HapMap3

African Americans ASW 0 63

North Europeans CEU 60 117

Chinese Americans CHD 0 85

Gujarati GIH 0 88

Japanese and Chinese JPT+CHB 90 170

Luhya LWK 0 90

Mexicans MEX 0 52

Maasai MKK 0 143

Toscani TSI 0 88

Yoruba YRI 60 155

Summary of the HapMap sample sets, and their sizes in the HapMap2 and HapMap3 data sets.
We used release 21 and release 2 of the phased HapMap2 and HapMap3 data, respectively.

Table 2 Effect of reference set on imputation

CPU (in Passed filter

Filtered

dosage r2

Reference set Size hours (h)) Common (%) Rare (%) Common Rare

HM2CEU 60 514a 83.7b 52.5b 0.957 0.889

CEU 117 296 85.1 59.7 0.968 0.921

CEU + TSI 205 350 86.1 63.1 0.974 0.934

CEU + TSI +

GIH + MEX

345 458 85.3 60.3 0.978 0.957

WORLD 1010 1207 83.8 55.5 0.979 0.968

Information on genome-wide imputation using various reference sets. The CPU column shows
the number of CPU hours used in the imputation, which increases with the size and SNP
density of the reference set. The proportion of SNPs that passed the filter (predicted dosage
r2Z0.9), and the mean dosage r2 of those that passed, are shown for common (MAF40.05)
and rare (MAF0.05) SNPs.
aHM2 has a large SNP set, hence the longer imputation time.
bHM2 has a larger number of SNPs in total.
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Figure 1), but not enough to explain a meaningful difference in
imputation quality between HapMap2 and HapMap3.

Reference set size
We found that HapMap3 provides a substantial increase in imputation
accuracy compared with HapMap2, with the number of SNPs in the
highest score category (495%) increasing, and the number in all
lower scoring categories decreasing (Figure 1). A further increase in
imputation accuracy is seen when adding the HapMap3 TSI samples.
The number of SNPs that pass the filter (have a predicted r2 greater
than 0.9) rises as imputation accuracy increases, although this falls, as
samples from many populations are added because of a decrease in the
imputation software’s predicted confidence (see below). The dosage r2

of filtered SNPs shows a trend of improved imputation with increasing
sample sizes. This increase is statistically significant (Po1016) for
all increases in sample size, with the exception of the WORLD set
(Table 2). A corresponding increase is seen in computational time,
especially for the WORLD set; however, the CEU + TSI + GIH + MEX
reference set only takes 55% longer to process than just CEU, despite
being nearly three times larger.

The improvement for low-frequency SNPs is the most striking. The
HM2CEU mean dosage r2 score for unfiltered low-frequency SNPs is
low, especially compared with common SNPs (0.89 vs 0.96). If all
samples from all HapMap3 populations are included, this gap nearly
disappears (0.96 vs 0.98). In general, fewer low-frequency SNPs pass
the imputation quality filter (63% at most), but the accuracy of these
imputed low-frequency SNPs can become very high. The improve-
ment in dosage r2 is inversely proportion to the frequency of the SNP
with the greatest improvement observed for the very rarest SNPs
(Figure 2).

For small reference sets, the calibration of predicted quality scores
tends toward overconfidence. As the reference set increases in size,
the calibration improves, though very diverse reference sets lead the

confidence scores towards underconfidence (Supplementary
Table 1). The correlation between predicted and actual dosage r2

improves, though with a slight decrease for the most diverse sets.
These trends are stronger in low-frequency variants than in common
ones; low-frequency variants tend to have less well-calibrated and
correlated-predicted quality scores. Larger reference sets decrease
the number of overconfident and underconfident mistakes (with the
exception of the WORLD set, which causes a slight inflation in
underconfident calls, Figure 3).
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Reference set diversity
We found that, although the mismatched CEU + JPT + CHB reference
set gives a lower imputation accuracy than CEU and TSI, it still
provided a substantial improvement over the CEU reference set alone.
Half of the improvement in imputation accuracy from CEU to CEU
and TSI was also gained with the CEU + JPT + CHB reference.
This implies that, although matching the reference set to the target set
is important, even the addition of unrelated samples provides
increases in imputation accuracy.

Increased diversity initially correlates with increased imputation
accuracy for both CEU/TSI and CEU/CHB + JPT (Figure 4), though
the former is far less marked than the latter. Beyond a certain
proportion of non-CEU samples, accuracy starts to fall off as the
effect of diversity is outweighed by the effect of mismatching.
The optimum population mix is 22% for CEU/TSI and 17% for
CEU/CHB + JPT. It is only above 43% TSI do we see a decrease in
imputation accuracy for adding TSI over pure CEU; for CHB and JPT
this value is 33%. This relationship is specific to low-frequency
variants.

DISCUSSION

Higher quality reference data and larger sample sizes provide
improved imputation accuracy. Using HapMap3 as a reference set
compared with using HapMap2 demonstrates this improvement,
especially at sites with a low minor allele frequency. Although this
result was expected, we did not anticipate the substantial improve-
ment achieved with large and genetically diverse reference sets.
Including samples from such diverse populations such as MEX and
GIH can provide significant improvement in imputation into the UK
samples of alleles with a minor allele frequency of less than 5%. Larger
reference sets also improve predicted quality scores, with a decrease in
overconfident mistakes without inflating underconfident calls.

Overall, an imputation reference set consisting of CEU, TSI, MEX
and GIH improves the quality of imputation in all frequency ranges,
and greater improvement for very rare SNPs was achieved with very
large and highly mixed reference sets. The latter came at the cost of
computational power, as well as overly conservative predicted quality
scores. Imputation is robust to the precise mix of samples of closely
related ancestry (such as CEU/TSI), and small amounts of divergent
ancestry can actually improve accuracy (such as CEU/CHB and JPT).
However, crude population matching is important, as demonstrated
by the reduced accuracy of the CEU + JPT reference compared with
CEU + TSI.

These results imply a set of relatively simple rules for picking
imputation reference sets: for the best trade-off between accuracy
and computation time, the most diverse mixture of populations that
still approximately cluster with the target samples of interest on a
worldwide PCA plot should be used. However, if imputing genotypes
for low-frequency variants with high accuracy is required, all samples
available should be used, with the understanding that this will increase
computational time, and cause quality scores to be somewhat
conservative.

Of the programs we tested, Beagle takes greatest advantage of
the highly divergent sample mixes, possibly because IMPUTE v2
only uses haplotypes with small Hamming distance from the target
sample during phasing, and thus is less likely to take full advantage of
the more divergent haplotypes. However, this is a function of the
parameter values chosen: increasing the value of k in IMPUTE v2 will
increases the number of haplotypes considered, thus increasing
accuracy at the expense of resource use. As IMPUTE v1 always uses
all reference haplotypes, it seems likely that it would also be able to
take advantage of divergent populations, but its prohibitive resource
usage makes it a poor choice for large reference sets.

That badly matched reference sets lead to increasingly conservative
quality scores is an interesting observation. This effect is observed in
Beagle and IMPUTE v1, but not in IMPUTE v2 (Supplementary
Table S2) is more puzzling. This lowering of predicted quality is likely
to be because of the poor match of haplotype frequencies in the
reference and target sets. As the true haplotypes in the target are likely
to be rarer in the reference, this will effectively lower the earlier
correctly guessed haplotypes, leading a deflation of the posterior.
IMPUTE v2, by only examining haplotypes close to the target sample,
will not suffer from this problem.

It should be noted that these results were obtained by imputation
into European individuals, and further studies will be needed to assess
how these conclusions generalize to other populations, notably
African populations.

Accurate imputation of low-frequency SNPs using HapMap3 sam-
ples could allow new associations to be mined from existing GWAS
data sets. HapMap3 contains nearly 150 000 SNPs with a frequency
of less than 5%, a large fraction of which can be accurately imputed.
This approach will be even more powerful when applied to the millions
of new low-frequency variants cataloged by the 1000 Genomes Project.
The promise of such analyses must be tempered, however, by the
observation that high-quality genotypes in hundreds of samples will be
required to provide accurate imputation. The HapMap2-like sample
sizes of the 1000 Genomes Pilot Project, coupled with less accurate
genotypes derived from low coverage sequence, might well not be
sufficient to allow powerful imputation. However, the diverse and
extensive set of samples being sequenced for the final project (including
TSI, UK and Finnish samples), coupled with improvement on geno-
type calls from sequence, offer the exciting prospect of imputing
millions of low-frequency variants into existing GWAS data sets.
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