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Abstract

Cysteine (Cys) residues serve many functions, such as catalysis, stabilization of protein structure through disulfides,
metal binding, and regulation of protein function. Cys residues are also subject to numerous post-translational
modifications. In recent years, various computational tools aiming at classifying and predicting different functional
categories of Cys have been developed, particularly for structural and catalytic Cys. On the other hand, given
complexity of the subject, bioinformatics approaches have been less successful for the investigation of regulatory
Cys sites. In this review, we introduce different functional categories of Cys residues. For each category, an overview
of state-of-the-art bioinformatics methods and tools is provided, along with examples of successful applications
and potential limitations associated with each approach. Finally, we discuss Cys-based redox switches, which
modify the view of distinct functional categories of Cys in proteins. Antioxid. Redox Signal. 15, 135–146.

Introduction

To counteract oxidative stress, organisms evolved
response systems that are designed to remove reactive

oxygen species (ROS) directly or to repair oxidative damage
(18). Key players in these systems usually are proteins with
redox-active amino acids, whose side-chains can directly react
with oxidants or oxidized cellular products. Among such
residues, the most commonly used is cysteine (Cys) (51). Re-
versible oxidation of Cys thiols is known to play a role in redox
regulation of proteins via the formation of sulfenic acid inter-
mediates (R-SOH) (55, 76, 83), intra- and intermolecular dis-
ulfide bonds (R–S–S–R) (70), mixed disulfides with glutathione
(R–S–SG) (8), and overoxidation to sulfinic acids (R-SO2H) (99).
Additionally, Cys is the main target of nitrosative stress,
leading to the formation of reversible S-nitrosothiols (37).

The susceptibility of Cys to these modifications is largely
dependent on the reactivity of each specific thiol: Cys thiolates
are considerably more nucleophilic than their protonated
forms (i.e., Cys thiols) and can be more easily oxidized (7, 52).
Cys residues are also very polarizable (i.e., the thiol dipole can
be tuned, either increased or decreased, by interaction with
other residues of the protein). Well-known examples include
the effects of N-terminal helix dipole (42), proximity to other
titrable residues (61, 80) and hydrogen bonding partners (25).
Therefore, Cys reactivity depends on local environmental
features (e.g., secondary structure composition, proximity

with charged residues, H-bond donors, etc.), with the relevant
functional consequence being that its susceptibility to oxida-
tion is also dependent on these local features: an exposed Cys
residue can be turned into a very reactive, and thus likely a
functional residue. A specific discussion, from a theoretical
point of view, about Cys reactivity and still debated chemical
physical classification, is provided in the sidebar ‘‘Redox Cys
in Proteins’’.

While Cys is one of least abundant among the 20 common
amino acids in proteins, it tends to play functional roles more
often than other residues. In these sites, Cys may serve different
functions, ranging from structural stabilization (structural
disulfides and metal binding) to catalytic activity, and includ-
ing a variety of post-translational modifications and associated
regulatory roles. Due to the many roles played, Cys residues
are often classified on the basis of their function. The determi-
nation of unique features differentiating functional categories
of Cys has been the subject of many studies, which sought to (i)
better understand the chemical and biological determinants for
different Cys functions, and (ii) design and implement efficient
computational tools for prediction of Cys functions.

In this review, we first introduce functional categories of
Cys (Fig. 1) by providing concise descriptions of relevant bi-
ology and chemistry. Then, for each category, an overview of
bioinformatics methods and tools is given. Examples of their
successful application as well as limitations associated with
each approach are discussed. Finally, Cys-based redox
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switches are described. Not only do these switches provide an
example of crucially important roles of Cys in redox pro-
cesses, but they also challenge the view of distinct functional
categories of Cys.

Functional Categories of Cys Residues

Metal-binding Cys

Metal-binding Cys residues are found in structurally and
evolutionary distinct groups of proteins, which are present in
all branches of life. Together with histidine, Cys is the most
frequently employed amino acid for metal coordination (21),

particularly for binding zinc, cadmium, copper, iron, and
nickel. Metals in proteins have many functions. One example
is stabilization of protein structure. This strategy is common
in the case of Zn–Cys complexes, such as those found in zinc
fingers, where thiolate–Zn2þ–thiolate bridges act as stabiliz-
ing elements (50), particularly under the reducing conditions
of cytosol (where disulfides are disfavored). Other functions
of metal ions in proteins include direct involvement in catal-
ysis and occurrence in regulatory sites. In this regard, Cys
properties make this amino acid a preferred residue for redox-
dependent regulation of metal binding. For example, the
Zn2þ–S moiety permits zinc to be tightly bound, yet be
available for release upon oxidation (41, 43, 44, 50). We

Redox Cys in Proteins: Challenges to Classify
and Define Basic Properties

Many published studies include statements such as ‘‘. . . all
amino acids, except Cys . . .’’, highlighting difficulties in ex-
tending the general properties of amino acids to Cys. Indeed,
from theoretical, computational, and experimental points of
view, Cys classification is most controversial. Based on its
chemical structure, it is often regarded as a small and slightly
polar residue (similar to Ser); accordingly, replacement of
Cys with Ser is a common substitution during protein engi-
neering (and evolution) that suppresses Cys functionality
while preserving (as much as possible) the chemical physical
properties of the amino acid. On the other hand, Cys is
classified as a highly apolar amino acid by many common
hydrophobic scales (e.g., the widespread Kyte–Doolittle
scale). These scales rely heavily on statistical analyses of
structural databases, where the average exposure of residues
is considered a direct reflection of the tendency of this residue
to be exposed. In a recent study (62), we provided evidence
that such classification can be misleading, particularly for
Cys: its occurrence in molecular surfaces is heavily influ-
enced by functionality of its sulfur atom. Due to high reac-
tivity, exposed Cys residues are subject to selective pressure,
resulting in a systematic removal of exposed Cys residues
that do not provide functional advantage. Statistical analysis
of average Cys exposure in protein structure databases re-
veals the net result of this process: the low abundance of Cys
in exposed regions of proteins. Accordingly, hydrophobic
scales based on these observations would mistakenly credit
the effect to high hydrophobicity of Cys.

An analysis of 1000 protein structures from PDB has found
that exposed Cys residues have significantly lower pKa values
(average pKa of *7.5) than those of buried Cys (average pKa
of*9.5), when pKa calculations were performed with PropKa
(62). None of the other titrable residues analyzed (Tyr, His,
Arg, Lys, Glu, and Asp) showed such behavior, suggesting
that (i) surface-exposed Cys are polar (significantly more so
than buried Cys), and (ii) exposed Cys have, on average and in
respect to all other amino acids, the closest pKa to the physi-
ological pH. Besides the obvious biological implications of the
latter observation, these results further highlight the difficulty
of proper and unambiguous classification of Cys residues
with regard to hydrophobicity, polarization and pKa.

Furthermore, Cys are highly polarizable residues that can
be heavily influenced by nearby amino acids and solvent

accessibility. Deeply buried Cys may behave as hydropho-
bic residues, as dispersion forces dominate the ‘‘hydro-
phobic effect’’ within proteins because of tight packing. In
contrast, exposed Cys have a possibility to interact with H-
bond partners (e.g., water molecules), and=or other titrable
groups of polar residues, which are abundant on protein
surfaces. These interactions may considerably polarize ex-
posed Cys, influencing their pKa (e.g., increase the thiol di-
pole and decrease the associated pKa).

Other controversial instances regarding the description of
Cys properties involve charge schemes implemented in
standard molecular mechanics force fields (80, 92, 62), such
as CHARMM, AMBER, MMFF94, or OPLS. For example,
CHARMM22 describes Cys functional group as slightly
polarized, with a partial charge on its sulfur of �0.23
(compare to the value of the corresponding oxygen of Ser,
�0.66). Similar values are found in other standard force
fields (e.g., AMBER99, �0.31; OPLS, �0.34). However, one
study suggested alternative partial charges for Cys and
proposed that a significantly more polarized scheme (with
charge on sulfur of �0.57) better describes Cys residues and
allows for a more accurate evaluation of its electrostatic
properties in proteins (80). Similarly, using a semi-empirical
quantum mechanical procedure (90), the partial atomic
charge distribution of Cys was found to depend on prox-
imity with other residues (62, 92). According to these stud-
ies, while standard force fields can accurately describe
isolated and free Cys (or Cys in unstructured segments of
proteins), they are not fit for the description of most pro-
teinaceous Cys (where the polarization of Cys functional
group can be much higher, for example, up to �0.8, in some
extreme cases, such as at the N-termini of a-helices).

Given space constraints and the complexity of the subject,
we refer the reader to the original studies for a more rigorous
discussion on these themes, including Cys hydrophobicity,
pKa, and partial charge distribution. Altogether, this box
highlights challenges posed by proper theoretical treatment
of Cys. Clearly, standard approaches are not sufficient to
describe Cys residues, calling for the development of im-
proved theoretical tools capable of more accurate treatment
of Cys in different situations (e.g., a specific charge scheme
for Cys in the terminal parts of a- or 310- helices, or different
hydrophobic indices for buried or exposed Cys). Although
much work needs to be done in this direction, it should shed
light on the controversial but intriguing subject of Cys
classification.
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discuss this property in more detail later in the text, while
describing Cys-based redox switches.

A significant fraction (about one third) of all known pro-
teins is believed to bind metal ions as cofactors in their native
environment (19, 91, 93). Thus, availability of efficient com-
putational tools for prediction of metal-binding sites would be
extremely useful. To date, several strategies have been de-
scribed, based on different theoretical premises. One ap-
proach is the use of curated sequence patterns and profiles,
such as those found in PROSITE (29, 40, 84,). A PROSITE
pattern is an annotated regular expression that describes a
relatively short portion of protein sequence that may have a
biological meaning or function.

In many cases, metal-binding Cys are found in conserved
motifs (e.g., several proximal CxxC motifs, such as C–x(2)–C–
x(2)–Cx(3)–C–[PEG]; 21), which can be easily implemented
(e.g., ScanProsite, 29) to scan large databases of protein se-
quences. The main advantages of these methods are the speed
and ability to infer function without the use of structural in-
formation. Also, when a pattern is detected, the identities of
amino acids involved as well as the nature of the metal bound
(e.g., Zn, Cu, Fe, etc) are inferred. On the other hand, their
drawbacks lie in the obvious inability to predict new types of
metal-binding sites, as well as a tendency to produce, in some
cases, a large number of false negatives (i.e., known metal
binding proteins not detected by PROSITE and therefore in-
correctly predicted as a non-metal binding proteins) (2, 72).

In addition, while several patterns provide perfect speci-
ficity (e.g., in the case of Cys PS00198, PS00190, PS00463; a
detailed description of each of them is available at http:==
expasy.org=prosite=, as of November 2010), other patterns
are much less specific and some Cys residues (i.e., approxi-
mately 12% of metal-bound Cys can be detected by multiple
patterns, 72) can match more than one pattern.

To overcome some limitations, alternative approaches have
been developed, which employ structural information (31, 82,
86) and sophisticated computational and nonlinear statistical
models (56, 73). One interesting structure-based method in-
volved the use of empirical force field, Fold-X, for prediction of
metal-binding sites (81). Based on the information about the
geometries of metal-binding sites in the PDB database, a table of
candidate metal-binding geometries was compiled. For each
type of metal-ligand interaction (e.g., Zn-Sg(Cys), Cu-Ne(His),
etc.), the method reported geometric parameters of the most
common binding mode (designated canonical binding mode,
CBM), as shown in Figure 2A. When a query protein structure is
screened for metal-binding sites, the algorithm seeks consensus
sites of CBMs (e.g., clusters of 4 Zn–Sg(Cys), in the case of Cys4–
Zn complexes, Fig. 2B). If consensus sites are found, the inter-
action energy is evaluated with the Fold-X force field (32, 65). At
the end of the process, putative metal-binding sites with (i)
sufficient geometric resemblance to known sites, and (ii) fa-
vorable energy, are predicted. Additionally, due to its design,

FIG. 2. Structure-based method for
predicting metal-binding Cys. This
figure illustrates a case of Cys and Zn
coordination (Cys4–Zn). (A) First part
of the Fold-X approach for Cys-Zn site
prediction. By analyzing all coordina-
tion complexes between Cys(Sg) and
Zn atoms in the PDB repository, a table
of geometrical values for Zn–Cys sites
is compiled. Different Zn–Cys binding
modes, found in the PDB, are shown
(Zn atoms are represented as a cloud of
cyan balls). The center of gravity of the
cloud is calculated (dark blue ball), re-
presenting the canonical binding mode
(CBM) in Cys4–Zn sites. (B) Whenever
a query protein structure is analyzed
by the algorithm, each potential Cys is
screened for CBMs: if clusters of 4 CBMs are found (e.g., 4 spatially close Cys, with at least partially super-imposable CBMs, shown
as blue balls), a Cys4–Zn metal-binding site is predicted. As a final step, the binding site is subjected to geometrical optimization
using Fold-X. After minimization, final coordinates for the predicted Cys4–Zn binding site are obtained (red ball). (To see this
illustration in color the reader is referred to the web version of this article at www.liebertonline.com=ars).

FIG. 1. Different functional categories of Cys in proteins.
Schematic representation of different functions of Cys residues
discussed in this review. In addition, Cys redox switches may
belong to more than one functional category. To illustrate this
concept, a circle with arrows is shown that connects various Cys
functions. (To see this illustration in color the reader is referred
to the web version of this article at www.liebertonline.com=ars).
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besides detection of the metal binding site the algorithm can
also identity the nature of the metal predicted to be bound.

This approach proved to work well, particularly with re-
gard to accuracy of spatial placement of a metal atom (in a test
case, the average distance between predicted and experi-
mental positioning of the metal varied between from 0.3 to 0.7
Å). A standalone program implementing the algorithm for
prediction of metal-binding sites (as well as several other al-
gorithms for energy-based evaluation and protein design) is
available at http:==foldx.crg.es= (as of November 2010).

Obviously, due to the use of structure-based information
and energy-based calculations, this approach has a more
restricted range compared to sequence-based approaches for
the prediction of metal-binding sites and, therefore, it cannot
be used for genome-wide analyses where structural models
would be lacking for many proteins. Additionally, the
method will only work properly with highly refined exper-
imental structures (e.g., crystal structure with 2.5 Å or lower
resolution). Thus, its application is best suited for datasets of
well-refined experimental (preferably X-ray) structures. But
it may not be the method of choice for large datasets of
homology models where potential model inaccuracies can
affect calculations. In the latter case, alternative, structure-
independent approaches are needed. Besides PROSITE
pattern analysis, machine learning [e.g., support vector ma-
chines methods (72, 73)] and nonlinear statistical approaches
[e.g., neural networks (56)] have been developed, specifically
for the detection of metal-binding Cys (e.g., http:==
metaldetector.dsi.unifi.it=; see Table 1). In several test cases,
these methods appeared to provide considerable improve-
ment over PROSITE pattern-based approaches, while main-
taining most of the advantages of the method. Arguably, the
main limitation of these methods resides in their nature: while
more than adequate from a computational point of view, they
provide little additional biochemical insights.

Finally, besides prediction of metal binding, other impor-
tant contributions of bioinformatics in the field include an-
notation and maintenance of extensive databases of known
metal-binding sites (http:==metallo.scripps.edu=) and of metal-
containing proteins (http:==gladyshevlab.bwh.harvard.edu=
trace_element=). These services provide easy access to struc-
tural and chemical information (10) with regard to ligand and
metal interactions (e.g., number of ligands, distances, etc.), as
well as biological insights on occurrence and phylogenetic

distribution of metal-containing proteins and metal utilization
in nature (104).

Structural disulfides

Disulfide bond formation is one of the major mechanisms
of protein structure stabilization. Structural disulfide bonds
are formed between two Cys residues in a process of oxidative
folding, which involves specialized cellular machinery (15,
95). Structural Cys are often used in secreted proteins and
those located in oxidizing environments, such as bacterial
periplasm and eukaryotic endoplasmic reticulum (ER), but
are much less frequent in reducing environments (e.g., cytosol,
nucleus and mitochondrial matrix). However, in some ther-
mophilic bacteria, structure stabilization through disulfide
bonds is used even for cytosolic proteins (75). Many compu-
tational and experimental studies revealed that disulfide
bridges can increase conformational stability of proteins,
mainly by reducing the conformational entropy of the un-
folded state and constraining the unfolded conformation (1, 5,
85). Accurate predictions of cystines in proteins may provide
significant reduction of the computational costs in solving the
fundamental problem of protein folding prediction (23, 39).

Computational approaches to disulfide bond prediction
somewhat parallel those for metal binding. Thus, both struc-
ture-based and sequence-based approaches are known. Among
the former, the simplest method is to examine protein structures
for sulfur to sulfur distances (S-S) between Cys residues: a
commonly employed distance cut-off is 2.5 Å (Fig. 3), wherein
S–S groups found at lower distances are classified as disulfide-
bonded (69). This approach represents a safe choice: two Cys
with sulfur atoms at distances lower than 2.5 Å are very likely to
be true disulfides. For this reason, this method has been em-
ployed in developing a dataset of S–S containing proteins (73).

However, this approach depends heavily on the resolution
of protein structure: high indetermination of atomic positions
of low resolution structures can significantly affect the output
(e.g., if the indetermination associated with a distance is � 0.3
Å, the error associated with the measure of the putative S–S
distance would be too large). A modification of this approach
has been reported (4, 59): by analyzing Cys a-carbons located
within a distance of 8 Å from each other (C–C distance in Fig.
3), the majority (up to 80%) of disulfide bonds could be de-
tected. Advantages of this approach are that (i) it can couple to
comparative modeling approaches where a-carbon distances

Table 1. Methods for Prediction of Cys Involved in Disulfide Bonds and Metal-Binding Sites

Method Input Methodology Usage=type of prediction Availability

PROSITE Protein sequence Regular expression search Cys in MBS or in DB Web accessibleb

METAL DETECTOR Protein sequence SVM prediction Cys in MBS or in DB Web accessiblec

FOLDX Protein structure Search for energetically
favorable MBS geometries

Cys in MBS Standalone Program

DISULFIND Protein sequence SVM prediction Cys in DB Web accessibled

DCPB Protein sequence Automated homology modeling,
SVM prediction

Cys in DB or MBSa Web accessiblee

DB, disulfide bonds; MBS, metal-binding sites.
aThe SVM is not trained specifically for MBS, but only for DS. For MBS predicted by DCPB, additional analysis (e.g., with

METALDETECTOR) maybe required.
bCurrent web address (as of November 2010), http:==au.expasy.org=prosite=.
cCurrent web address (as of November 2010), http:==metaldetector.dsi.unifi.it=.
dCurrent web address (as of November 2010), http:==disulfind.dsi.unifi.it=.
eCurrent web address (as of November 2010), http:==120.107.8.16=dbcp=.
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are more reliable than location of side chains, and (ii) the
method can be applied for comparative structure-based
analysis without the need of full homology modeling, as it can
work with backbone trace coordinates only (i.e., side-chain
placement is not necessary).

Similarly to the metal-binding case, some methods for S–S
prediction do not require structural information (Table 1); for
example, PROSITE patterns can be used (http:==au.expasy
.org=prosite=). Many S–S patterns with perfect specificity
have been compiled; however, they can detect only a minority
of disulfide-bonded Cys. It has been estimated that only 1 out
of 4 Cys involved in S–S bonds match a pattern with high
specificity (72). To improve performance, various machine
learning approaches have been described (12, 13, 87) that em-
ploy different levels of sequence information (e.g., nature of
adjacent amino acids, conservation of flanking residues, etc.).
Similarly to the case of metal-binding prediction, from a reli-
able training set, an algorithm can learn a classification func-
tion, which can then be used for prediction purposes. These
algorithms can handle many parameters, for example, different
sequence-based features chosen by developers. Support Vector
Machine (SVM) has been used in several studies on disulfide
bond prediction (11, 12, 13, 57, 87). Training datasets were a set
of pairs P¼ {xi, yi}, where xi is the input vector composed of all
features analyzed and yi is the output. The output class can be a
binary response (equivalent to a decision between Yes or No),
for example, in respect to tendency of a Cys under investigation
to form disulfides. Examples of features that can be arranged in
the form of input for the SVM are: (i) information on amino acid
composition of flanking positions, and (ii) conservation of
flanking residues, as calculated by employing multiple align-
ment profiles (72). The SVM training process is achieved
by letting the algorithms learning from the training data a
classification function, F, that can be then used to make pre-
dictions. For many of such approaches, preliminary test cases
have shown significant improvement over the use of simple
sequence-based predictors (e.g., PROSITE).

However, rigorous benchmarks (e.g., blind tests carried out
during CAFASP editions for automated homology modeling
predictors) have not been performed (or not published) to
independently evaluate the methods. Therefore, the users are
invited to test different approaches, not limiting themselves to
a single method. In this regard, it is important to note that all
methods presented here are available free of charge to the
academic community, mostly as a web accessible servers. This
very desirable feature could open, hopefully in the near fu-
ture, for several and independent initiatives of benchmarking
(i.e., to be carried out by users not involved in the develop-

ment of these programs). A summary of the methods pre-
sented is given in Table 1.

Catalytic Cys

In many enzymes, Cys plays a critical role as a nucleophile
in enzyme-catalyzed reactions. Such Cys represent a func-
tional category of catalytic Cys residues. This category can be
further subdivided into redox or nonredox Cys groups (based
on the change in the redox state of Cys during catalysis).
Examples of enzymes with nonredox catalytic Cys are glyc-
eraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), Cys
protease (EC 3.4.22), protein tyrosine phosphatase (EC
3.1.3.48), and thymidylate synthase (EC 2.1.1.45). Catalytic
redox Cys are found in thiol oxidoreductases, where their
functions involve substrate oxidation or reduction, disulfide
bond isomerization and detoxification of various compounds.
We further focus on thiol oxidoreductases, for which better
progress has been made in recent years.

Thiol-based redox control in cells is primarily provided by
a diverse group of thiol oxidoreductases. A notable feature of
these proteins is that for the majority of them, homologs are
known that replace catalytic Cys with selenocysteine (Sec)
residue. Sec, known as the 21st amino acid in the genetic code,
differs from Cys by a single atom (i.e., Se versus S) (36, 89, 97).
Replacement of S with Se in thiol oxidoreductases often leads
to improvement in catalytic efficiency (6, 48, 49).

In all functionally characterized selenoproteins, Sec is lo-
cated in the active sites of redox proteins and serves as the
catalytic group (27). This observation was used to design a
method (Fig. 4A) for high-throughput identification of cata-
lytic redox Cys in protein sequences by searching for sporadic
Cys=Sec pairs in homologous sequences (27). First, it identifies
unique Cys=Sec pairs flanked by homologous sequences
within a pool of translated nucleotide sequences. These pairs
then serve as seeds for sequence analysis at the level of protein
families and subfamilies. The application of this method
identified the majority of known proteins containing catalytic
redox-active Cys, as well as indicated the exact identity of the
catalytic Cys. In other words, because Sec is exclusively used
in redox catalysis, an alignment between two protein se-
quences where Sec and a conserved Cys are paired points to
the catalytic role for the Cys. A key advantage of this ap-
proach, together with sensitivity, is speed. High-throughput
analyses are possible in reasonable amount of time, allowing
genome-wide analyses of thiol oxidoreductases. When tested,
the method was capable of correctly recognizing nearly all
known thiol oxidoreductases and predicted several new

FIG. 3. Structure-based prediction of
disulfide bonds. Two commonly used
approaches for the determination of dis-
ulfides in protein structures are shown.
The first employs sulfur to sulfur distance
(S–S distance in the figure) of �2.5 Å. In
the second approach, the distance be-
tween a-carbons of two proximal Cys (C a
–C a distance in the figure) is measured.
When the C a –C a distance is �8 Å, the
two Cys residues are considered disulfide
bonded. (To see this illustration in color
the reader is referred to the web version of
this article at www.liebertonline.com=ars).
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families, such as the one within a superfamily of AdoMet-
dependent methyltransferases, as having thiol-based redox
functions. This specific family (arsenic methyltransferases)
was then experimentally verified to contain a catalytic redox-
reactive Cys (27), further validating the approach.

In addition, another computational method (Fig. 4B) was
developed to investigate common structural features of cat-
alytic residues in thiol oxidoreductases (61) and subsequently
was used for predictive purposes. Features describing the
majority of catalytic residues in thiol-oxidoreductases in-
cluded: (i) weak, yet detectable (9, 61) sequence similarities
between different families of thiol oxidoreductases, (ii) pref-
erence for an a-helix or helix and coil secondary structure
environment, (iii) theoretical titration spectra deviating from
the corresponding Henderson–Hasselbach (HH) behavior
(this feature described catalytic redox Cys better than the pKa,
particularly when compared to nonredox catalytic Cys), and
(iv) docking affinity for small and uncharged molecular
probes, used as mimics for generic substrates (53). These
features were combined into a multiparameter scoring func-
tion and implemented in the form of a predictive algorithm.
The method was examined with different test cases, correctly
predicting known thiol oxidoreductases. Additionally, the
method predicted some new candidates, among which par-
ticularly interesting was 6-O-methylguanine-DNA methylase
(MGMT). This protein showed high scores, often higher than
those for some known thiol-oxidoreductase. Because some
MGMTs also have sporadic Cys=Sec pairs in homologous
sequences, these enzymes can be predicted as interesting
thiol-oxidoreductase candidates.

The main advantages of the structure-based approach de-
scribed reside in its ability to trace back specifically the con-
tribution of each component to the overall prediction. The
contribution of each subpart of the algorithm can be sepa-

rately analyzed, and therefore the weight of each to the final
output value can be immediately retrieved. As each subpart
correspond to specific physical, chemical or biological aspects
of Cys reactivity (e.g., exposure and accessibility, titration
curve and its deviation from HH, sequence homology with
known thiol oxidoreductases), the user can easily extract bi-
ological information from the final output of scoring function.
In addition, it showed an ability to detect new thiol oxidore-
ductases. On the other hand, the main disadvantage of the
method is its speed: several different structure-based calcu-
lations are needed, some of which are computationally de-
manding. Therefore, the method is not well suited for
extensive high-throughput analyses.

To our knowledge, no computational approaches for the
detection of catalytic and non-redox reactive Cys residues
(e.g., nucleophilic catalytic residues of Cys proteases, thymi-
dylate synthases, ubiquitin-activating enzymes, etc.) have
been developed so far.

Regulatory Cys

Common reversible post-translational modifications of Cys
include sulfenic acid (Cys-SOH), disulfide bonds (both in-
tramolecular and intermolecular), S-nitrosylation (NO-Cys),
and glutathionylation. As discussed above, all these modifi-
cations play fundamental physiological roles in the response
to oxidative and nitrosative stress. Among other functionally
relevant Cys modifications are (i) a thioether bond with far-
nesyl or geranylgeranyl groups (leading to protein lipidation,
and finally to membrane anchoring, 103), and (ii) mixed dis-
ulfide bonds with endogenous hydrogen sulfide (H2S). The
latter modification has been linked to various physiological
(22, 46, 100, 101, 102) and structural effects (45), revealing H2S
as a potent signal molecule, and Cys as its amino acid target.

FIG. 4. Methods for pre-
diction of thiol oxido-
reductases. (A) Sec=Cys
method. A query protein is
analyzed (with tBlastn)
against a database of nucle-
otide sequences containing
all potential selenoproteins
(e.g., all nucleotide se-
quences in NCBI). Sec pair-
ing with Cys, flanked by
conserved sequences, leads
to the prediction of Cys
function (i.e., the Cys align-
ing with Sec is predicted to
serve redox function). U is
Sec. (B) Structure-based
prediction of thiol oxido-
reductases. By analyzing (i)
sequence and structural ho-
mology with known thiol
oxidoreductases (knowledge-
based information, descrip-
tions preceded by red bullets

in the right side of panel B), and (ii) chemical and physical activation of its functional groups (energy-based information,
descriptions preceded by blue bullets in the right side of panel B), a query protein is evaluated. Combining the two independent
types of information, true positives can be detected even with very little sequence similarity to known thiol oxidoreductases,
and additional candidate thiol oxidoreductases can be predicted. (To see this illustration in color the reader is referred to the
web version of this article at www.liebertonline.com=ars).
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Post-translational modifications involving Cys often serve
regulatory functions, affecting protein properties (i.e., local
structure, electrostatic properties, etc.). Such Cys are referred
to as regulatory Cys (26). From a computational perspective,
regulatory Cys are challenging to investigate, yet the ability to
recognize and predict these residues would be extremely
valuable. A basic question would be if, similarly to the case of
phosphorylation, there are simple sequence-based patterns
associated with each type of Cys modification (e.g., sequence
patterns=motifs marking the susceptibility of a Cys to S-
nitrosylation, glutathionylation, etc.). To this end, an impor-
tant limiting factor has been the lack of large and reliable
experimental datasets. However, recently several proteomic
approaches have been developed, which provided a sub-
stantial improvement with regard to experimental data, par-
ticularly, for glutathionylation, sulfenic acid formation, and
S-nitrosylation (17, 28, 30, 34, 54, 66, 77, 94) and allowed initial
computational studies (30, 63, 80). To date, these studies did
not yield reliable sequence-based predictive patterns, instead
revealing heterogeneity of sequence features around Cys
modification sites. However, structure based analyses did
provided important insights, particularly in the case of NO-
Cys (30, 37, 63) and Cys-SOH (80).

In the case of Cys susceptibility to oxidation to sulfenic acid
(Cys-SOH), an important role of noncharged H-bond donors,
particularly Thr, was recently revealed (80). While not true in
all cases, spatial proximity with these residues is a more
common occurrence in Cys-SOH sites than in control Cys sites
(i.e., Cys not reported to be oxidized to Cys-SOH). In contrast,
titrable and charged residues were under-represented. It was
found that Thr contributed to activation of Cys by lowering its
pKa. This effect could only occur if Thr was considered a
titrable residue: to do so, new parameters for Thr were de-
veloped to account for the different state (e.g., atomic charge
distributions) of protonated and deprotonated Thr residues.
The two states obviously differ as deprotonated Thr ought to
carry a net negative charge (distributed as follows, OG1¼
0.75, CG1¼�0.25), while the protonated Thr is neutral (i.e.,
the sum of atomic partial charges is zero). In a standard ap-
proach, the latter is the only condition envisioned, as Thr is
not considered titrable. By implementing these parameters in
the electrostatic calculations, and numerically solving the
Poisson–Boltzmann equation, the effect of Thr on lowering
the pKa of Cys residues prone to oxidation to sulfenic acid
could be determined (80). While this study did not find se-
quence-based patterns associated with Cys-SOH sites, the
structure-based analysis helped uncover the influence of
noncharged titrable residues on Cys pKa and susceptibility to
oxidation.

A somewhat similar situation was found for S-nitrosylated
Cys: sequence-based bioinformatics analyses revealed high
heterogeneity around modification sites (30, 63). Here too,
structural analyses provided insights: a quantum mechanics
(QM)-based study demonstrated that NO modification can
induce significant charge redistribution in the side chain (with
only marginal effects on backbone atoms) of Cys (33), as
schematized in Figure 5. Specific force field parameters and
charge schemes for NO-Cys were developed by using a re-
strained electrostatic potential (RESP) approach (14). Struc-
tural restrains for dihedral angles for NO-Cys were derived
from the analysis of crystal structures, and geometrical opti-
mization was conducted at the HF level of theory (HF=

6-31G*). The obtained parameters proved to work efficiently
in molecular dynamic (MD) simulation test cases: for exam-
ple, in the case of human thioredoxin 1, MD calculations for
the S-nitrosylated protein (NO-Cys-69) were in good agree-
ment with the available data for the modified structure (PDB
code 2hxk, chain B).

These results are very useful: not only they allow studying
the dynamic behavior of nitrosylated proteins, but they also
provide the basis for docking calculations with NO-Cys con-
taining proteins or substrates. Recently, the first computa-
tional approach to investigate a database of potential Cys
targets for GSNO mediated trans-nitrosylation was reported
(63). It developed a docking-based strategy to evaluate the
affinity between Cys and GSNO, where the ad hoc Cys-NO
parameters (33) were implemented (Fig. 5). This docking ap-
proach could address prediction of a specific subset of NO-
Cys sites (i.e., Cys modified via trans-nitrosylation with
GSNO). Similarly, other trans-nitrosylating agents could be
explored with this strategy (Fig. 5). Both small (NO-Cys) to
large (NO-Cys containing proteins) S-nitrosylated moieties
could be analyzed for their ability to interact with target
proteins. Particularly challenging, yet interesting, would be
an approach to simulate trans-nitrosylation mediated by
protein-protein interactions.

These examples show that computational studies can ad-
dress challenging problems in Cys reactivity and provide
useful insights regarding regulatory Cys. However, com-
pared to other functional Cys categories, bioinformatics ana-
lyses of regulatory Cys are still in the early stage. Only
recently an increased availability of (i) extensive experimental
datasets; (ii) computational hardware (required for extensive
structure-based macromolecular simulations); and (iii) theo-
retical tools (software, theoretical models) developed by the
research community, has allowed the first attempts to analyze
regulatory Cys. In the next few years, significant advances
may be expected with regard to functional roles of post-
translational modifications involving Cys.

Cys as Redox Switches

In the text above, we separately analyzed different cate-
gories of reactive Cys. However, while for the sake of clarity a
clear cut subdivision was presented, in some cases the situa-
tion is more promiscuous, wherein many Cys residues could
belong to two or more of these categories. For example, cat-
alytic nonredox Cys in glyceraldehyde-3-phosphate dehy-
drogenase also undergoes regulation by reactive oxygen
species and thiols (24, 35, 38). An ability of some Cys to serve
more than one functional activity is the ultimate property
behind the concept of Cys as a redox switch. Cys-based redox
switches include Cys regulatory sites where a redox modifi-
cation not only affects Cys reactivity, but also influences
overall protein function. Redox switches are widely employed
in a variety of processes and proteins, for example, tran-
scription factors OxyR and Yap1 (3, 20, 98), kinases (78, 96),
phosphatases (47, 58, 79), chaperone Hsp33 (41, 43, 44), mi-
tochondrial branched chain aminotransferase (16), and many
other proteins. For a detailed discussion on the subject, we
refer the reader to representative and updated reviews (7, 52,
60, 67, 70, 71, 74, 88).

To illustrate a Cys-based redox switch, an excellent exam-
ple is a redox-regulated chaperone Hsp33 (41). This protein
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protects bacteria from oxidative stress that results in protein
unfolding and aggregation. In the absence of stress, this pro-
tein is monomeric and inactive, and its four Cys residues
(Cys232, Cys234, Cys265, and Cys268) are involved in Zn
binding. However, when exposed to oxidants (e.g., hydrogen
peroxide), two of these Cys (Cys265 and Cys268) form a dis-
ulfide bond, concomitant with the release of Zn2þ. An addi-
tional stress (e.g., heat and H2O2, or exposure to hypochlorite)
is needed for the second pair of clustered Cys (Cys232 and
Cys234) to become disulfide-bonded. In the end, Hsp33
monomers expose their hydrophobic regions, promoting di-
merization and protein activation.

Redox-sensitive metal binding involving Cys attracted
much attention, particularly with regard to Cys involved in
Zn coordination (50, 60). In humans, up to 10% of proteins are
believed to contain Zn-binding sites (50, 60). Coordination of
the metal ion to a sulfhydryl results in both tight binding and
availability of Zn 2þ. The metal ion can be released when a
coordinating Cys is oxidized (e.g., to Cys-SOH or NO-Cys).
This property, together with the reversibility of binding as
function of intracellular redox state, makes Cys-coordinated Zn
sites (e.g., Zn fingers, or Zn clusters in metallothionein) efficient
redox switches. Their functional and physiological roles are yet
to be thoroughly explored, but it is clear that in many cases they
do not participate in structural stabilization (60).

Currently, no computational methods can properly deal
with Cys redox switches, as to date, bioinformatics studies

have focused on the analysis of different Cys functions.
However, in the case of Cys-based redox switches, these ca-
tegories are not rigid. Sequence-based computational predic-
tors for metal-binding Cys are often unable to distinguish
them from Cys capable of disulfide bonding, and vice versa.
For instance, when E. coli Hsp33 sequence is scanned with
a state-of-the-art machine learning-based metal-binding site
prediction program (73), Metal detector (http:==metaldetector
.dsi.unifi.it=), two of its Cys (Cys265, Cys268) are classified as
metal binding, whereas other Cys are not. Additionally, the
program predicts that all Hsp33 Cys residues have a negli-
gible tendency to form disulfides. But we know that Cys265
and Cys268 form the first Hsp33 redox switch, and thus are
indeed capable of disulfide bonding, even if only after one of
them is oxidized. This is not surprising as the algorithm has
not been trained to distinguish redox switches. Instead, it
learned its rules from a training dataset in which three sepa-
rate categories of Cys were defined and annotated (free Cys,
metal-bound Cys, and disulfide-bonded Cys). Therefore,
considerable improvements over current theoretical ap-
proaches to the problem are needed in the future to ade-
quately address the classification of Cys reactivity. The
growing interest in this subject, as well as a considerable in-
crease in experimental datasets provide the basis for the de-
velopment of new computational tools, designed to deal with
Cys prediction, including complicated cases, such as redox
switches.

FIG. 5. Effects of S-
nitrosylation on Cys force
field parameters for predict-
ing trans-nitrosylation sites.
Ad hoc charge scheme for
NO-Cys is shown. R1 and R2
stand for generic substitu-
ents. These parameters were
applied and validated both
for NO-Cys in proteins
(where R1 and R2 are adja-
cent amino acids) and generic
organic molecules (where R1
and R2 are –CH2CH3 moie-
ties). After nitrosylation, sig-
nificant charge relocation
occurs in side chain atoms,
particularly affecting the sul-
fur (most of its negative
charge relocates to the termi-
nal oxygen atom, OE in the
scheme). The ad hoc parame-
ters can be transferred to any
Cys-containing molecule; for
example, starting from glu-
tathione (GSH), in silico S-
nitrosylation can be simulated
with a molecular builder
tool, constructing the S-

nitrosoglutathione (GSNO) molecule. To deal with the modification, ad hoc parameters for NO-Cys are transferred to GSNO
(by keeping the overall charge of GSNO fixed, such that only partial charge redistribution can occur). For predictive
purposes, GSNO can then be docked to a query protein with docking algorithms. For each Cys of the query protein, affinity
for GSNO is calculated. Cys showing favorable energetic and geometrical interaction with GSNO are predicted as potential
modification sites. By analogy, many other potential trans-nitrosylating agents can be tested (e.g., Cys-NO, NO-Cys con-
taining peptides) with similar docking-based approaches. (To see this illustration in color the reader is referred to the web
version of this article at www.liebertonline.com=ars).
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Conclusion

Although Cys is among the least abundant amino acids, it
frequently serves functional roles in proteins. In this review,
we focused our attention on (i) different groups of functional
Cys residues, and (ii) computational methods to investigate
and predict Cys functions. In some cases, bioinformatics has
already provided important insights and efficient predictive
tools (e.g., for catalytic redox Cys, metal-binding Cys, and
disulfide bonds). In other cases, progress has been either
limited (e.g., regulatory Cys, where only some types of Cys
modifications have been examined) or absent (e.g., detection
of redox switches). These difficulties appear to be linked to
the complexity of the subject, rather than to intrinsic limi-
tations of theoretical approaches. Despite numerous studies
over the last decade, many aspects of thiol-based redox
regulation and signaling are not well understood. However,
recent significant experimental advances (proteomics,
structural and post-translational datasets) have provided the
field of redox biology with an opportunity to examine gen-
eral principles of various Cys functions from a computa-
tional perspective. We therefore expect improvements in the
predictive power of computational methods, particularly for
those functional Cys which, to date, have not been subject to
bioinformatics analyses. It is likely that the concomitant
employment of different computational approaches will
soon prove to be crucial in unraveling properties of different
functional Cys, for example, by analyzing simultaneously
different sequence and structure based features, or even
complementing it with information retrieved from function
association networks (e.g., STRING). During review of this
article, a novel Support Vector machine (SVM) based ap-
proach for the prediction of disulfide bonds was published
(57). Interestingly, this approach is a sort of synthesis of the
sequence- and structure-based approaches (Fig. 3) and the
SVM approaches (Table 1). Starting from sequence infor-
mation, the algorithm (called DBCP) automatically retrieves
structural information by performing homology modeling.
The Euclidean distance between Ca atoms of each potential
Cys pair is calculated, and these values are given in input to
the SVM. Overall, algorithms such DBCP can combine the
power of structure and sequence analyses with the advan-
tages of a SVM. Further extensions of the method would
allow to account for many sequence and structural features,
chosen by users.

To be noted, similar approaches could also be extended to
the investigation of other functional Cys categories. In many
cases, they could help overcome challenges of linear ap-
proaches for the analysis of phenomena that depend on
multiple factors (e.g., sequence and structure determinants
favoring S-glutathionylation, or other Cys modifications).

Finally, development of more efficient theoretical tools
should go together with an increased communication be-
tween experimental and theoretical groups working in the
field of redox biology. This aspect requires, in the authors’
opinion, considerably more effort in order to achieve a better
exchange of reliable data and ideas between experimental and
computational scientists. Up to now, only in a few cases the
predictions from bioinformatic approaches have been directly
tested experimentally. Indeed, this appears to be a funda-
mental challenge—not only to assess the efficacy of different
algorithms but, more generally, to allow computational bi-

ologists to focus their research on important biological prob-
lems, while providing tools that are (i) computationally
efficient, (ii) easy to improve and expand with new features,
and (iii) easy to use and understand by nonspecialist users.
Allowing experimental scientists to have an easy access to
user-friendly software will encourage them to share their
data, and this will promote the development of coordinated
and large scale benchmark projects.
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Abbreviations Used

Å¼Angstrom
Cys-SOH¼ cysteine oxidized to sulfenic acid

Cys-SO2H¼ cysteine oxidized to sulfinic acid
ER¼ endoplasmic reticulum

GSH¼ reduced glutathione
GSSG¼ oxidized glutathione

GSNO¼ S-nitrosylated glutathione
HH¼Henderson–Hasselbach
H2S¼hydrogen sulfide
NO¼nitric oxide

NO-Cys¼ S-nitrosylated cysteine
PDB¼Protein Data Bank
QM¼ quantum mechanics

S¼ sulfur
Se¼ selenium

Sec¼ selenocysteine
S–S¼ sulfur atoms of two Cys residues

involved in a disulfide bond
SVM¼ support vector machine

Zn¼ zinc
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