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Abstract

Background: Salmonella enterica serotype Typhi is a human-restricted intracellular pathogen and the cause of typhoid fever.
Cellular immune responses are required to control and clear Salmonella infection. Despite this, there are limited data on
cellular immune responses in humans infected with wild type S. Typhi.

Methodology/Principal Findings: For this work, we used an automated approach to purify a subset of S. Typhi proteins
identified in previous antibody-based immuno-affinity screens and antigens known to be expressed in vivo, including StaF-
putative fimbrial protein-STY0202, StbB-fimbrial chaperone-STY0372, CsgF-involved in curli production-STY1177, CsgD-
putative regulatory protein-STY1179, OppA-periplasmic oligopeptide binding protein precursor-STY1304, PagC-outer
membrane invasion protein-STY1878, and conserved hypothetical protein-STY2195; we also generated and analyzed a
crude membrane preparation of S. Typhi (MP). In comparison to samples collected from uninfected Bangladeshi and North
American participants, we detected significant interferon-c responses in PBMCs stimulated with MP, StaF, StbB, CsgF, CsgD,
OppA, STY2195, and PagC in patients bacteremic with S. Typhi in Bangladesh. The majority of interferon-c expressing T cells
were CD4 cells, although CD8 responses also occurred. We also assessed cellular proliferation responses in bacteremic
patients, and confirmed increased responses in infected individuals to MP, StaF, STY2195, and PagC in convalescent
compared to acute phase samples and compared to controls. StaF is a fimbrial protein homologous to E. coli YadK, and
contains a Pfam motif thought to be involved in cellular adhesion. PagC is expressed in vivo under the control of the
virulence-associated PhoP-regulon required for intra-macrophage survival of Salmonella. STY2195 is a conserved
hypothetical protein of unknown function.

Conclusion/Significance: This is the first analysis of cellular immune responses to purified S. Typhi antigens in patients with
typhoid fever. These results indicate that patients generate significant CD4 and CD8 interferon-c responses to specific S.
Typhi antigens during typhoid fever, and that these responses are elevated at the time of clinical presentation. These
observations suggest that an interferon-c based detection system could be used to diagnose individuals with typhoid fever
during the acute stage of illness.
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Introduction

Salmonella enterica serotype Typhi is a human-restricted intracel-

lular pathogen and the cause of typhoid fever. It is estimated that

over 20 million cases of S. Typhi infection occur each year,

resulting in approximately 200,000 deaths per year globally [1].

Current typhoid vaccines provide 50–75% protection for 2–5

years [2]. Mediators of protective immunity against typhoid are

incompletely understood. S. Typhi is an invasive enteropathogen

that, following ingestion, transits through intestinal epithelial cells,

is taken up by professional phagocytic cells, survives within

macrophages, and systemically circulates [3,4,5,6]. Antibody

responses to lipopolysaccharide (LPS), flagellin, Vi capsular

polysaccharide, and crude whole cell preparations have been

documented, and antibody responses are the basis of the Widal

serologic diagnostic assay for typhoid fever [7,8,9,10,11]. Howev-

er, with the exception of antibody responses against the S. Typhi

capsule (Vi antigen) [12], antibody responses may play a limited

role in mediating protective immunity during typhoid fever.

S. Typhi is an intracellular pathogen, and cellular immune

responses are required to control and clear S. Typhi infections

[10,13,14,15]. Unfortunately, there are limited data on antigen-

specific cellular responses during human wild type S. Typhi

infection. What is known is largely derived from analyses of

cellular responses in mice infected with S. Typhimurium

[16,17,18]; however, S. Typhimurium does not cause a typhoidal

illness in humans, and S. Typhi and S. Typhimurium differ

significantly at the genomic level [17,19,20]. Direct analysis of

cellular responses during S. Typhi infection in humans either pre-

dates modern immunologic techniques [21] or involves charac-

terizing immune responses in recipients of live attenuated oral

typhoid vaccines [22,23]. These analyses have shown that CD4+

and CD8+ T cells are critical to the development of protective

immunity to Salmonella, and control of Salmonella infection involves

prominent expression of interferon-c by both CD4 and CD8 cells

[24,25,26]. To date, however, there is less information on the

cellular responses in humans during wild type infection, especially

to purified S. Typhi antigens.

To address this, we used a modification of an automated

approach to purify a subset of S. Typhi proteins for use in

immunologic assays [27]. We selected antigens for evaluation

based on our previous application of a high throughput immuno-

affinity screen, In Vivo Induced Antigen Technology (IVIAT), to

S. Typhi [28]. Here we describe purification of a subset of these

proteins, and evaluation of interferon-c and cellular proliferation

responses to these antigens in humans with S. Typhi bacteremia in

Bangladesh. We also assessed responses to a crude membrane

preparation of S. Typhi.

Materials and Methods

Generation of expression clones for antigen production
We selected 58 S. Typhi proteins contained within operons

identified during our previous application of IVIAT to S. Typhi

[28]. IVIAT identifies proteins expressed in vivo during human

infection and that generate an antibody response [28]. We

obtained pDONR221 Gateway Based entry clones of the S. Typhi

CT18 genes corresponding to selected proteins from the NIAID-

sponsored Pathogen Functional Genomic Resource Center, J.

Craig Venter Institute (JCVI, formerly The Institute for Genomic

Research). We used LR clonase II enzyme reactions (Invitrogen,

Carlsbad, CA) as per the manufacturer’s instructions to move

inserts into pDEST17 (Invitrogen, Carlsbad, CA) to generate a

fusion containing an amino terminal 66 histidine (HIS) tag. We

transformed DH5alpha-T1R competent cells with LR reactions

and selected for ampicillin resistance. We confirmed insert

presence by restriction digestion and PCR analysis and trans-

formed purified plasmids into E. coli protein expression strain

BL21 star (DE3) pLysS (Invitrogen).

Protein expression
We grew transformants harboring recombinant plasmids at

37uC as 1.5 ml cultures in 96-well blocks (Marsh Biomedical

Products) to an OD600 of 0.6–0.8. We induced cultures with 1 mM

isopropyl b-D-1-thiogalactopyranoside (IPTG) on a 96-well plate

shaker (Multitron) (6900 rpm). After 3 hours at 37uC, we

harvested cells at 4uC and stored preparations at 280uC for

further use. We also induced BL21 star (DE3) pLysS containing

pDEST17 but lacking an S. Typhi insert. This construct produced

a truncated HIS-tagged protein MSYYHHHHHHLESTSLYK-

KAERERKMI that we recovered and used as a control protein in

immunological assays.

Automated 96-well protein purification
We performed protein purifications in 96-well plates using a

BiomekFx (Beckman Coulter) robotic liquid handler as previously

described [27]. For this 6xHIS denaturing affinity purification, we

thawed cell pellets at room temperature for 15 min, lysed them in

the presence of protease inhibitors in 115 ml lysis buffer I (100 mM

NaH2PO4, 10 mM Tris, pH 8.0), robotically resuspended product

in a 96-well block and agitated at 900 rpm for 10 min (5 min in

the clockwise direction and 5 min in the counterclockwise

direction). We then added 10 ml of DNase mix (10 mg/ml DNase;

Sigma Aldrich in 900 mM MgCl2, 100 mM MnCl2) to the lysate

and agitated the preparation at 900 rpm for 10 min. Next, we

added 115 ml of lysis buffer II (100 mM NaH2PO4, 10 mM Tris,

6 M guanidine hydrochloride, 10 mM, 2-mercaptoethanol,

pH 8.0) to create denaturing conditions. We then allowed these

cell lysates to bind to 30 ml of MagneHIS beads (Promega) with

shaking at 900 rpm for 20 min (10 min clockwise, 10 min

counterclockwise), and separated beads using a magnabot (24-

pin magnet; Promega). The robotic liquid handler then washed

the MagneHIS beads with bound protein three times with wash

buffer (100 mM NaH2PO4, 10 mM Tris, 8 M urea). We

prevented bead adherence to the walls during washing by shaking

the samples at 900 rpm for 2.5 min clockwise and then 2.5 min

Author Summary

Salmonella enterica serotype Typhi infection is a significant
global public health problem and the cause of typhoid
fever. Salmonella are intracellular pathogens, and cellular
immune responses are required to control and clear
Salmonella infections. Despite this, there are limited data
on cellular immune responses during wild type S. Typhi
infection in humans. Here we report the assessment of
cellular immune responses in humans with S. Typhi
bacteremia through a screening approach that permitted
us to evaluate interferon-c and proliferation responses to a
number of S. Typhi antigens. We detected significant
interferon-c CD4 and CD8 responses, as well as prolifer-
ative responses, to a number of recombinantly purified S.
Typhi proteins as well as membrane preparation in
infected patients. Antigen-specific interferon-c responses
were present at the time of clinical presentation in patients
and absent in healthy controls. These observations could
assist in the development of interferon-c-based diagnostic
assays for typhoid fever.
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counterclockwise. We then washed the beads with bound protein

using 100 ml of distilled water, and added 50 ml distilled water to

make the final suspensions for analysis. We repeated this

extraction cycle six times.

Automated 96-well protein analysis
We analyzed proteins in a 96-well format using a capillary-

based instrument, the LabChip90 (Caliper Sciences). We

automated a system that resuspended 3 ml of protein sample in

7 ml analysis buffer (Caliper Sciences), heated these to 96uC for

5 min., cooled them to room temperature, and briefly centri-

fuged to collect the sample. We added distilled water (35 ml) to

each sample prior to analysis. We primed the analysis chip

(Caliper Sciences) according to the manufacturer’s instructions.

The automated protein analysis generated three different forms

of output: a chromatogram that showed migration time; a virtual

gel that mimicked a Coomassie stained gel; and a results table

that included the estimated size, quality, and quantity of each

peak. The LabChip90 analyzed 96 proteins at a time with

analysis time of 40 seconds per sample. We parsed the output

results and imported them into the Harvard Institute of

Proteomics protein database. We assessed for presence of

contaminating E. coli LPS using a HEK-Blue LPS Detection kit

(InvivoGen, San Diego, CA).

Production and mass spectrometric analysis of S. Typhi
crude membrane preparation

We prepared S. Typhi membrane preparation as previously

described [29,30]. Briefly, we cultured S. Typhi Ty21a on sheep

blood agar plates and harvested in Tris buffer (10 mM Tris,

pH 8.0, 5 mM MgCl2). We sonicated the mixture, and centrifuged

at 14006g for 10 minutes and transferred the supernatant to fresh

tubes, centrifuging at 149006g for 30 minutes. We suspended the

pellet in 10 ml Tris buffer, and determined the protein content by

the BioRad Protein Assay per the manufacturer’s instructions.

We performed mass spectrometric analysis of the S. Typhi

membrane preparation as previously described using a LTQ-

Orbitrap XL (Thermo Fisher Scientific) instrument [19,31]. We

identified peptides using SEQUEST (Thermo Fisher Scientific)

through Bioworks Browser, version 3.3.1 SR1. MS/MS data were

obtained using 10 ppm mass accuracy on precursor m/z and a 0.5

Da window on fragment ions. Fully enzymatic tryptic searches

with up to three missed cleavage sites were allowed. Oxidized

methionines were searched as a variable modification and

alkylated cysteines were searched as a fixed modification.

Salmonella databases for CT18 were downloaded from EMBL-

EBI and supplemented with common contaminants. We employed

a reverse database strategy [32] using concatenating reversed

protein sequences for each database entry in SEQUEST. We

filtered peptides for each charge state to a false discovery rate

(FDR) of 1%, and then grouped peptides into proteins using

Occam’s razor logic. A full listing of proteins identified in mass

spectrometric analysis of Salmonella Typhi membrane preparation

is available in the supplemental material (Table S1).

Collection of specimens from study subjects
Individuals (1–59 years of age) with fever of 3–7 days duration

($39uC) having clinical symptoms and signs suggestive of typhoid

fever and lacking an alternate diagnosis who presented to the

Kamalapur field site of the International Centre for Diarrhoeal

Disease Research, Bangladesh (ICDDR,B) Dhaka hospital were

eligible for enrollment. We collected venous blood (for children

,5 years of age, 3 ml of blood; for older individuals, 5 ml of

blood) for culture (n = 69). We used the BacT/Alert automated

system and identified S. Typhi organisms using standard

biochemical methods and by reaction with Salmonella-specific

antisera [30,33]. Following informed consent from patients or

guardians in the case of children, we collected an additional 5 ml

of blood from bacteremic individuals within 72 hours of the

patient presenting for medical care, and a follow-up sample 21–

28 days later (n = 16; ages 2–22 years). All patients with 3 days or

longer of fever were treated initially with amoxicillin or cefixime

at the discretion of the attending physician until scheduled follow-

up 48–72 hours later, or sooner as clinically indicated. Individ-

uals with documented S. Typhi bacteremia were continued on

amoxicillin if they showed signs of improvement and their blood

isolates showed sensitivity to first line treatment; or were switched

to parenteral ceftriaxone or oral ciprofloxacin, if their isolates

were not sensitive and/or they failed to improve by 72 hours;

therapy was continued for up to 14 days, or up to 7 days beyond

defervescence, whichever occurred first. All patients recovered.

We also collected 5 ml of blood from North American volunteers

(n = 3) without a history of international travel who had never

received typhoid vaccination and who did not have previous

known Salmonella infection, and we collected 5 ml of blood from

healthy Bangladeshi volunteers (n = 4) who did not have illness,

fever or diarrhea in the preceding three months [34]. Studies

were approved by the Institutional Review Boards of the

ICDDR,B and Massachusetts General Hospital.

PBMC isolation
We diluted heparinized blood in phosphate buffered saline

(PBS; 10 mM, pH 7.2) and isolated peripheral blood mononuclear

cell (PBMC) by gradient centrifugation on Ficoll-Isopaque

(Pharmacia, Uppsala, Sweden). We re-suspended isolated PBMCs

to a concentration of 16106 cells/ml in RPMI complete medium

RPMI-1640 (Gibco, Gaithersburg, Md) with 10% heat-inactivated

fetal bovine serum (Hyclone-Thermo Scientific, Waltham, MA,

USA), 100 units/ml penicillin, 100 mg/ml streptomycin, 100 mM

pyruvate, and 200 mM L-glutamine (Gibco) [35].

Interferon gamma ELISPOT assay
We used PBMCs to measure human interferon-c expression

using an ELISPOT format with MabTech antibodies, according

to the manufacturers’ instructions (Mabtech Inc, Cincinati, OH,

USA). In brief, we coated 96-well nitrocellulose plates (Multiscreen

HTS, Millipore) with 100 ml of 15 mg/ml human monoclonal anti-

interferon-c antibody (1-D1K) overnight at 4̊C. Following washing

the plates and subsequent blocking with 10% FBS for 2 h at room

temperature, we added PBMCs from individual patients or

controls at a concentration of 26105 per well for each

experimental condition. We added individual S. Typhi antigens

or control protein to wells at a concentration of 140 ng/well of

total preparation for each purified antigen (in 200 ml culture, final

concentration 0.7 mg/ml). In separate wells, we also added S.

Typhi membrane preparation at a final concentration of 10 mg/ml

in 200 ml culture, phytohaemagglutinin (PHA; Murex Diagnostics

Ltd, Temple Hill, UK) at a final concentration of 2.5 mg/ml in

200 ml culture, and keyhole limpet hemocyanin (KLH). We

included additional control wells with media but lacking antigen.

Following incubation of plates at 37uC in 5% CO2 for 20 hours,

we washed plates, added biotinylated monoclonal anti-interferon-c
antibody (7-B6-1-biotin; 1:500 dilution), incubated plates at room

temperature for an additional 2 hours, washed them, added

streptavidin-HRP (1:500 dilution), and re-incubated for 1 hour at

room temperature. We developed plates with aminoethylcarbazol

plus H2O2, and counted interferon-c secreting cells using a

Interferon-c and Cellular Responses during Typhoid
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stereomicroscope. We subtracted results for wells containing

media only and expressed results as the number of spots/106

PBMC in each experimental condition [36].

Intracellular cytokine staining
To characterize the interferon-gamma T cell response further,

we resuspended PBMCs at a concentration of 16106 cells/mL in

RPMI medium (Gibco, Carlsbad, CA) and supplemented with

10% fetal calf serum (FCS, Gibco). We cultured PBMCs in U-

bottom tissue culture plates (Nunc, Denmark) in the presence of

Salmonella membrane preparation (MP; 10 mg/ml), StaF (7 mg/

ml), PagC (7 mg/ml), KLH (2.5 mg/ml as a negative control) or

PMA (5.0 ng/ml as a positive control; Phorbol 12-myristate 13-

acetate) with ionomycin (1.0 mg/ml). Samples containing only

unstimulated cells were included to assess in vivo stimulation. We

used 1.0 mg/ml of anti-CD28 (clone 28.2; BD Pharmingen) and

anti-CD49d (clone 9F10; BD Pharmingen) for co-stimulation. We

incubated PBMCs and antigens for 2 hours at 37u C in 5% CO2.

After 2 hours, we added 10 mg/mL of brefeldin A (BFA, Sigma)

and continued incubating the plates for an additional 4 hours

[37]. Following stimulation, we washed cells with PBS and 2%

FCS. We then stained cells for 30 min at 4uC with the following

surface monoclonal antibodies: anti-CD3-APC, anti-CD4–

perCP, and anti-CD8-FITC (Becton Dickinson, San Jose,

USA). Following surface staining, we washed the cells and

incubated the preparations with FACS Lysing Solution (BD

Bioscience) for 10 minutes, and then re-washed and permeabi-

lized the preparations with FACS permeabilizing solution (BD

Bioscience) for 10 min at room temperature. We washed the

permeabilized cells and stained them for 30 min at 4uC with

fluorochrome-conjugated anti-IFN-c-PE (BD Bioscience). Fol-

lowing staining, we re-washed the cells, and fixed them in

formaldehyde before performing flow cytometry using a FACS

Calibur (BD, San Jose, CA) [37]. We identified the lymphocyte

population on forward versus side scatter plot, then gated

CD3+CD4+ and CD3+CD8+ subpopulations, and identified

CD4+IFN-c+ and CD8+IFN-c+ subpopulations. We subtracted

unstimulated responses, and expressed results as interferon-c+ T

cells per 1066 PBMC.

T-cell proliferation assay
To evaluate proliferative responses to antigens, we cultured

PBMCs (105 cell per well) in DMEM/F12 medium (Gibco,

GlutaMAX) supplemented with 1% gentamicin and 5% human

AB+ serum in triplicate wells in round-bottomed 96-well plates.

We added S. Typhi antigens and controls to wells at the same

concentrations used in the interferon-c ELISPOT assay and with a

final culture volume of 200 ml. We incubated plates at 37uC in 5%

CO2 for 5 days. After 48 h incubation, we replaced 100 ml of the

medium per well with fresh medium. After 5 days of incubation,

we added 3H-thymidine (1 mCi) to each well under sterile

conditions, incubated plates for an additional 8 hours, harvested

cells in Bray’s scintillation fluid (Ultimagold, PerkinElmer, Boston,

MA) using a cell harvester (Skatron instruments, Norway), and

assessed [3H] thymidine incorporation using a liquid scintillation

b-counter (Beckman LS6500 multipurpose scintillation counter,

USA) as previously described [22,38]. We expressed results as

counts per minute (cpm), and calculated stimulation indices for

each antigen according to the formula: net cpm with antigen /net

cpm without antigen (media alone) for each individual on each day

(day 5 and day 20) [39].

Table 1. S. Typhi protein preparations used in this study.

STY number Annotated name Protein

STY0202 Putative fimbrial protein StaF

STY0372 Fimbrial chaperone protein StbB

STY1177 Assembly/transport component in curli production CsgF

STY1179 Putative regulatory protein CsgD

STY1304 Periplasmic oligopeptide-binding protein precursor OppA

STY1878 Outer membrane invasion protein PagC

STY2195 Conserved hypothetical protein

Membrane preparation Crude membrane preparation containing at least 934 S. Typhi proteins (see Tables 2 and 3) MP

doi:10.1371/journal.pntd.0001193.t001

Table 2. Functional categories of proteins detected in S.
Typhi membrane preparation.

Classification Number of proteins

Energy metabolism 134

Unknown function or unclassified 105

Cell envelope 90

Hypothetical proteins 83

Protein synthesis 77

Transport and binding proteins 74

Protein fate 65

Pathogenesis/virulence/cellular processes 59

Central intermediary metabolism 42

Regulatory functions 39

DNA metabolism 38

Amino acid biosynthesis 30

Biosynthesis of cofactors, prosthetic groups, and
carriers

28

Purines, pyrimidines, nucleosides, and nucleotides 25

Transcription 19

Fatty acid and phospholipid metabolism 18

Mobile and extrachromosomal element functions 4

Viral functions 4

Total 934

doi:10.1371/journal.pntd.0001193.t002
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Statistical analysis
We used Prism4 (version 4.03, GraphPad Software, Inc.) for

data management, analysis and graphical presentation. We used

unpaired T tests to compare differences between groups, and

paired T tests to evaluate differences between study days within

groups.

Results

Automated production of S. Typhi proteins
We estimated that we required at least 20 mg of a specific

protein for use in our planned immunological assays. Our six

production runs resulted in the production of 20 mg or more for

25 of our selected 58 proteins; nine of these samples had purity by

LC90 Caliper analysis of .90%, and 17 had purity greater than

.80%. Purity was defined as the quantity of protein matching

the molecular size of the desired product. The LPS contamina-

tion of all preparations was found to be less than the level of

detection of our assay kit (,300 fg/ml). Of these 17 proteins with

sufficient quantity and purity, we selected 7 proteins for our initial

analysis (Table 1) representing a range of cellular location and

function, including a number involved in fimbrial attachment or

adhesion such as StaF (putative fimbrial protein encoded by

STY0202), StbB (fimbrial chaperone encoded by STY0372),

CsgF (involved in curli production encoded by STY1177), and

CsgD (a putative regulatory protein encoded by STY1179), as

well as OppA (a periplasmic oligopeptide binding protein

precursor involved in peptide transport encoded by STY1304),

a conserved hypothetical protein encoded by STY2195, and

PagC, an outer membrane protein encoded by STY1878 whose

expression is regulated by the PhoP regulon involved in intra-

macrophage survival [19,28].

Table 3. Proteins represented in the S. Typhi membrane preparations and selected S. Typhi antigens.

Accession Entry name Protein name Peptide Hits Rank*

Most abundant proteins

P0A1H6 EFTU_SALTI Elongation factor Tu (EF-Tu) 380 1

Q8Z7S0 OMPA_SALTI Outer membrane protein A (OmpA) 342 2

Q8Z8C8 Q8Z8C8_SALTI Succinate dehydrogenase flavoprotein subunit 298 3

Q8Z1T9 LAMB_SALTI Maltoporin (maltose-inducible porin) 250 4

Q8XGX4 ATPB_SALTI ATP synthase subunit beta 201 5

Q8XG95 ATPA_SALTI ATP synthase subunit alpha 185 6

P0A264 OMPC_SALTI Outer membrane protein C (porin ompC) 170 7

Q8Z9F0 Q8Z9F0_SALTI Pyruvate dehydrogenase E1 component 135 8

Q8Z4L6 PUR4_SALTI Phosphoribosylformylglycinamidine synthase 132 9

P0AA29 THIO_SALTI Thioredoxin-1 (Trx-1) 125 10

Q8Z9E6 Q8Z9E6_SALTI Aconitate hydratase 2 117 11

Q8Z937 FADE_SALTI Acyl-coenzyme A dehydrogenase 116 12

P0A1D4 CH60_SALTI 60 kDa chaperonin pProtein Cpn60) (GroEL protein) 105 13

Q8Z9A3 YAET_SALTI Outer membrane protein assembly factor yaeT 102 14

Q8XH17 Q8XH17_SALTI Outer membrane protein x 98 15

Q8Z858 Q8Z858_SALTI D-alanyl-D-alanine carboxypeptidase (penicillin-binding protein 6) 91 16

Q8Z6J0 Q8Z6J0_SALTI Phosphoenolpyruvate synthase 88 17

Q8XFH6 Q8XFH6_SALTI Peptidoglycan-associated lipoprotein 86 18

Q8Z8C6 Q8Z8C6_SALTI 2-oxoglutarate dehydrogenase E1 component 78 19

Q8Z7D2 Q8Z7D2_SALTI Aconitate hydratase 1 (Aconitate hydratase 1 (citrate hydro-lyase 1)) 75 20

Selected virulence proteins

Q8Z7H3 PHOQ_SALTI Virulence sensor histidine kinase (PhoQ) 70 29

Q8Z8L8 Q8Z8L8_SALTI Ferrienterobactin receptor (FepA) 38 103

Q8Z7H2 PHOP_SALTI Virulence transcriptional regulatory protein (PhoP) 37 104

Q8Z1P4 Q8Z1P4_SALTI Two-component response regulator (PmrA) 4 487

P61091 SLYA_SALTI Transcriptional regulator (SlyA) 4 543

Q8Z6B2 Q8Z6B2_SALTI Outer membrane invasion protein (PagC) 4 544

Q8Z3Y7 Q8Z3Y7_SALTI Putative uncharacterized protein associated with virulence (STY3182) 2 749

Q8Z727 HLYE_SALTI Hemolysin E (Cytotoxin ClyA) 1 859

S. Typhi proteins individually purified and also detected in S. Typhi membrane preparation

Q8Z7F0 Q8Z7F0_SALTI Periplasmic oligopeptide-binding protein (OppA) 15 225

Q8Z6B2 Q8Z6B2_SALTI Outer membrane invasion protein (PagC) 4 544

*Rank order of abundance.
doi:10.1371/journal.pntd.0001193.t003
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Mass spectrometric analysis of the S. Typhi membrane
preparation

Our mass spectrometric analysis of S. Typhi membrane

preparation identified 934 S. Typhi proteins (636 with three or

more spectral counts), including many involved in energy

metabolism, protein synthesis and fate, cell envelope or peptido-

glycan synthesis or maintenance, cellular processes, proteins

involved in transport, proteins involved in regulatory functions,

and proteins involved in virulence and pathogenesis (Table 2 and

3 and Table S1). We also identified two of our 7 selected proteins

(OppA and PagC) in the S. Typhi membrane preparation.

Interferon-c ELISPOT responses and T cell
characterization

We found that patients with S. Typhi bacteremia had elevated

interferon-c ELISPOT responses at both acute and convalescent

stages of infection compared to healthy controls for all seven of the

purified S. Typhi proteins, as well as against S. Typhi crude

membrane preparation (P,0.05) (Figure 1). In contrast, responses

to PHA did not differ significantly between patients and healthy

controls, and minimal responses were detected against control

protein and KLH in both patients and healthy controls. To assess

whether interferon-c responses were CD4 or CD8-derived, we

used intracellular cytokine staining following stimulation with a

subset of proteins, and found that the majority of interferon-c
expressing cells were CD4-positive, although a CD8 positive

response was also detected (Figure 2).

Proliferation responses
To further evaluate responses, we selected the three proteins

associated with the highest interferon-c expression levels in

convalescent phase samples, as well as membrane preparation, for

inclusion in cellular proliferation assays. In comparison to healthy

Bangladeshi controls residing within the same S. Typhi endemic area,

individuals with documented S. Typhi bacteremia had significantly

elevated proliferation indices at the acute stage of illness to StaF and

PagC (P,0.0120.0008), but not to STY2195, or crude membrane

preparation, and these acute stage responses further significantly

increased within bacteremic individuals by the convalescent period

compared to the acute stage responses (P#0.0220.001) (Figure 3).

We also detected a significantly increased proliferation response to

STY2195 and S. Typhi membrane preparation in bacteremic

patients at convalescence compared to acute phase samples and

compared to control patients (p#0.01).

Discussion

Cellular immune responses, including CD4 and CD8-mediated

interferon-c responses, play a critical role in clearing and

Figure 1. Interferon-c ELISPOT responses to S. Typhi antigens including StaF (STY0202), CsgF (STY1177), PagC (STY1878), StbB
(STY0372), CsgD (STY1179), OppA (STY1304), conserved hypothetical protein encoded by STY2195, S. Typhi membrane
preparation (MP), control protein, and phytohaemagglutinin (PHA) and keyhole limpet hemocyanin (KLH) during acute and
convalescent stage illness in S. Typhi bacteremic patients and in healthy controls (HC). Mean and standard error of the mean represented.
doi:10.1371/journal.pntd.0001193.g001
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controlling systemic Salmonella infections [23,40]. Despite this,

there has been limited evaluation of cellular responses in humans

to wild-type S. Typhi. No animal model fully replicates host-

pathogen interactions and immunologic events that occur during

this human-restricted infection. Evaluation in humans has largely

focused on characterizing responses in recipients of attenuated

vaccine strains of S. Typhi [23,38,41,42,43,44]. We report here a

screening approach that permitted us to evaluate interferon-c and

proliferation responses to a number of bacterial antigens in S.

Typhi-infected humans in Bangladesh. We selected proteins that

we had previously identified in immuno-affinity screening assays

for humoral responses [28], and we recovered these selected

proteins using an automated system and high throughput

genomic and proteomic technologies. Although we were able to

generate adequate samples for only approximately a third of our

selected proteins for evaluation in humans, we feel that high

throughput approaches such as the one we describe will assist in

accelerating analysis of pathogens that express thousands of

antigens. For instance, S. Typhi contains approximately 4,400

open reading frames, and although protein microarrays can be

used to screen for humoral responses across the immunopro-

teome, no comparable system has yet been developed to assess

cellular immune responses in a high throughput manner, despite

the critical role that cellular immune responses play against

intracellular pathogens.

We recognize that high throughput purification techniques may

be compromised by issues of contamination, including with LPS

when expression occurs in E. coli vectors. However, LPS

contamination of all preparations was found to be less than the

level of detection of our assay kit (,300 fg/ml), we did not detect

cellular immune responses to control protein expressed and

purified from E. coli in the same manner as our S. Typhi proteins,

and we detected cellular immune responses in patients but not

healthy controls to purified S. Typhi proteins. All of these

observations suggest that the responses we observed were antigen-

specific and not due to contaminating LPS.

In the S. Typhimurium mouse model, CD4 and CD8 cells are

critical to the development of protective immunity, and control of

Salmonella infection involves prominent expression of interferon-c
by both CD4 and CD8 cells [24,25,26]. Overall, only a relatively

few defined class I and class II epitopes have been identified in the

S. Typhimurium mouse model, including epitopes in FliC and

SipC for CD4 cells, and OmpC and GroEL for CD8 cells

[24,40,45,46,47,48]. A number of Salmonella antigens are also able

to induce partially protective immunity when included in subunit-

based vaccines in mice, including flagellin, MIG-14 and SseB

(Salmonella antigens expressed in vivo), suggesting that immune

responses against a number of Salmonella antigens could contribute

to protective immunity [49,50,51].

In comparison to the murine data, evaluation of cellular

responses to S. Typhi in humans have largely involved individuals

who have received attenuated S. Typhi vaccine strains such as

Ty21a and CVD908 [23,38,41,42,43,44]. In concordance with

the mouse data, these studies have shown induction of interferon-

c-expressing CD4 and CD8 responses following vaccination

[23,24,38,42,52]. Interestingly, CD8 responses may involve both

Figure 2. Characterization of interferon-c CD4 and CD8 responses to S. Typhi antigens including StaF (STY0202), PagC (STY1878),
S. Typhi membrane preparation (MP), and PMA and keyhole limpet hemocyanin (KLH) during acute and convalescent stage illness
in S. Typhi bacteremic patients. Mean and standard error of the mean represented.
doi:10.1371/journal.pntd.0001193.g002
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classical (HLA-A, B and C in humans) and non-classical (HLA–E,

F, and G) mediated T cell recognition [43,52]. Using an ex vivo

model, Sztein and colleagues have also recently found that direct

infection of antigen-presenting dendritic cells with S. Typhi leads

to expression of high levels of TNF-a, IL-6 and IL-8, and low

levels of interferon-c and IL-12 p70, but that dendritic cells can

also ingest other infected human cells leading to high level

expression of interferon-c and IL-12 p70, with subsequent

induction of a population of CD3+CD8+CD45RA-CD62L-

effector/memory T cells in co-cultured lymphocytes [53]. Based

on these observations, we used recombinant antigens to assess

and characterize interferon-c and proliferation responses in

infected humans in Bangladesh. To establish the feasibility of

our approach, we focused our initial efforts on a subset of proteins

that we had previously identified as generating humoral

immunity and being expressed in vivo during human infection

[28]. These included a number involved in fimbrial attachment

or adhesion such as StaF, StbB, CsgF, and CsgD, as well as

OppA, a conserved hypothetical protein encoded by STY2195,

and PagC, an outer membrane protein encoded by STY1878.

We previously found that humans infected with S. Typhi develop

a serum antibody response to PagC and that this response

increases at convalescence [28]. Here we furthered this

observation and report detection of a parallel cellular response

against PagC during human infection, including both interferon-

c and proliferative responses, and show that responses in

convalescence were higher than during acute stage illness.

Although the role of PagC during human infection is not fully

understood, its expression is controlled by the PhoP-regulon

involved in intra-macrophage survival [19,54].

We also detected significant increases in cellular responses

during convalescence against StaF, a fimbrial protein homologous

to E. coli YadK that contains a Pfam motif believed to be involved

in cellular adhesion [17], STY2195, a conserved hypothetical

protein of unknown function, and a crude membrane preparation

containing over 900 S. Typhi proteins, including GroEL, OmpC,

OppA and PagC.

We found that S. Typhi proteins elicit both CD4+ and CD8+

interferon-c expressing responses, with CD4 responses being

more numerous than CD8 responses. Of interest, we were able to

detect antigen-specific interferon-c responses in patients, includ-

ing at the time that patients presented for clinical care, but similar

responses were not seen on controls. These observations suggest

that an antigen-specific interferon-c-based detection system might

be used to diagnose individuals with typhoid fever during the

acute stage of illness, similar to the approach used to diagnose

infection with Mycobacterium tuberculosis [55,56,57]. Currently, all

available diagnostic tests for typhoid fever lack either sensitivity

and/or specificity, especially in areas of the world endemic for

typhoid. For example, microbiological culturing of blood has

approximately 30–70% sensitivity, depending on the volume of

blood obtained and whether previous antibiotics have been

administered, and the Widal assay has at best 85% specificity

when analyzing both acute and convalescent phase responses in

Figure 3. Cellular proliferation responses to S. Typhi antigens including StaF (STY0202), PagC (STY1878), conserved hypothetical
protein encoded by STY2195, S. Typhi membrane preparation (MP), control protein, and phytohaemagglutinin (PHA) and keyhole
limpet hemocyanin (KLH) during acute and convalescent stage illness in S. Typhi bacteremic patients and in healthy controls (HC).
Stimulation index: net cpm with antigen /net cpm without antigen (media alone) for each individual on each day (acute and convalescent). Mean and
standard error of the mean represented.
doi:10.1371/journal.pntd.0001193.g003
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endemic zones where typhoid exacts its highest burden [58,

59,60].

In summary, we have used a screening format to preliminarily

characterize S. Typhi antigen-specific interferon-c responses in

patients with typhoid fever. This is the first characterization of

such responses in humans, and further immunologic analysis will

be required to assess the role, if any, that these responses play in

controlling or clearing S. Typhi infection. Our study has a number

limitations, including analysis of a relatively small number of

purified S. Typhi antigens, characterization of a limited number of

immunologic parameters, and the absence of the inclusion of

febrile control patients confirmed not to be acutely infected with S.

Typhi; however, our detection of antigen-specific interferon-c
responses could assist in the development of interferon-c-based

diagnostic assays for typhoid fever, and our overall approach could

be used to identify antigens capable of inducing cellular immune

responses during infection with other intracellular pathogens.

Supporting Information

Table S1 Mass spectrometric analysis of S. Typhi
membrane preparation.
(XLS)
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