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Abstract

The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host
immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting
hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome
microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and
compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S.
japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two
mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology
associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice.
In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater
accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-
regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the
hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice,
reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in
both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix
metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the
contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular
and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding
of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the
complexities associated with chronic human schistosomiasis.
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Introduction

Schistosomiasis currently afflicts over 200 million people and

continues to cause debilitating disease worldwide, particularly in

developing and resource-poor countries [1] where the true global

impact of the disease has been largely unacknowledged [2]. The

scope of morbidity caused by schistosomiasis japonica ranges from

relatively mild hypersensitivity reactions to severe hepatic and

intestinal fibrosis, granuloma formation, hepatosplenomegaly and

portal hypertension [3]. This variation in human pathology

appears largely dependent on the host immune response to

schistosomes, and more specifically to the intensity of infection, the

number of previous infections and co-infections with other

parasites [4]. Similar variations in pathology during progressive

schistosomiasis are known to occur between different mouse

strains [5,6,7], such as inbred CBA, BALB/c and C57BL/6 mice,

which again are likely to be attributable to differences in the

modulation of host immune responses as other aforementioned

contributing factors are controlled.

Schistosome-induced granuloma formation is characterised by a

focussed accumulation of immune cells and collagen deposition, all

of which attempt to neutralise the presence of parasitic eggs. This

response is a manifestation of the host CD4+ T-cell dependent

immune response against schistosome eggs lodged in the liver

characterised by the production of the Th2 cytokines IL-4 and IL-

13 that induce granuloma formation and fibrosis [4][8].
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A recent study by Burke et al. [8] of the molecular and cellular

mechanisms occurring in the murine host liver (C57BL/6 mice)

during schistosome infection demonstrated that genes with specific

biological functions, particularly cytokines and chemokines, are

differentially expressed in correlation with disease development

[8]. The present study builds on this previous report [8], and

examines not only the initiation and progression of schistosome-

induced disease but also the severity of the murine host response to

Schistosoma japonicum. We hypothesised that the contrasting

pathology seen in BALB/c and CBA mice is due to differing

gene expression within the livers of the two mouse strains, and that

relative gene transcription levels and their products are also

associated with the severity of the host responses. We identified

specific gene expression profiles and cell types associated with the

development of both moderate and severe S. japonicum-induced

pathology by examining the transcriptional, parasitological and

histological features of the livers of these two mouse strains during

an active S. japonicum infection. These data provide a basis for

identification of new candidate molecules that may be targeted for

the future development of novel anti-schistosome therapeutics and

vaccines.

Materials and Methods

Ethics Statement
All work was conducted with the approval of the Animal Ethics

Committee of the Queensland Institute of Medical Research

(Project Number 288), which adheres to the Australian code of

practice for the care and use of animals for scientific purposes, as

well as the Queensland Animal Care and Protection Act 2001;

Queensland Animal Care and Protection Regulation 2002.

Mice and Parasites
Six to eight week old female BALB/c and CBA mice were

anaesthetised and percutaneously infected with 12 S. japonicum

cercariae (Mainland Chinese strain, Anhui population). Mice were

sacrificed at 4 (n = 5 per strain), 7 (n = 5 per strain) and 9 weeks p.i.

(n = 6 per strain), and the portal vein perfused to obtain adult

worms. An additional four mice per strain were used as uninfected

controls. Livers were collected from all mice, and individual lobes

preserved in either formalin or RNAlater for histological analysis

and RNA extraction, respectively. The number of adult worm

pairs in each mouse was recorded, and the hepatic egg burden was

evaluated by quantifying the number of eggs per gram (EPG) of

liver as described [9]. Briefly, a weighed portion of liver was

digested in 4% (w/v) potassium hydroxide to extract the eggs. Eggs

were then resuspended in formalin, and the EPG were determined

from the average number of eggs present in three 5 ml aliquots

[8,9].

Histological Analysis
Formalin-fixed, paraffin embedded liver tissues from infected

and control mice were sectioned (4 mm) and stained with

Haematoxylin and Eosin (H&E) to determine granuloma area,

and Sirius Red for collagen to measure progressive liver fibrosis

[10]. Giemsa and Leder staining were performed to demonstrate

eosinophil and neutrophil infiltration, respectively [8,11,12]. An

Aperio Slide Scanner and Image Scope software were used to

digitise and analyse light microscopy images (Aperio Technologies,

Vista, USA). The percentage of granulomatous liver was

determined using ImageJ 1.42 q software (National Institutes of

Health, USA) by blind Point Counting Stereology (Aperio

Technologies, Vista, USA) on H&E stained sections [13]. The

distribution of schistosome eggs in each mouse liver was also

assessed using the H&E-stained sections. The number of egg

clusters per liver section was determined (X40magnification),

where a cluster was defined as four or more eggs contacting each

other. The average number of eggs in each cluster was also

determined for each section. The percentage of collagen in the

total liver were determined for each mouse using Aperio

Technologies Positive Pixel Count (Aperio Technologies, Vista,

USA) as described [14]. Neutrophils and eosinophils were semi-

quantified by averaging the number of positively stained cells in 20

high power fields (X400 magnification).

Isolation, Quality and Quantity of RNA
Total RNA was extracted from liver tissues as described [8,15].

Briefly, each liver sample (,100 mg) was homogenised in

TRIZOL reagent (Invitrogen, Carlsbad, USA) using a Tissuelyser

(Qiagen, Valencia, USA). A fraction of the homogenate was then

processed by phase extraction with chloroform and column

chromatography using an RNeasy Mini Kit (Qiagen, Valencia,

USA). RNA was quantified using a Nanodrop-1000 spectropho-

tometer (Nanodrop Tech, Wilmington, USA) and quality assessed

using an Agilent 2100 Bioanalyzer (Agilent Tech, Foster City,

USA) on the basis of RNA Integrity Number (RIN). For both

mouse strains, three biological replicates from each of the infected

and control groups were selected on the basis of highest RIN,

adequate RNA concentration, and similarity egg burden and

hepatic pathology. Thus, a total of 24 individual biological

replicates were selected for separate microarray analysis.

Microarray Analysis
Complementary RNA synthesis and array hybridis-

ation. Complementary RNA was synthesised from 1 mg of total

RNA from each of the 24 selected samples using an Illumina

TotalPrep RNA Amplification Kit (Ambion, Austin, USA).

Purified, biotinylated-cRNA was hybridised to Illumina Mouse-

WG-6 v2 arrays, which were then scanned and digitised using an

Illumina BeadStation according to the manufacturer’s instructions

(Illumina, San Diego, USA). All raw microarray data have been

submitted to NCBI’s Gene Expression Omnibus and are publicly

available, with series accession number GSE25713. Fold changes

and standard deviations observed for all genes are summarised in

Tables S1 and S2.

Author Summary

Schistosomiasis is a significant cause of morbidity and
mortality in the tropical world although its true burden has
been historically underestimated. Millions of people
currently endure severe pathology as a result of schisto-
some infections, although some individuals appear to be
less susceptible to infection despite constant parasite
exposure. A similar range of disease susceptibility is
evident in different strains of inbred mice infected with
schistosomes, thereby mirroring the clinical situation.
Granuloma formation in the liver of both humans and
mice is a characteristic manifestation of chronic schistoso-
miasis, and is largely controlled by gene signalling
pathways. Certain genes expressed in particular cohorts
of mice and humans may be associated with the
development of severe pathology, or may confer a
protective phenotype. This murine study highlights some
key molecular aspects of chronic schistosomiasis which
may be responsible for the development of both mild and
severe pathology, and provides a bench mark for studying
the mechanisms of schistosome-induced disease in
humans.

Hepatic Gene Expression in S. japonicum Infection
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Data analysis. Quality control (GenomeStudio; Illumina,

San Diego, USA) involved examining signal intensity histograms

for experimental noise (biological/technical variation), backg-

round interference and hybridisation controls. Expression data

were entered into GeneSpring GX version 11 (Agilent Tech,

Foster City, USA), scaled to the median of all samples, and

baselined to the mean of the appropriate control samples for either

mouse strain. Normalised gene-lists were filtered for significant

signal on the basis of detection score, a measure of signal intensity

relative to background controls. For a given gene to be accepted

for further analysis, at least half of all samples were required to

have a detection score $0.95 for that gene (which equated to a

confidence value of p#0.05) [8]. Two-Way ANOVA (p#0.05)

with Benjamini-Hochberg correction for multiple testing was then

used to identify genes whose expression changed significantly over

time and differed significantly between the BALB/c and CBA

mice. An arbitrary cut-off of 62 fold change in expression over

time or between strains in at least one individual time-point was

applied [12,16].

DAVID analysis. DAVID (Database for Annotation,

Visualization and Integrated Discovery) analysis was used to

identify biological functions and pathways that were over-

represented by any differentially expressed genes [17]. From the

filtered gene-lists for each strain and time-point, functional

annotation charts were produced to identify significantly

enriched gene ontology terms and associations within the

KEGG and/or Biocarta pathways. Functional annotation

clustering was performed to identify relationships between

enriched ontologies, thereby enabling the identification of gene

subsets associated with similar biological processes [8].

Real-Time PCR
Real-time PCR was performed to validate the expression

patterns of a subset of genes determined by the microarray

analysis. Complementary DNA (cDNA) was synthesised from total

RNA using a QuantiTect Reverse Transcription Kit (Qiagen,

Valencia, USA). cDNA concentration was determined using

Nanodrop-1000 spectrophotometry. Primers were sourced from

previous studies [8,18,19,20,21] or were designed using Primer3

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi) soft-

ware (Table S3) [22]. Data for each sample were normalised to

the housekeeping gene, hypoxanthine phosphoribosyltransferase

[23]. Real-time PCR was performed using SYBR green master

mix (Applied Biosystems, Warrington, UK) on a Rotor-Gene 6000

(Corbett Life Sciences, Concorde, Australia).

Statistical Analysis
Statistical analysis of all parasitological, histological and real-

time PCR data involved 2-Way ANOVA with Bonferroni post-

hoc testing (p#0.05) (GraphPad Prism 5.0, San Diego, USA).

Correlations between the PCR and microarray data were assessed

as previously reported [8,24]. Briefly, the ‘‘D’Agostino & Pearson

omnibus normality test’’ and ‘‘Shapiro–Wilk normality test’’ were

used to assess the distribution of the data. As the data were not

normally distributed, a Spearman’s Rho correlation was employed

as described [24,25,26].

Results

Parasitological and Histological Analysis
There were no significant differences in worm burdens between

strains or over time in infected mice (Figure 1A) (2-Way ANOVA,

p.0.05). Further, no significant difference in hepatic egg burden

was evident between the mouse strains at any time-point

(Figure 1B) (2-Way ANOVA, p.0.05); however, hepatic egg

burdens increased dramatically over time in both strains and was

significantly higher at 7 and 9 weeks p.i. compared to 4 weeks p.i.

(2-Way ANOVA, p,0.001). Egg distribution analysis indicated

that a significantly higher number of egg clusters were present in

CBA mice compared to BALB/c mice at 7 weeks p.i. (Figure 1C)

(2-Way ANOVA, p,0.05); yet the mean number of eggs per

cluster did not differ significantly between the mouse strains

(Figure 1D) (2-Way ANOVA, p.0.05).

Granuloma area was significantly greater in the CBA mice

compared to the BALB/c mice. In CBA mice, the granuloma area

represented 43.8% and 44.4% of the total liver area at 7 and 9

weeks p.i. respectively, whereas the BALB/c granuloma area was,

respectively, 22.1% and 25.4% of the total liver area (Figures 1E,

2A and 2B) (2-Way ANOVA, p,0.001).

Hepatic fibrosis was induced more rapidly in the CBA mice

compared to the BALB/c mice. This was reflected by significantly

greater collagen deposition in the CBA mice at 7 weeks p.i., where

collagen represented 6.7% of the total liver area, compared to

3.8% in BALB/c mice (Figures 1F, 2C and 2D) (2-Way ANOVA,

p,0.05). Collagen deposition was comparable between the two

strains at 9 weeks p.i., indicating that the BALB/c fibrotic response

develops further over time to parallel that observed in CBA mice.

Leder staining indicated that neutrophil infiltration to the liver

was significantly higher in the BALB/c mice at both 7 and 9 weeks

p.i., with means of 16.6 and 31.9 neutrophils per high power field

(/hpf) at these respective time-points compared to means of 3.6

and 11.2 neutrophils/hpf in the CBA mice (Figures 3A, 4A and

4B) (2-Way ANOVA, p,0.05).

In contrast, Giemsa staining indicated that the eosinophilic

response was significantly higher in CBA mice (Figures 3B, 4C and

4D) (2-Way ANOVA, p,0.001). Means of 39.6 and 38.5

eosinophils/hpf were present in the CBA livers at 7 and 9 weeks

p.i. respectively, compared to means of 15.0 and 19.9 eosinophils/

hpf in BALB/c mice at these same time-points.

Microarray Analysis
Data normalisation and filtration. Filtering of normalised

expression data on the basis of detection score reduced the data set

from 45,281 to 18,243 genes. Next, 2-Way ANOVA was applied,

resulting in the identification of 8,937 differentially expressed genes

over time in either BALB/c or CBA mice (2-Way ANOVA, p#0.05).

These gene lists were further refined to identify changes in expression

with likely biological significance by applying a 62-fold cut-off in at

least one time-point for up- and down-regulated genes. In the CBA

mice, 2,938 genes exhibited at least a 2-fold change in expression over

time, as did 2,937 genes in the BALB/c mice. These gene lists were

further subdivided into lists of genes showing $2-fold up-regulation

or $2-fold down-regulation for at least one individual time-point.

Notably, 1,733 genes were identified whose expression differed

significantly between the two mouse strains (2-Way ANOVA,

p#0.05; Table S4). Of these, 687 genes showed at least 62-fold

differential expression. This list was then subdivided into lists of genes

showing greater expression in either BALB/c or CBA mice at each

time-point. The overlap between these lists throughout the time-

course of infection and between the two strains is shown in Figure 5.

Functional annotation analysis. Gene-lists were analysed

by functional annotation clustering using DAVID. This enabled

the identification of common biological clusters or themes

associated with progression of infection in both mouse strains

(Tables S5 and S6) and differences in key biological themes that

may have contributed to the observed differences in pathology.

Up-regulated genes are associated primarily with

inflammation and immunology. General pattern of expression:

Hepatic Gene Expression in S. japonicum Infection
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Figure 1. Parasitological and histological comparisons between BALB/c and CBA mice. Worm abundance (A) and hepatic egg burden (B)
did not differ significantly between strains; egg clustering (C) was significantly greater in CBA mice compared to BALB/c mice at 7 weeks p.i, yet the
mean number of eggs per cluster (D) did not differ significantly between strains. Granuloma area (E) was significantly greater in CBA mice compared
to BALB/c mice, as was hepatic fibrosis at 7 weeks p.i (F). Statistical significance between strains was determined using 2-Way ANOVA with Bonferroni
post hoc tests. m = BALB/c replicates, &= CBA replicates, *** = p,0.001, * = p,0.05, ns = no significant difference. Error bars represent mean with
standard error of the mean (SEM).
doi:10.1371/journal.pntd.0001178.g001
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Genes that were up-regulated over the course of S. japonicum

infection were associated with immune system processes,

inflammatory responses, antigen processing and presentation, T-

cell activation, cell migration, chemokine and cytokine activity and

wound healing. This was a common expression pattern for both

the BALB/c and CBA mice.

Th1 and Th2-associated gene expression is similar in both mouse strains:

Key cytokines associated with polarised Th1/Th2 responses showed

no significant difference in expression between the two mouse

strains (Table 1). Hepatic expression of Th1 associated genes

Interleukin-1a (IL-1a), Interferon-c Receptor 1 (IFN-cR1), Tumour

Necrosis Factor-a (TNF-a) and Signal Transducers and Activators

of Transcription 1 (STAT1) was significantly up-regulated over time

in both BALB/c and CBA mice (1-Way ANOVA, p,0.05). STAT1

showed an expression pattern typical of the early schistosome-

induced Th1 response, peaking at 4 weeks p.i. and declining

thereafter in both strains. Expression of IL-1a and TNF-a peaked at

7 weeks p.i. in both strains, whereas IFN-cR1 expression peaked at 9

weeks p.i. in BALB/c mice and at 7 weeks p.i. in CBA mice.

Expression of Th2-associated profibrotic cytokines Interleukin-10

Receptor Alpha (IL-10Ra), Interleukin-4 (IL-4), Interleukin-13 (IL-

13), Interleukin-33 (IL-33) and Interluekin-4-inducible 1 (Il4i1) was

significantly increased over time in both mouse strains (1-Way

ANOVA, p,0.05) but did not differ significantly between strains (2-

Way ANOVA p.0.05). IL-4 expression peaked at 9 weeks p.i. in

BALB/c mice, and at 7 weeks p.i. in CBA mice; IL-13 showed peak

expression in BALB/c mice at 7 weeks p.i. and in CBA mice at 9

weeks p.i. Other Th1/Th2 associated genes such as IFNc, IL-12,

IL-12R and IL-4R were unmeasurable by microarray analysis (i.e

did not exhibit significant signal relative to background).

Genes differentially expressed in BALB/c and CBA mice: The majority

of differentially up-regulated genes between strains occurred at the

7 and 9 week time-points, and coincided with the greatest

difference in hepatic granulofibrosis between strains (Figure 1C

and 1F). The specific fold changes of genes referred to in this and

subsequent sections are summarised in Table 1.

Up-regulated genes showing differential expression between the

two strains were predominantly associated with biological clusters

including ‘‘Immune Response’’, ‘‘Chemokine and Cytokine

Activity’’, ‘‘Inflammatory and Wound Response’’, ‘‘Cell Activa-

tion’’ and ‘‘Cell Migration and Locomotion’’ (Table 1). Prominent

genes detected within these clusters were specifically associated

with neutrophils, eosinophils, macrophages and fibrosis.

Expression of Pro-Platelet Basic Protein (PPBP or CXCL7), a

chemokine that promotes neutrophil adhesion and transendothe-

lial migration [27], was significantly higher in BALB/c mice at 4, 7

and 9 weeks p.i. compared to CBA mice (Table 1) (2-Way

ANOVA, p,0.05). The greatest difference in PPBP expression

between strains occurred at 9 weeks p.i., where the livers of

BALB/c mice transcribed approximately 6 times more.

Cathepsin G (CTSG), a proteolytic constituent of neutrophilic

granules [28], showed significantly higher gene expression in

BALB/c mice at 7 and 9 weeks p.i. reaching levels approximately

6 times that observed in CBA mice (Table 1) (2-Way ANOVA,

p,0.05).

Other genes indicative of neutrophil infiltration, including

Neutrophilic Granule Protein (NGP) and Myeloperoxidase (MPO)

increased significantly in both mouse strains over time (1-Way

ANOVA, p,0.05), but this increase was significantly greater in

BALB/c mice compared to CBA mice (Table 1) (2-Way ANOVA,

Figure 2. Histological staining highlights differences in tissue damage between BALB/c and CBA mice. Granulomatous pathology was
more severe in CBA mice despite a similar egg burden (A and B; Haematoxylin and Eosin x40). Collagen deposition (red) was also greater in CBA mice
(C and D; Sirius Red x40). All images were derived from mice at 7 weeks p.i. and were taken from murine livers with similar egg burdens. A and C; B
and D were taken from sections of the same mouse. Scale bar equals 400 mm.
doi:10.1371/journal.pntd.0001178.g002
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p,0.05). Up-regulation of NGP and MPO was sustained in BALB/

c mice over the time-course, whereas the expression of these genes

peaked at 7 weeks p.i. in CBA mice and then declined. S100A8, a

chemotactic molecule for neutrophils [29], was significantly up-

regulated in both mouse strains over time (1-Way ANOVA,

p,0.05). However, CBA mice showed a significantly greater

increase in expression of S100A8 compared to BALB/c mice at 7

and 9 weeks p.i. (Table 1.) (2-Way ANOVA, p,0.05).

Expression of CCL24, a chemokine that induces chemotaxis in

eosinophils [30], differed significantly between BALB/c and CBA

mice (Table 1) (2-Way ANOVA, p,0.05). CCL24 was significantly

up-regulated in CBA mice at 4, 7 and 9 weeks p.i. (1-Way

ANOVA, p,0.05), but not at any time-point in BALB/c mice.

Eosinophil-associated ribonuclease A family member 11 (EAR11),

an additional marker of eosinophil infiltration, also showed

significantly higher expression in CBA mice compared to

BALB/c mice (Table 1) (2-Way ANOVA, p,0.05). EAR11

expression was approximately 11 times greater in CBA mice at

7 weeks p.i.

Chitinase 3-Like 3 (CHI3L3), Resistin like alpha (RETNLA) and

Mannose Receptor C Type 1 (MRC1), markers for alternatively

activated macrophages (AAMs), also exhibited differential expres-

sion between the two strains. Expression of these genes was

significantly greater in CBA mice (Table 1) (2-Way ANOVA,

p,0.05), particularly at 7 weeks p.i. where the expression of all

three genes was more than twice that expressed in BALB/c mice.

Genes involved in fibrosis. As hepatic fibrosis was

significantly greater in hepatic sections from CBA than from

BALB/c mice, genes specifically associated with this process were

examined. Genes associated with fibrosis and related ontologies

showed significant up-regulation in both mouse strains throughout

the time-course, although only a subset showed differential

expression between strains (Table 1).

Collagen Type 1, Alpha 1 (COL1A1) and the hepatic stellate cell

chemokine CXCL1 were significantly up-regulated at 7 and 9

weeks p.i. in both BALB/c and CBA mice (1-Way ANOVA,

p,0.05). There was no significant difference in COL1A1

expression between strains (Table 1) (2-Way ANOVA, p.0.05),

and CXCL1 was differentially expressed only at 4 weeks p.i.

(Table 1) (2-Way ANOVA, p,0.05).

Fibrosis-associated genes Tissue Inhibitor of Metalloproteinase

1 (TIMP1) and Matrix Metalloproteinases 12 and 13 (MMP12,

MMP13) were significantly up-regulated in both BALB/c and

CBA mice at 7 and 9 weeks p.i. (Table 1) (1-Way ANOVA,

p,0.05). TIMP1 expression differed significantly between strains,

with CBA mice showing much greater fold-changes than BALB/c

mice (2-Way ANOVA, p,0.05). Similarly, expression of MMPs 12

and 13 was up-regulated to a significantly greater extent in CBA

mice (2-Way ANOVA, p,0.05).

Profibrotic cytokines Platelet-Derived Growth Factor-b (PDGF-

b), Transforming Growth Factor-b1 (TGF-b1) and Connective

Tissue Growth Factor (CTGF) showed no significant differences in

expression between BALB/c and CBA mice throughout the time-

course (Table 1) (2-Way ANOVA, p.0.05). The hepatic stellate

cell marker Actin Alpha 2, Smooth Muscle (a-SMA) showed

differential expression between the two strains only at 4 weeks p.i.

(Table 1) (2-Way ANOVA, p,0.05).

Down-regulated genes are involved predominantly in

metabolic processes. Genes that were down-regulated in

both strains were assigned to clusters representing ‘‘Oxido-

reductase Activity’’, ‘‘Ion and Vitamin Binding’’, ‘‘Biosynthetic

Processes’’ and ‘‘Metabolic Processes’’, including lipid, fatty acid

and amine metabolism (Table S4). Notably, confluent cytochrome

down-regulation was a common expression pattern across both S.

japonicum-infected mouse strains (Table 1). Of the 71 cytochrome

genes that were significantly down-regulated in either strain over

the time-course (1-Way ANOVA, p,0.05), expression patterns for

4 genes were shown to differ significantly between strains.

Cytochromes 2a4 (CYP2A4), 2b10 and 2b23 were significantly

more down-regulated in CBA mice over the course of infection

(Table 1) (2-Way ANOVA, p,0.05).

Genbank Accession Numbers
ACTA2 (a-SMA): NM_007392.2; CCL11: NM_011330.1; CCL24:

NM_019577.4; CHI3L3: NM_009892.1; COL1A1: NM_007742.2;

CTGF: NM_010217.1; CTSG: NM_007800.1; CXCL1: NM_

008176.1; CYP2A4: NM_009997.2; CYP2A5: NM_007812.2;

CYP2B10: NM_009999.3; CYP2B23: NM_001081148.1; EAR11:

NM_053113.2; HPRT: NM_013556.2.; IFNc: NM_008337.3;

IFN-cR1: NM_010511.2; IL-10Ra: NM_008348.2; IL-12Rb1:

NM_008353.1IL12Rb2: NM_008354.3; IL-12a: NM_008351.1;

IL-12b: NM_008352.2 IL-13: NM_008355.1; IL-1a: NM_

010554.4; IL-4: NM_021283.1; IL-4Ra: NM_001008700.3;

MMP12: NM_008605.3; MMP13: NM_008607.1; MPO: NM_

010824.1; MRC1: NM_008625.1; NGP: NM_008694.1; NM_

Figure 3. Comparison of cell infiltration in CBA mice and BALB/
c mice. Hepatic neutrophil infiltration (A) was markedly higher in BALB/
c mice compared to CBA mice. Conversely, eosinophil numbers (B) were
significantly greater in CBA mice compared to BALB/c mice. Statistical
significance between strains was determined using 2-Way ANOVA with
Bonferroni post hoc tests. m = BALB/c replicates, &= CBA replicates,
*** = p,0.001, ** = p,0.01, * = p,0.05, ns = no significant difference.
Error bars represent mean with standard error of the mean (SEM).
doi:10.1371/journal.pntd.0001178.g003
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008353.1; PDGF-b: NM_011057.2; PPBP (CXCL7): NM_023785.1

and NM_023785.2; S100A8: NM_013650.2; S100A9: NM_

009114.1; STAT1: NM_009283.3; TGF-b1: NM_011577.1;

TIMP1: NM_011593.2; TNF-a: NM_013693.1 and NM_013693.2.

Real-Time PCR
Real-time PCR validated the expression patterns of a subset of

genes (CCL24, COL1A1, CTSG, CYP2A4, IL-4, IL-13, MPO, NGP,

PPBP and S100A8) selected from the microarray analysis (Figure 6).

There was a significant correlation between the expression levels

revealed by the real-time PCR and the microarray analysis

(Spearman’s Correlation; r = 0.62; p,0.001).

Discussion

It is well documented that BALB/c and CBA mice show

variation in susceptibility to infection and pathology associated

with a number of pathogens including Leishmania major, Streptococcus

pneumonia, the cause of acute pneumococcal disease [31,32], and

Candida albicans [33]. The pathological differences evident between

these two mouse strains during these infections are attributable to

variations in the levels of particular components of the host

immune system [31,32,33].

Numerous studies have also demonstrated differing pathological

outcomes in schistosome-infected BALB/c, CBA and C57BL/6

mice. C57BL/6 mice show higher susceptibility to S. mansoni

infection than BALB/c mice [5], whereas BALB/c and C57BL/6

mice show less susceptibility to S. japonicum infection than CBA

mice [7]. Furthermore, Hirata et al. showed that during a S.

japonicum infection, inflammation ceased earlier in BALB/c mice,

and CBA mice showed a greater degree of inflammatory and

granulofibrotic responses [34]. However, the immunological

mechanisms underlying these differences are yet to be fully

realised.

The transcriptomic and histological data presented here provide

a more complete picture of the molecular and cellular mechanisms

which govern hepatic pathology in BALB/c and CBA mice. Our

results confirm that the transcriptional profiles of BALB/c and

CBA mice differ significantly during S. japonicum infection, and

these differences may contribute to the development of either

moderate or severe granulofibrotic pathology. Notably, we have

identified for the first time particular gene subsets and cell

populations which correlate with either severe or moderate S.

japonicum-induced hepatopathology.

Non-significant differences in worm and hepatic egg burden

between BALB/c and CBA mice indicates that severe pathology

Figure 4. Cellular infiltration differs between BALB/c and CBA mice. Large areas of neutrophil accumulation (Leder stain; cells with pink
cytoplasm indicated by arrows) adjacent to eggs were more common in BALB/c mice (A) compared with relatively scarce neutrophil accumulation in
the granulomas of CBA mice (B). Conversely, large areas of eosinophil accumulation (Giemsa stain; cells with pink cytoplasms indicated by arrows)
were more frequent in the granulomas of CBA mice (D) compared with those in BALB/c mice (C). All images were derived from mice at 7 weeks p.i.
and were taken from murine livers with similar egg burdens and represent granulomas containing a similar number of eggs and at a similar stage of
development. Scale bar = 50 mm (X400).
doi:10.1371/journal.pntd.0001178.g004
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during schistosomiasis is not simply the result of more schistosome

eggs producing more antigens. However, a significant difference in

early egg distribution within hepatic granulomas of the BALB/c

and CBA mice may reflect variability in the arrangement of eggs

as they migrate to the liver from the mesenteric veins of the

intestine, where S. japonicum eggs are characteristically deposited in

clusters [35]. The immunological make-up of the two mouse

strains may influence the ability of S. japonicum eggs to stay in close

association during migration, and/or their capacity to re-cluster or

remain clustered once they reach the liver. The clustered egg

distribution of granulomas in CBA mice at 7 weeks p.i. coincided

with a vastly greater percentage of granulomatous tissue compared

to the BALB/c mice. Thus, it is possible that CBA granuloma area

is significantly greater because the egg clustering makes them

Figure 5. Venn diagrams to illustrate the overlap between genes showing significantly altered expression. A and B are derived from
the list of 2,937 genes which were significantly changing over time in BALB/c mice (2-Way ANOVA, p,0.05). A shows the overlapping expression of
genes within this 2,937 gene list that were significantly up-regulated at either 4, 7 or 9 weeks p.i. B demonstrates the overlap of expression for genes
which were down-regulated at either 4, 7 or 9 weeks p.i. Similarly, C and D correspond to the 2,938 genes showing differential expression over time
in CBA mice (2-Way ANOVA, p,0.05), where C represents up-regulated genes and D represents down-regulated genes. The majority of these genes
show overlapping expression between 7 and 9 weeks p.i. E and F represent the 687 genes which were differentially expressed between strains (2-
Way ANOVA, p,0.05). E depicts the overlapping expression of genes which were more highly expressed in BALB/c mice at either 4, 7 or 9 weeks p.i.
F demonstrates the overlapping time-points at which genes transcribed at much higher levels in CBA mice were expressed.
doi:10.1371/journal.pntd.0001178.g005
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Table 1. Microarray expression patterns for genes of interest in BALB/c and CBA mice.

Expression fold-change* relative to uninfected mice

BALB/c CBA

Gene Description 4 wks 7 wks 9 wks 4 wks 7 wks 9 wks Probe ID

Up-regualted genes

Pro-Platelet Basic Protein (PPBP) 4.2 20.9 15.2 1.0 4.4 2.5 ILMN_2908435
ILMN_1228102

Cathepsin G (CTSG) 1.9 78.3 82.7 1.1 26.2 14.2 ILMN_1220236

Neutrophilic Granule Protein (NGP) 2.2 136.0 171.0 1.1 50.7 24.1 ILMN_1228832

Myeloperoxidase (MPO) 3.1 109.7 121.4 1.2 52.3 26.9 ILMN_2925094
ILMN_2719256
ILMN_2600421
ILMN_1249030

S100 Calcium Binding Protein A8 (S100A8) 3.1 67.0 65.9 2.0 191.0 164.8 ILMN_2710905

Chemokine (C-C motif) Ligand 24, Eotaxin-2 (CCL24) 1.8 2.1 2.2 5.2 15.8 7.7 ILMN_1225406

Eosinophil-Associated Ribonuclease A, Family Member 11 (EAR11) 1.5 13.9 54.6 1.6 160.8 115.7 ILMN_2890019

Mannose Receptor C, Type 1 (MRC1) 1.3 1.6 1.2 1.4 3.3 2.3 ILMN_1239430

Chitinase 3-Like 3 (CHI3L3) 1.3 40.6 66.3 1.3 111.3 74.8 ILMN_3117876

Resistin like alpha (RETNLA) 1.0 4.6 25.5 1.4 130.9 111.9 ILMN_1226472

Down-regulated genes

Cytochrome P450, Family 2, Subfamily A, Polypeptide 4 (CYP2A4) 21.3 25.7 26.3 21.6 245.0 239.3 ILMN_1250364

Cytochrome P450, Family 2, Subfamily B, Polypeptide 10 (CYP2B10) 21.8 28.7 216.6 21.5 241.0 240.0 ILMN_2594926

Cytochrome P450, Family 2, Subfamily B, Polypeptide 23 (CYP2B23) 21.9 29.1 211.0 21.4 254.8 253.1 ILMN_2976211

Fibrotic genes

Collagen Type 1, Alpha 1 (COL1A1) 1.7 36.3 31.6 1.3 40.0 21.0 ILMN_2687872

Chemokine (C-X-C motif) Ligand 1 (CXCL1) 21.4 4.3 4.2 1.3 4.7 5.8 ILMN_2763245

Tissue Inhibitor of Metalloproteinase 1 (TIMP1) 1.4 52.9 43.6 1.5 109.2 60.3 ILMN_2769918
ILMN_3103896

Matrix Metallopeptidase-12 (MMP12) 1.3 5.0 4.8 1.4 47.7 28.8 ILMN_1250421

Matrix Metallopeptidase-13 (MMP13) 2.8 4.6 1.9 2.0 57.1 21.9 ILMN_2737685

Platelet-Derived Growth Factor-Beta (PDGF-b) 1.4 2.7 2.3 1.5 3.7 2.4 ILMN_2618714

Transforming Growth Factor-Beta 1 (TGF-b1) 1.5 3.6 3.0 1.2 2.9 2.0 ILMN_2711461

Connective Tissue Growth Factor (CTGF) 1.1 1.8 1.9 1.1 2.2 1.9 ILMN_2711461
ILMN_2909150

Actin Alpha-2 Smooth Muscle Aorta (ACTA2) 21.2 1.8 1.9 1.2 2.0 2.0 ILMN_2710353
ILMN_2710354
ILMN_2693895
ILMN_2923445

Th1 genes

Interferon-Gamma Receptor 1 (IFN-cr1) 1.4 2.5 2.7 1.5 2.9 2.5 ILMN_2651575

Tumour Necrosis Factor-Alpha (TNF-a) 1.7 2.8 2.3 1.5 2.0 1.4 ILMN_2899863

Interleukin-1 Alpha (IL-1a) 1.7 3.6 1.9 1.8 2.3 1.5 ILMN_1243066
ILMN_1227018

Signal Transducers and Activators of Transcription 1 (STAT1) 3.6 2.3 1.7 2.3 1.9 1.2 ILMN_2655721
ILMN_2593196
ILMN_2510233

Th2 genes

Interleukin-4 (IL-4) 1.4 2.5 2.7 1.4 4.1 2.9 ILMN_2931334

Interleukin-10 Receptor Alpha (IL-10ra) 2.5 3.9 2.6 1.4 2.3 1.7 ILMN_1219946

Interleukin-13 (IL-13) 1.1 1.5 1.1 1.2 1.4 1.8 ILMN_2927131

Interleukin-33 (IL-33) 21.1 3.0 2.6 21.0 5.3 3.7 ILMN_1259747

Interleukin-4 inducible 1 (IL4i1) 1.8 2.3 1.9 1.9 3.6 2.2 ILMN_2733778

*Expression is presented as fold-change relative to uninfected controls for each strain. Negative values represent down-regulation. Fold changes were averaged for
genes represented by two or more probes.
doi:10.1371/journal.pntd.0001178.t001
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spatially larger, or the accumulation of localised egg antigens tips

the threshold of a normal immune response such that more cells or

different cell types are involved. It may also be that antigens

associated with singly distributed or smaller clusters of eggs in the

BALB/c liver could be neutralised more easily than those from

larger egg clusters, where the inner egg mass may be inaccessible

to immune effector cells; this is an important area for further

investigation.

While specific genes involved in the CBA immune response are

likely to be causing a greater degree of granulofibrotic pathology, it

is also possible that the greater degree of pathology, caused by

mechanisms independent of the immune response including

antigen exposure, alters gene expression and the nature of the

immune response itself. To address this issue of circular cause and

consequence, fold-changes in gene expression were compared to

the changes in hepatic granuloma area. Granuloma area was

maximally 2.5-fold greater in CBA mice than in BALB/c mice, so

we hypothesised that genes showing differences in gene expression

higher than this were likely to be the cause of granulofibrotic

pathology, rather than the consequence. Further, to control for

inherent differences in the baseline gene expression between

uninfected BALB/c and CBA mice we examined the level of

Figure 6. Real-time PCR validates microarray results. Microarray fold-changes relative to uninfected controls for each strain and time-point are
presented above the individual bars. Real-time PCR data are presented in the column graphs as copy number. PCR copy number provides an absolute
comparison between all groups; microarray fold-change provides a relative comparison between all groups, as these data are normalised to
respective control groups.
doi:10.1371/journal.pntd.0001178.g006
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induction (i.e fold change) of genes in infected CBA and BALB/c

mice compared with uninfected mice of the same strain.

In both the BALB/c and CBA mice, the up-regulation of genes

paralleled biological functions and cellular activities involved in

granuloma formation and fibrosis and were consistent with other

time-course studies of murine infection with S. japonicum

[6,8,12,36]. Many genes encoding cytokines, chemokines, enzymes

or proteins were differentially up-regulated between the two mouse

strains, and cell types quantified in histological sections mirrored

these gene expression patterns. The greater burden of severe tissue

damage in CBA mice compared to BALB/c mice was associated

with considerably greater down-regulation of numerous cyto-

chrome and metabolic genes (Table 1), a pattern consistent with

other murine studies on S. japonicum [8] and S. mansoni [37].

Notably, the expression levels of Th1- and Th2-associated genes

were similar in BALB/c and CBA mice, suggesting that factors

other than the Th1/Th2 cytokine balance contribute to the

difference in pathology between the two strains.

Our data indicate that the immune response in the lower

pathology BALB/c mice involves a considerable influx of

neutrophils, as reflected in the higher expression of the neutrophil

markers NGP, MPO and CTSG, the neutrophil chemokine PPBP

(CXCL7) and direct histological analysis. The role of neutrophils

during S. japonicum infection is currently unknown, although our

observations suggest they may play a regulatory role during the

development of the resulting granulomatous pathology. That the

fibrotic response of BALB/c mice parallels that in CBA mice by 9

weeks p.i. suggests that neutrophils are only effective in this

regulatory capacity early in infection and later become inactivated

or overwhelmed by the extent of resulting pathology. This proposed

role for neutrophils is in direct contrast to models of S. mansoni

infection in which neutrophils are thought to play only a minor role

in granuloma development [38,39]. Similar roles for neutrophils

have been reported for a rat model of cholestatic liver disease in

which neutrophils are essential for collagen reabsorption and tissue

repair/remodelling [40] and other inflammatory responses, such as

wound healing, in which neutrophilic influx correlates inversely

with fibrosis [41]. The regulatory activity of neutrophils may be

attributable to constituents of the neutrophilic granule proteins such

as collagenase and gelatinase (i.e. MMP’s), which degrade matrix

proteins [42]. We hypothesise that the observed up-regulation and

higher induction of NGP, MPO and CTSG in BALB/c mice in our

study may confer similar activity. CTSG attacks collagen and

fibronectin and inhibits TIMPs [43] while NGP and MPO are

known to participate in immune defence mechanisms against

microorganisms by releasing hydrolytic enzymes or toxic free

radicals [44]. Thus, neutrophilic granule proteins could act to

neutralise schistosome antigens, and to reduce fibrosis by attacking

collagen and fibrin. This mode of action may confer protective

characteristics in BALB/c mice, which may account for the less

severe pathology observed with this strain compared to CBA mice.

Conversely, it has been proposed that neutrophil CTSG acts to

promote fibrin formation [45]. Thus, the role of CTSG remains

ambiguous and requires further investigation. Future work to

further clarify the role of neutrophils should include integrin

activation and cell adhesion studies, to assess the specific anchoring

of neutrophils within the liver. The use of knockout mouse models

may define the specific contribution of the relevant genes and their

products, including MPO, NGP, CTSG and PPBP.

In contrast to other neutrophil associated genes, S100A8

exhibited significantly higher induction in the higher pathology

CBA mice compared with lower pathology BALB/c mice. S100A8

has previously been localised to regions of neutrophil accumula-

tion during S. japonicum infection [8] and is proposed to play an

important role in dictating the cellular composition of S. japonicum-

induced granulomas [46], possibly by inducing chemotaxis and

adhesion in neutrophils [29]. Conversely, high levels of S100A8

and the related molecule S100A9 are released from necrotic cells

and can undergo oxidative modifications such that at high

concentrations they act to limit inflammation and cellular

recruitment [47]. Thus, while the relatively lower levels of

S100A8 observed in BALB/c mice are likely to contribute to

neutrophil recruitment and granuloma formation, the higher levels

in CBA may reflect the higher degree of tissue damage observed in

these mice and represent a last ditch compensatory mechanisms to

limit excessive pathology [47].

Marked eosinophil accumulation and higher expression of the

eosinophil-associated gene EAR11 and chemokine CCL24 (Eo-

taxin-2) in granulomas was a striking feature in the higher

pathology CBA mice compared with BALB/c mice. It is well

documented that eosinophils are intimately involved in inflamma-

tory responses and defence mechanisms against parasites including

S. mansoni during granuloma formation [30,48]. An eosinophilic

profile has also been reported in other chronic human liver

diseases as well as asthma, atherosclerosis and pulmonary fibrosis,

where the eosinophilic chemokine CCL11 (Eotaxin-1) has been

implicated in pathogenesis [49,50,51]. CCL24 has many proper-

ties comparable with CCL11, and may be able to promote

granuloma formation and hepatic fibrosis via a similar mechanism

[52]. Thus it is possible that higher eosinophil chemokine

expression and eosinophil recruitment contribute to the greater

pathology observed in CBA mice. Alternatively, eosinophils may

not be directly associated with development of severe pathology,

but rather act as indicators of more severe tissue damage.

Expression of AAM markers (CHI3l3, RETNLA, MRC1) was

markedly increased in the higher pathology CBA mice compared

to BALB/c mice throughout the time course. This may indicate

that different macrophage populations constitute the overall

hepatic macrophage influx, where macrophages in CBA livers

exhibit a more alternatively activated phenotype [53]. AAM have

several reported functions including promoting and regulating S.

mansoni-induced Th2 inflammation and fibrosis [54,55,56]. Higher

expression of AAM markers in pathology mice CBA in our study

suggests that these cells may be involved in promoting pathology in

the S. japonicum model, however further studies are required to fully

dissect the role of these cells.

Fibrosis was induced more rapidly in S. japonicum-infected CBA

livers than those of BALB/c mice. Although, the fibrotic response of

BALB/c mice was similar to CBA mice at 9 weeks p.i., there was an

overall trend for lower fibrosis in the former. It would be valuable to

observe collagen deposition at later time-points using a larger cohort

of mice to assess whether the fibrotic responses are truly similar, or

whether CBA mice show a consistently greater degree of fibrosis.

Similar variations in the fibrotic response between CBA and BALB/

c mice have been reported in pulmonary fibrosis models [57].

Expression of the collagen gene COL1A1 did not differ between the

two mouse strains. Thus, the differences in collagen deposition

shown histologically are likely to be attributable to other factors.

Known profibrogenic genes, including PDGF-b, TGF-b1 and

CTGF, were not differentially expressed between BALB/c and

CBA mice, indicating that differences in the expression of these

profibrotic genes are unlikely to contribute to variations in

profibrotic responses between the two mouse strains.

Hepatic stellate cells (HSCs) are the major profibrogenic, collagen

producing cells in the schistosome infected liver [13,58,59]. The HSC

chemokine CXCL1 and HSC-marker a-SMA showed significant

differential expression between strains at 4 weeks p.i. The initially

lower expression of CXCL1 and a-SMA in BALB/c mice compared to
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CBA mice may have contributed to the lag in fibrotic development,

providing further evidence that early expression of HSC chemokines

is critical for the establishment of HSC-associated fibrosis. The similar

expression patterns of CXCL1 and a-SMA later in the infection when

fibrotic pathology differs between strains suggests that there may be

additional factors involved.

The considerably higher expression of fibrosis-associated

molecules MMP12, MMP13 and TIMP1 in CBA mice compared

to BALB/c mice, particularly at 7 weeks p.i., coincided with the

observed severe fibrotic pathology. MMPs such as MMP13 are

involved in cleaving proteins of the extracellular matrix, such as

collagen, to remodel tissues [60,61]. Conversely, MMP12 has

recently been identified as a potent inducer of fibrosis during an S.

mansoni infection, counter-regulating the activity of MMP13 and

other matrix metalloproteinases [60]. Up-regulation of MMP12 in

our model may therefore contribute to the higher degree of fibrosis

observed in CBA mice. TIMPs subsequently play a role in tissue

remodelling and cell proliferation by inhibiting the action of

MMPs [13,62]. The up-regulation of TIMP1 in the schistosome

affected liver may override the collagen-degrading function of the

MMPs inhibiting their regulatory function during the fibrotic

response. The imbalance between MMP and TIMP expression has

been implicated in the development of fibrosis in the S. mansoni

murine model [62], but the exact mechanisms by which MMPs

and TIMPs promote and/or regulate fibrosis during murine

schistosomiasis japonica requires further study.

In summary, we have demonstrated that the mechanisms

driving granulomatous pathology during a S. japonicum infection

are likely to be multi-factorial, with both parasite egg distribution

and immune response of a particular mouse strain contributing to

the disease outcome. These results provide an important basis for

the design of future studies to investigate the precise role of specific

genes and/or cells in these processes. Our identification of specific

genes and cell types, which likely play key roles in either promoting

or regulating the granulomatous response, during schistosomiasis,

thereby governing the severity of the resulting disease, may help to

guide the future development of novel and effective anti-

schistosome interventions.
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