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We performed a screen for female sterile mutations on the X chromosome of Drosophila melanogaster and identified
new loci required for developmental events in oogenesis as well as new alleles of previously described genes. We
present mapping and phenotypic characterization data for many of these genes and discuss their significance in
understanding fundamental developmental and cell biological processes. Our screen has identified genes that are
involved in cell cycle control, intracellular transport, cell migration, maintenance of cell membranes, epithelial
monolayer integrity and cell survival or apoptosis. We also describe new roles for the genes dunce (dnc), brainiac
(brn) and fs(I)Yb, and we identify new alleles of Sex lethal (SxI), ovarian tumor (otu), sans filles (snf), fs(1)KIO, singed (sn),

and defective chorion-1 (dec-I).

Oogenesis in Drosophila has become one of the best
characterized model systems for studying basic ques-
tions in developmental and cell biology. The fly ovary
consists of a relatively small number of cell types, yet
these cells are involved in a number of complex pro-
cesses such as cell-cell signaling, cell migration, asym-
metric division, intracellular transport, and nuclear
migration. A full range of genetic, molecular, and cell
biological techniques have been developed for study-
ing Drosophila oogenesis, making it an ideal model sys-
tem. It is predicted that over 70% of all loci in Dro-
sophila play an essential role in the female germline
(Perrimon et al. 1996), meaning that the majority of
Drosophila genes can be studied in this relatively simple
system.

Drosophila has long been a strong model for study-
ing genes in a developmental system. With the
completion of the Drosophila genome sequencing (Ad-
ams et al. 2000), there has also been a tremendous
growth of interest in elucidating the function of newly
discovered genes, in particular the ones with interest-
ing human homologs. Of the model genomes which
have been sequenced, the Drosophila genome has the
highest similarity with the human one. A high per-
centage of Drosophila genes have clear orthologs in hu-
man, and 61% of human disease and 68% of human
cancer genes have direct orthologs in Drosophila (Rubin
et al. 2000).

Genetic screens for mutations that specifically af-
fect female fertility have identified a large number of
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genes that function in the ovary (Gans et al. 1975;
Mohler 1977; Schupbach and Wieschaus 1991). A sub-
set of these genes is only essential for oogenesis. Since
any mutation that disrupts such a gene will lead to
female sterility, multiple alleles have typically been
found for these genes. The other major class of genes
that has been identified is represented by single alleles,
and it is thought that these alleles largely represent
genes that are not only required for oogenesis but are
also essential for viability. Specific alleles of essential
genes can result in female sterility either because the
mutation specifically disrupts function of the gene
during oogenesis or because hypomorphic alleles may
provide enough gene function for other processes but
not enough for oogenesis. In previous screens, more
than half of all female sterile loci identified represented
novel, presumably essential loci (Perrimon et al. 1986).
We have carried out a new screen of the X chromo-
some and have identified new alleles of several known
X chromosome female sterile loci as well as alleles of
novel genes required for Drosophila oogenesis.

RESULTS AND DISCUSSION

Overview of Drosophila Oogenesis

The Drosophila ovary consists of approximately 15
ovarioles, each of which acts as an assembly line in egg
production (Fig. 1; for a review of oogenesis, see Sprad-
ling 1993). At the anterior of the ovariole, in the ger-
marium, the germline and somatic cells of the ovary
come together to make up the basic unit of oogenesis,
the egg chamber. The germarium is divided into three
regions. In region one, at the anterior tip of the ger-
marium, two or three stem cells reside. These cells un-
dergo an asymmetric division to produce a daughter
stem cell and a cystoblast. The cystoblast then under-
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Figure 1 Oogenesis in wild type Drosophila. A germarium with the three different germarial regions (indicated) is shown and a

vitellarium with stages 2-6, and a stage 10 egg chamber.

goes four rounds of mitosis, each with incomplete cy-
tokinesis, producing a cyst of 16 cells connected by
cytoplasmic bridges called ring canals. Two of these
cells will possess four ring canals, and one of these two
cells will differentiate into the oocyte. The other 15
cells adopt a nurse cell fate and serve mainly to pro-
duce and transport into the oocyte materials required
by the oocyte for growth and patterning. At the end of
region 2a of the germarium, approximately 15 somatic
follicle cells begin to surround the 16-cell cyst, and in
region 2b, these cells have completely surrounded the
cyst. In region 3 of the germarium, also referred to as
stage 1 of oogenesis, the egg chamber pinches off from
the germarium. Oogenesis then progresses in 13 more
stages (stages 2-14) as the egg chamber is displaced
towards the posterior of the ovariole. In stage 9, the
majority of follicle cells start to migrate posteriorly to
form a columnar epithelium over the oocyte. The re-
maining follicle cells cover the nurse cells and become
extremely flattened (squamous). The oocyte grows
steadily throughout oogenesis until stage 10, when it
occupies approximately half of the egg chamber. In
stage 11, the remaining nurse cell contents are rapidly
dumped into the oocyte. In stages 12-14 the follicle
cells secrete the eggshell, the nurse cells execute a cell
death program, and a mature egg is formed.

Identification of New X-Chromosomal Loci Required
for Oogenesis

To identify genes required for oogenesis, we screened
for ethyl methane sulfonate (EMS) mutations on the X
chromosome which lead to female infertility (Fig. 2).
We identified 186 lines which we then placed into
three categories according to egg morphology. Of the
186 lines, 82 produced wild type eggs that failed to
hatch and therefore represent maternal effect lethal
mutations or mutations that prevent fertilization.
Sixty-one lines produced eggs that appeared collapsed,
likely reflecting defects in chorion production or in
other late stages of oogenesis. Forty-three lines pro-
duced few or no eggs or produced eggs with aberrant
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morphology. Four of these lines failed to lay eggs but
contained normal-looking eggs in their ovary, suggest-
ing defects in oviposition. We focussed our studies on
the remaining 39 female sterile lines.

The ovarian phenotypes of the 39 female sterile
lines were determined by examining fixed ovaries
which were labeled for DNA and actin. This analysis
allowed us to further classify these mutants according
to the stage of arrest in oogenesis. Mutants were
mapped by meiotic recombination mapping, and then
by complementation tests against candidate deficien-
cies. Alleles that mapped to the same region of the X
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Figure 2 Crossing scheme used to isolate X chromosome fe-
male sterile lines. Males of the genotype yw118FRT19A (Bloom-
ington stock B1744) were mutagenized, and F3 female progeny
were tested for fertility. SxIM4 is a male lethal allele of Sx/ and
was used to eliminate unwanted males from the first cross.
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chromosome were tested inter se for complementation
and to known mutants in the region. This analysis al-
lowed us to place the 39 female sterile mutants into 30
complementation groups (Table 1).

Genes Required for Patterning of the Germarium

We have identified 12 lines representing nine comple-
mentation groups, which show mutant phenotypes in
the earliest stages of oogenesis, in the germarium. Of
these, four loci represent novel genes (Table 1). In
fs(1)124 mutant females, germaria are severely atro-
phied and only one or two egg chambers are present in
an ovariole. To examine the fate of cells in these mu-
tant ovaries, we immunostained mutant ovaries with
an antibody to the fusome component adducin-like
(Zaccai and Lipshitz 1996). The fusome is a membra-
nous organelle enriched in membrane skeleton pro-
teins, and it marks the dividing cells. In normal devel-
opment, the fusome appears as a sphere (spectrosome)
in stem cells and cystoblasts, whereas in dividing cys-
tocytes it adopts a branched structure linking all of the
cells of the cyst (Lin et al. 1994). In fs(1)124 homozy-
gous mutants, the germaria and these budded egg
chambers are full of spectrosome-containing cells or
small cysts of up to four cells (Fig. 3A), indicating that
development arrests very early. Rarely, an egg chamber
with a differentiated oocyte and multiple nurse cells is
produced. This phenotype is reminiscent of the phe-
notypes of tumorous ovary mutants such as otu and
bam, genes involved in the control of stem cell divi-
sions or cystocyte differentiation (King and Storto
1988; McKearin and Spradling 1990), and therefore de-
fines a new member of this class of female sterile mu-
tations.

Females from the line f5(1)259 produce egg cham-
bers with variable numbers of germ cells per egg cham-
ber, including small cysts with less than 16 cells (Fig.
3B) and large cysts with greater than 16 cells (Fig. 3C).
These defects could be due to a failure to correctly
pinch off 16 cell cysts from the germarium or they
could reflect a failure in the cystocyte division program
that generates the 16-cell cyst. The cysts with more
than 16 cells have multiple oocytes (arrows in Fig. 3C),
and none of these oocytes is attached to more than
four ring canals, indicating that no more than the nor-
mal four cystocyte divisions took place. This suggests
that these cysts are composed of multiple cysts that
have been improperly packaged together. A packaging
defect could also explain the existence of less than 16
cells in a cyst if somehow wild type cysts with 15 nurse
cells plus an oocyte were broken up as they exited the
germarium. If so, we would predict that a significant
number of cysts with fewer than 16 cells would not
have an oocyte. Instead, we find that almost all of the
cysts with fewer than 16 cells include a single diploid
oocyte nucleus (arrow in Fig. 3B), suggesting that these

cysts are not simply the result of the breaking apart of
16-cell cysts. Rather they most likely arise from a fail-
ure to complete the normal four rounds of cystocyte
divisions in region 1 of the germarium. Therefore,
there is evidence that f5(1)259 mutants affect both cys-
tocyte divisions and cyst encapsulation in the ger-
marium.

The f5(1)217 homozygous mutants display an age-
dependent deficit in follicle cell numbers. Young fe-
males (less than three days old) produce egg chambers
with a reduced number of follicle cells (compare Fig.
3D and Fig. 3E). This phenotype becomes worse with
age, and older females (greater than three days old)
frequently contain large fused egg chambers which ap-
pear to contain multiple 16-cell cysts and which con-
tain few follicle cells (Fig. 3F). These fused egg cham-
bers could be a result of there being an insufficient
number of follicle cells to encapsulate egg chambers as
they bud from the germarium. The phenotype of
fs5(1)217 may suggest a role in follicle cell division or
maintenance. A signal transduction pathway involv-
ing the hedgehog gene has been implicated in regulat-
ing follicle cell proliferation (Forbes et al. 1996a,
1996b), and it will be interesting to see if f5(1)217 is
involved in this pathway.

We have also identified new alleles of previously
identified genes that pattern the germarium, including
three new alleles of ovarian tumor (otu), one allele of
sans fille (snf), and an allele of SxI (Table 1). In addition,
we identified a new allele of fs(1)Yb, fs(1)Yb”?, and our
analysis of this mutant has provided new insights into
the function of this gene. fs(1)Yb is required for germ-
line encapsulation by follicle cells (Johnson et al. 1995;
Fig. 4A) and for germline stem cell maintenance (King
and Lin 1999). In addition to confirming these require-
ments, our analysis of f5(1)Yb”? suggests a new require-
ment in regulating cystoblast differentiation. Wild
type ovaries contain two or three stem cells and ap-
proximately the same number of cystoblasts at the an-
terior tip of the germarium. These cells can be identi-
fied by their high level of SxI expression (Fig. 4B; Bopp
et al. 1993). In f5(1)Yb”?/fs(1)Yb”?, the number of these
cells is increased and they often take up the entire an-
terior half of the germarium (Fig. 4C). The pattern of
Sxl expression suggests that fs(1)Yb”? mutant stem cells
or cystoblasts overproliferate in these germaria. To fur-
ther ascertain the identity of these cells we examined
fusome organization. In normal development the fu-
some appears as a sphere (spectrosome) in stem cells
and cystoblasts, whereas in dividing cystocytes it
adopts a branched structure linking all of the cells of
the cyst (Lin et al. 1994; Fig. 4D). In f3(1)Yb”?/fs(1)Yb”?,
the number of spectrosome-containing cells is greater
than in wild type (Fig. 4E), and significantly, this num-
ber increases with the age of the female (Fig. 4F), a
phenotype not observed in existing fs(1)Yb alleles
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Table 1. Summary of Female Sterile Mutants

Genes required for patterning in the germarium

Locus Map position” Alleles Notes
brainiac (brn) 4B2 brn'%® Both alleles are hemizygous lethal, paternally rescued maternal

brn?28 effect lethal over brn®'°7. brn??8/brn?? is a temperature sensitive lethal.
fs(1)Yb 3B1 fs(Yb)"? See text

55
s ey () 7 g§557 otu** and otu®® produce ovarian tumors (ONC class; Lindsley and Zimm
139 1992), out®” produces later phenotypes typical of the DIF class.

otu
sans filles (snf) 4F2 snfl 48 Tumorous germarium
sex lethal (SxI) 6F5 SxI”7? Female lethal in hemizygotes. Homozygotes have tumorous ovaries.

Associated with semi-lethality. 5% supernumary nurse cells (5 ring canals on

fs(1)100 lethal oocyte).
fs(1)124 9D1-2 See text
fs(1)217 26cM + 2.5 See text
fs(1)259 14B1-16A7 See text
Genes required in mid-oogenesis
Locus Map position Alleles Notes
dunce (dnc) 3D2 ahie? See text

dnc??
fs(1)K10 2F1 fs(1)kK10*”

fs(1)K10'3°
singed 7D2 sn’” sn'&*
fs(1)3 5C5-5D17? Weak phenotype over deficiency, see text®
fs(1)140 43cM = 2.5 See text
fs(1)186 14C-15A6
fs(1)234 5A8-5C2 See text
Mutations resulting in cell death or degeneration
Locus Map position Alleles Notes
fs(1)56 lethal Variable germ-line degeneration after stage 9. Few eggs, some short or fused

dorsal appendages.
fs(1)60 0-2cM = 1.4 Variable germ-line degeneration after stage 10. No eggs laid.
Degeneration in stage 9 or 10, sometimes earlier (stage 6).

fs(1)127 1cM =1 Oocyte growth retarded after stage 9, nurse cell nuclei also small.

Some tumorous cysts
Associated with semi-lethality. Degeneration of germ-line cells usually at stage

O It el 9 but at variable stages starting in the germarium.
fs(1)162 9cM + 2.7 Variable degeneration after stage 9, majority normal to stage 14. No eggs laid.
fs(1)164 30cM = 3.4 See text
Variable degeneration after stage 10. Rare cases of 8 — or (approx.) 32— cell
fs(1)192 24cM = 1.6 cysts. Most appear normal to stage 14. Females lay rare collapsed egg
remnants.
fs(1)221a 15-16cM + 2.4 See text
fs(1)242 lethal Va:iiable degeneration after stage 9. Females lay eggs with fused or reduced
orsal appendages.
fs(1)250 21cM = 1 Degenerate after stage 12. Females lay small number of collapsed egg remnants.
y * Degeneration in stage 10 or later. Rare failed or retarded border cell migration.
5(1)260 R %
are supernumerary nurse cells (<5%).

fs(1)261EL lethal Degeneration after stage 8. Associated with semi-lethality.
Genes reguired for egg shell formation
Locus Map position™ Alleles Notes
dec-1 7C6 dec-1112 All alleles result in few or no eggs laid

dec-1"13

dec-11"3
fs(1)38 25cM = 2.3 fs(1)38 Few eggs, defective chorion

fs(1)161

1 Cytological map intervals denote limits of deficiencies that uncover the mutation; “lethal” indicates the presence of a lethal mutation
on the chromosome (in the fs locus or outside of it) that prevents recombination mapping.
*Mapping revealed a contamination problem.
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Figure 3 New genes required for patterning of the germarium. gl, germline; fcs, follicle cells. (A) Adducin-like
localization in fs(1)124/fs(1)124 mutant germarium reveals spectrosome-containing cells and small cysts with
branched fusomes. (B) Nuclear staining of an fs(1)259/fs(1)259 egg chamber containing four polyploid nurse
cells and one oocyte nucleus (arrow). Scale bar = 10um. (C) Actin staining of an fs(1)259/fs(1)259 egg chamber
containing multiple nurse cell/oocyte cysts. Arrows point to oocytes. (D) Nuclear staining of a late stage 9 wild
type egg chamber. (E) Nuclear staining of a late stage 9 fs(1)217/fs(1)217 egg chamber from a 2-d-old female,
revealing a reduced number of follicle cells. Scale bar = 50um. (F) Large fused egg chamber from a 6-d-old
fs(1)217/fs(1)217 female. Only a small number of follicle cells surround this egg chamber. Arrows point to follicle

cell nuclei.

(King and Lin 1999). Clones of fs(1)Yb”? produce wild
type egg chambers and reveal no defects in fusome
formation, indicating a somatic cell requirement for
fs(1)Yb”? as has been reported for other f5(1)Yb alleles
(data not shown; King and Lin 1999).

The germline cells of fs(1)Yb”?/fs(1)Yb”? females
do not generate normal cysts since very few 16-cell
cysts are formed in these mutants (data not shown)
and germaria become cleared of dividing cystocyte
clusters (with branched fusomes) within 24 h (Fig. 4E).
This phenotype can be explained in either of two ways.
One possibility is that in f5(1)Yb”? mutants, stem cells
divide symmetrically to produce two daughter stem
cells. This appears to conflict with the finding of King
and Lin (1999) and our own data (not shown) that
fs(1)Yb mutant stem cells divide symmetrically to pro-
duce two daughter cystoblast cells. The second possi-
bility is that stem cell divisions are normal but there is
a defect at the level of cystoblast division. Normally
the first mitotic division of the cystoblast involves an
incomplete cytokinesis giving rise to two fusome-
linked daughter cystocytes. The increased number of
Sxl-positive and spectrosome-containing cells in
fs(1)Yb”? could arise if the cystoblasts undergo com-
plete divisions. Both daughter cells may then continue
to divide as cystoblasts, again undergoing complete cy-
tokinesis, leaving the germ cells locked in the dividing
cystoblast stage. This possible requirement for fs(1)Yb
in the differentiation of a cystocyte from a cystoblast
could mechanistically relate to the earlier requirement

in the differentiation of a cystoblast from a stem cell
described by King and Lin (1999). Two findings argue
that the fs(1)Yb”? mutant phenotype is not caused by a
second site mutation. First, recombination mapping
only revealed one female sterile locus on this chromo-
some. Second, germline clones of fs(1)Yb”? produce
wild type eggs, indicating that the chromosome is free
of germline-dependent female sterile mutations.

We also identified two new alleles of brainiac
(brn; Goode et al. 1992), i.e., brn'®® and brn®?%. Two
other alleles of brn have been previously described.
brn'-°%¢ is homozygous lethal, andhomozygous germ-
line clones result in a female sterile phenotype in
which follicle cells fail to properly surround and seg-
regate germline cysts, resulting in the production of
fused egg chambers. brnfs'%” is homozygous viable and
a maternal effect lethal. The maternal effect lethality is
paternally rescuable (Goode et al. 1992). Ovaries from
homozygous brn’®® females consist of large germaria
consisting of multiple germarial cysts. These ovarioles
apparently lack stalk cells, the specialized follicle cells
which normally separate cysts from each other (Fig.
3G). This phenotype is similar to that seen in brn’-°7¢
homozygous germline clones (Goode et al. 1992,
1996). The primary defect in brn’-"® is thought to be
due to a failure of follicle cells to extend processes to-
wards the germline cyst during cyst encapsulation
(Goode et al. 1996). brn??%/bm??® displays a more
severe ovarian phenotype: ovaries are much smaller

than in brn'-°"® germline clones or brn'?®/brn'?%,
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Figure 4 Requirements for fs(1)Yb (A-F) and brn (G-I) in patterning of the germarium. fcs, somatic follicle cells;
gc, germ cells; R1: germarial region 1. (A) Actin staining of fs(1)Yb”?/fs(1)Yb’? mutant germarium revealing
multiple cysts within a single egg chamber. Arrows point to oocytes. Scale bar = 50um. (B,C) Sx/ localization in
1-d-old wild type (B) and fs(1)Yb”?/fs(1)Yb”? (C) mutant germaria. Scale bar = 10um. (D,E,F) Adducin-like local-
ization in 1-d-old wild type (D), 1-d-old fs(1)Yb”?/fs(1)Yb”? (E), and 6-d—old fs(1)Yb’?/fs(1)Yb”? (F) germaria.
Arrow in (D) points to a branched fusome. Arrows in (E,F) point to unbranched fusomes (spectrosomes). Scale
bars = 10pm. (G) Actin staining of a brn'®8/brn’®® mutant ovariole which lacks stalk cells, resulting in failure to
separate egg chambers. Three egg chambers are labeled with arrowheads. (H) Germline staining with anti-Vasa
antibody of a wild type germarium and early-stage egg chambers, revealing the continuously growing germline
cells. (/) Vasa staining of a brn??8/brn??8 ovariole revealing depletion of germline cells. Scale bar in (H,/) = 50um.

and immunostaining for the germline marker Vasa re-
veals very few germline cells after region 2 of the ger-
marium (compare Fig. 4H to Fig. 4I). Therefore brn
function appears to be necessary for germline survival.
The heteroallelic combination brn??®/brn'?® also dis-
plays a germline loss phenotype, though this is less
severe than in brn??® homozygotes (data not shown),
suggesting that the phenotype of brn??® mutants is due
to loss of brn activity and is not due to a second site
modifier on the brn®?® chromosome. It has been pro-
posed that brn could be involved in the production of
a signal from the germline that specifies follicle cell
fates. Indeed, brn mutants show disruption of follicle
cell behavior at multiple stages of development (Goode
et al. 1992, 1996). The loss of germline cells in the
severe brn mutant could be a secondary effect resulting
from an even more severe disruption of follicle cell
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fate. An alternative interpretation is that partial lack of
brn activity compromises the ability of germline cells
to be recognized and correctly encapsulated by follicle
cells, while a more severe loss of brn activity leads to
death of these germline cells. The two new alleles allow
us to define an allelic series for brainiac in the ovary:
brn??8 > prm'-°"° (germline clones) = brn'?% > brn/*197,
The two brn alleles we have identified are lethal over a
deficiency for the region, and one of them, brn®?%, is a
temperature-sensitive lethal when homozygous.
Therefore, for the zygotic requirement the brn alleles
can be ordered from strongest to weakest as: brn’-°"°
> brn??8 > brn'?8 >bm/~1%7.

Genes Required for Developmental Events
in Mid- to Late Oogenesis
We identified 10 mutants representing seven comple-
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mentation groups which display specific defects in
mid- to late oogenesis. These include two alleles each
of the genes singed, fs(1)K10 and dunce (Table 1). The
other four lines in this class appear to represent novel
mutants. f5(1)186 displays a novel phenotype which
may point to the existence of an oocyte-derived signal
controlling follicle cell migration. In the wild type, fol-
licle cells start to cluster over the oocyte in stage 9. In
fs(1)186, follicle cells become asymmetrically distrib-
uted over the 16-cell cyst as early as stage 2 of oogen-
esis. While most follicle cells still contact the germline,
some of these cells become displaced from the follicle
cell monolayer (arrowheads in Fig. S5A). Later in oogen-
esis, follicle cells are often found in multiple layers over
the oocyte (Fig. 5B). This later phenotype is similar to
that seen in follicle cell clones of a-spectrin, a gene
required for the integrity of the follicle cell monolayer
(Lee et al. 1997). However, the earlier phenotype, the
clustering of follicle cells (Fig. 5A), is not seen in

a-spectrin clones, suggesting that f5(1)186 affects epi-
thelial integrity in a different way. The early clustering
of the mutant follicle cells occurs specifically over the
oocyte (Fig. 5A), suggesting that this aberrant behavior
depends on an oocyte-derived signal. Supporting this
possibility, we find that the f5(1)186 mutant pheno-
type is partially suppressed by mutations in Bic-D (Fig.
5C), a gene required for differentiation of the oocyte
(Mohler and Wieschaus 1986; Suter et al. 1989).
f5(1)186 maps genetically to position 1-66 and is un-
covered by a deficiency in this region (Table 1), though
the mutant phenotype is milder over this deficiency
than when homozygous. This could indicate that
fs(1)186 is a gain-of-function mutation, and an inter-
esting possibility is that the f5(1)186 mutation causes
premature activation of an oocyte-dependent follicle
cell migration event which normally occurs in stage 9.
The stage 9 migration of follicle cells over the oocyte is
normally concurrent with the differentiation of squa-

Figure 5 Genes required for mid-oogenesis. (A) fs(1)186/fs(1)186 mutant’s egg chamber labeled for actin to
show abnormal aggregation of follicle cells over the oocyte. The arrowheads point out some of the follicle cells
that do not contact the germline. (B) Stage 9 egg chamber from fs(1)186/fs(1)186 in which follicle cells have
formed a two-layer epithelium over the oocyte (* indicates follicle cell layers). (C) The follicle cell aggregation
phenotype is partially suppressed in fs(1)186/fs(1)186; Bic-D™¢¢/Df(2L)TW119. (D,E) Actin staining in a stage 5
(D) and a stage 9 (E) fs(1)234 /fs(1)234 mutant egg chamber showing the progressive loss of germline cell
membranes. (F) Same egg chamber as in (E) stained for nuclei. The strong actin staining in () is due to
aggregation of ring canals (arrow in E) and the border cells (arrowhead in E and F). Scale bars in (A,C,D) = 20um.
Nuclear labeling of fs(1)225/fs(1)225 mutant ovaries reveals (G) enlarged nurse cell nuclei and (H) supernumerary

nurse cells.
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mous follicle cells which cover the nurse cells (see Fig.
1). We do not detect any squamous follicle cells in the
early egg chambers from f5(1)186 mutants, and there-
fore not all aspects of follicle cell fate change are pre-
maturely induced in these mutants. An alternative
model considers the finding that the oocyte and pos-
terior follicle cells normally show a high mutual affin-
ity in region 3 of the germarium, due to their co-
expression of D/E-cadherin. This homophilic interac-
tion is normally involved in positioning the oocyte
(Gonzalez-Reyes and St. Johnston 1998; Godt and Te-
pass 1998). Other follicle cells likely also have a weak
affinity for the oocyte in early oogenesis since they also
express low levels of Cadherin (Gonzalez-Reyes and St.
Johnston 1998; Godt and Tepass 1998). If f5(1)186 mu-
tants disrupt lateral adhesion between follicle cells, the
weak affinity of these cells for the oocyte may cause
them to cluster over the oocyte.

The f3(1)234 homozygous or hemizygous mutants
display a striking phenotype in which germline cell
membranes start breaking down as early as stage 2 (Fig.
5D). By stage 9, the cysts have become transformed
into a large syncytium in which only few or none of
the cell membranes are left (Fig. SE, F). A similar
though less severe phenotype is seen in armadillo mu-
tants (arm; Peifer et al. 1993) or when a dominant
negative form of cdc42 is expressed (Murphy and Mon-
tell 1996). Both of these genes have been implicated in
regulating the cortical actin cytoskeleton. Mutations in
protein kinase A (PKA) and cut also result in a break-
down of germline cell membranes; these genes have
also been implicated in the regulation of the actin cy-
toskeleton by virtue of genetic interaction with other
regulators of the actin cytoskeleton (Lane and Kal-
deron 1993; Jackson and Blochlinger 1997; Jackson
and Berg 1999). f5(1)234 could also belong in this path-
way, though a deficiency that uncovers f5(1)234 (see
Table 1) failed to interact genetically with cut (Jackson
and Berg 1999). f5(1)234 is particularly interesting in
that it appears to only affect membrane integrity in the
germline, whereas cdc42, arm, PKA and cut all play mul-
tiple roles in oogenesis and in other tissues (Lane and
Kalderon 1993; Peifer et al. 1993; Murphy and Montell
1996; Jackson and Blochlinger 1997).

Two female sterile lines, 5(1)221b and [5(1)225 are
allelic and display a phenotype in which nurse cell
nuclei become dramatically enlarged compared to wild
type (Fig. 5G; Table 2). This could be due to failure to
maintain a correct chromosome configuration, leading
to more diffuse staining with DNA stains, or alterna-
tively, it could be due to the presence of more DNA due
to additional endoreplication cycles. In addition,
fs(1)221b and fs(1)225 homozygous mutants produce
rare egg chambers with 31 nurse cells + 1 oocyte in-
stead of the normal 15 nurse cells + 1 oocyte (Fig. 5H;
Table 2), suggesting a failure in mitotic control during
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Table 2. Dunce Oogenesis Phenotypes

Large Egg
Genotype nuclei 32— cell cysts retention
dnc®?® /dnc??s yes yes yes
dnc??™? /dnc?2™P yes yes yes
dnc??* /dncM™ yes yes yes
dnc™'*/Df(1)64i16 yes yes yes
dnc®?* germ line clones  yes na no
dnc??'%/dnc"'?; rut?/+  yes yes no

(na) Phenotype not observed but sample size too small.

the cystocyte divisions which produce the oocyte. Fur-
thermore, f5(1)221b and [s5(1)225 display an egg reten-
tion phenotype (Table 2).

Cytogenetic mapping and complementation
analysis revealed that these two mutations are alleles of
dunce (dnc). The dnc gene encodes the Drosophila cAMP
phosphodiesterase, an enzyme which degrades the sec-
ond messenger cCAMP. In most cell types, CAMP acts
upstream of the serine-threonine protein kinase PKA to
regulate a number of signaling processes, including
growth, cell cycle control, and chromatin condensa-
tion (Vossler et al. 1997; Depoortere et al. 1998; Collas
et al. 1999). Previous studies of oogenesis in dnc mu-
tants have revealed an egg retention phenotype and
maternal effect lethality in germline clones (Bellen et
al. 1987), but they did not describe any defects in nurse
cell nuclear morphology or germline division. We
therefore reexamined existing dnc alleles, and found
that dncM14 also displays the nuclear morphology and
extra mitosis phenotypes (Table 2).

To find out whether the nurse cell nuclear mor-
phology phenotype is caused by lack of dnc in the so-
matic tissue or in the germline, we made germline
clones of dnc225. These mutant clones display the
nurse cell nuclear morphology defect (Table 2), indi-
cating that dnc is required in the germline for its
growth control. Surprisingly, these dnc germline clones
can produce viable progeny despite having the aber-
rant nuclear morphology phenotype. This altered
nuclear morphology therefore does not prevent pro-
gression through oogenesis or later embryonic viabil-
ity. This is in contrast to the dnc egg retention pheno-
type which reflects a somatic requirement for dnc
(Bellen et al. 1987). The rutabaga gene encodes an ad-
enylate cyclase and has been previously found to act as
a suppressor of both the egg laying defects and the
maternal effect lethality of embryos from dnc females
(Bellen et al. 1987). We wanted to find out whether rut
also suppresses the oogenesis phenotypes of dnc. While
ru?! partially rescues the egg laying and embryonic le-
thality of dnc??!/dnc™'?, it fails to rescue the nuclear
morphology or cystocyte division defects (Table 2).
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We identified five lines that have defects in intra-
cellular transport in late oogenesis. The mutants arrest
in late oogenesis and fail to transport nurse cell con-
tents into the oocyte. One of these lines is a DIF class
allele of otu (Table 1). Two others represent new alleles
of singed (sn), a gene required for proper bundling of
actin cables during the rapid phase of nurse cell-to-
oocyte transport which occurs in stage 11 of oogenesis
(Cant et al. 1994). In sn”” and sn’®* mutants, as in
other alleles of sn, nurse cell nuclei are not anchored
within the nurse cells and become trapped in ring ca-
nals during the dumping process, apparently thus
blocking transport (Cant et al. 1994). sn encodes an
actin binding protein, and other dumpless mutants
have been found to encode polypeptides which regu-
late the actin cytoskeleton (Cooley and Theurkauf
1994). The other two dumpless mutants identified in
our screen, f5(1)140 (Fig. 6A) and f3(1)3 (Fig. 6B) appear
to define new loci. f5(1)140 homozygous mutants fail
to produce nurse cell actin bundles (Fig. 6C), suggest-
ing that this gene could encode a factor that is in-
volved in actin bundle assembly. In f$(1)3/f5(1)3, radial
actin bundles form normally (Fig. 6D) but dumping

Figure 6 (A -D) Defects in late transport of nurse cell contents
in mutants for fs(71)740 and fs(1)3. oo, oocyte; fcs, follicle cells;
ncs, nurse cells; ncn, nurse cell nucleus. (A,B) Nomarski views of
(A) fs(1)140 and (B) fs(1)3 egg chambers in which nurse cell
dumping has failed. (C,D) Double labeling of nuclei (red) and
actin (green) in (C) fs(1)140/fs(1)140 and (D) fs(1)3/fs(1)3. In
fs(1)140/fs(1)140, actin cables fail to form and the nurse cell
nuclei appear to become caught in the ring canals (arrow) during
dumping. In fs(1)3/fs(1)3, actin cables form normally (arrows
point to actin cables). (£) Nuclear staining of fs(1)164/fs(1)164
reveals pycnotic nuclei (arrows) in stage 8 of oogenesis. (F) Actin
staining of fs(1)221a/fs(1)221a reveals failed border cell migra-
tion (arrow points to border cells).

does not occur (Fig. 6B), suggesting the possibility that
this mutant is defective in generating the actual force
for dumping. The f5(1)3 mutation has only a mild phe-
notype in trans to deficiencies in the 5SC5-5D1 region.
Recombination mapping suggests that the phenotype
is a result of a combination of the f5(1)3 mutation in
the SC5-5D1 region (1-17.0) and an enhancer muta-
tion in the proximal part of the X chromosome (data
not shown).

Mutations Resulting in Apoptosis or Degeneration
Twelve mutant lines result in ovary degeneration or
apoptosis, and complementation results indicate that
they all represent different loci. It is possible that many
of these mutants represent germline-specific alleles of
genes required throughout development for cell viabil-
ity. Mutants in f5(1)164 appear normal up until the
onset of vitellogenesis in stage 8. Stage 8 and later
nurse cell nuclei become pycnotic, and egg chambers
degenerate (Fig. 6E). In f$(1)221a, nurse cell nuclei be-
come pycnotic slightly later, by stage 10. In these mu-
tants, follicle cells migrate anteriorly over the degener-
ating nurse cells instead of centripetally to separate the
nurse cells from the oocyte. A similar mis-migration
occurs in f5(1)234 mutants which lack nurse cell mem-
branes. In addition to a failure in centripetal cell mi-
gration, fs(1)221a mutants often display failed or re-
tarded border cell migration (Fig. 6F). The border cells
normally segregate from the follicle cell epithelium at
the anterior of the oocyte beginning in stage 9 and
migrate between nurse cells towards the oocyte. It is
possible that the defects in centripetal cell migration
and in border cell migration in f$(1)221a are due to the
absence of correct signaling from the nurse cells. Both
border cell migration and centripetal cell migration de-
pend on E-cadherin-based interactions between the
migrating cells and nurse cells (Niewiadomska et al.
1999).

We also identified five mutants representing two
complementation groups in which females lay a small
number of degenerating eggs which appear to have
defects in chorion formation. We found that one of
these complementation groups corresponds to dec-1
(Table 1).

Conclusion

We have identified 186 new maternal effect mutations.
We were particularly interested in mutants that affect
oogenesis, and therefore we focussed on those that fail
to produce morphologically normal eggs. Thirty-nine
mutants were found in this category. Using this crite-
rion for classifying oognesesis mutants, the screen of
Gans et al. (1975) yielded 16 mutants affecting oogen-
esis from a total of 95 sterile lines, while the screen of
Mohler (1977) yielded 55 oogenesis mutants from a
total of 324 sterile lines (Mohler 1977; Mohler and Car-
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roll 1984). As in these previous screens, the majority of
the lines that we have isolated are apparently single
alleles, and most of these are predicted to represent
novel genes (Perrimon et al. 1986). Our preliminary
analysis of these female sterile mutants suggests that
this will be a valuable collection for the study of devel-
opmental processes in the Drosophila ovary.

METHODS

Generation of Female Sterile Mutations

All stocks were obtained from the Bloomington stock center
unless otherwise noted. Male Drosophila of the genotype
ywFRT19A (Bloomington stock 1744) were EMS mutagenized
by standard methods (Lewis and Bacher 1968). Approxi-
mately 1700 F3 females (see Fig. 2) were tested for fertility by
allowing them to lay eggs in chambers for several days. FRT
sites are included on the mutagenized chromosomes to facili-
tate clonal analysis (Chou and Perrimon 1992).

Mapping of Female Sterile Mutants

Female sterile mutants were mapped by recombination map-
ping relative to the markers y (0.0 cM), a mini-white-
containing P-element insertion at 7D1-2 (21.0 ¢cM) and B
(57.0 cM). From 100 to 200 progeny were scored in each re-
combination experiment. Deficiencies from the Bloomington
stock center deficiency kit were used to cytogenetically map
mutants.

Antibody Stainings

Antibody stainings were performed as described (Suter and
Steward 1991). Monoclonal anti-adducin-like antibody 2C1
(Zaccai and Lipshitz, 1996) was obtained from Howard Lipsh-
itz and used at 1/40. Affinity purified rabbit anti-Vasa anti-
body was obtained from Akira Nakamura and Paul Lasko
(Styhler et al. 1998) and used at 1/1,000. Monoclonal anti-Sx/
18 (Bopp et al. 1993) was obtained from Daniel Bopp and Paul
Schedl and used at 1/10. DNA was labelled using Oligreen
(Molecular Probes) at 1/500 of a 1mg/ml stock after an initial
RNase treatment, or by using Hoechst 33342 (Molecular
Probes) at 1ug/mL. Texas-Red Phalloidin (Molecular Probes)
was used at 1/200 of a 200U/mL stock. Secondary antibodies,
Oregon green anti-mouse and Texas Red-X anti-rabbit, were
obtained from Molecular Probes and used at 1/1,000.
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