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Ricardo J. Soares Magalhães*, Archie C. A. Clements

School of Population Health, University of Queensland, Herston, Queensland, Australia

Abstract

Background: Childhood anaemia is considered a severe public health problem in most countries of sub-Saharan Africa. We
investigated the geographical distribution of prevalence of anaemia and mean haemoglobin concentration (Hb) in children
aged 1–4 y (preschool children) in West Africa. The aim was to estimate the geographical risk profile of anaemia accounting
for malnutrition, malaria, and helminth infections, the risk of anaemia attributable to these factors, and the number of
anaemia cases in preschool children for 2011.

Methods and Findings: National cross-sectional household-based demographic health surveys were conducted in 7,147
children aged 1–4 y in Burkina Faso, Ghana, and Mali in 2003–2006. Bayesian geostatistical models were developed to
predict the geographical distribution of mean Hb and anaemia risk, adjusting for the nutritional status of preschool children,
the location of their residence, predicted Plasmodium falciparum parasite rate in the 2- to 10-y age group (Pf PR2–10), and
predicted prevalence of Schistosoma haematobium and hookworm infections. In the four countries, prevalence of mild,
moderate, and severe anaemia was 21%, 66%, and 13% in Burkina Faso; 28%, 65%, and 7% in Ghana, and 26%, 62%, and
12% in Mali. The mean Hb was lowest in Burkina Faso (89 g/l), in males (93 g/l), and for children 1–2 y (88 g/l). In West
Africa, severe malnutrition, Pf PR2–10, and biological synergisms between S. haematobium and hookworm infections were
significantly associated with anaemia risk; an estimated 36.8%, 14.9%, 3.7%, 4.2%, and 0.9% of anaemia cases could be
averted by treating malnutrition, malaria, S. haematobium infections, hookworm infections, and S. haematobium/hookworm
coinfections, respectively. A large spatial cluster of low mean Hb (,80 g/l) and maximal risk of anaemia (.95%) was
predicted for an area shared by Burkina Faso and Mali. We estimate that in 2011, approximately 6.7 million children aged 1–
4 y are anaemic in the three study countries.

Conclusions: By mapping the distribution of anaemia risk in preschool children adjusted for malnutrition and parasitic
infections, we provide a means to identify the geographical limits of anaemia burden and the contribution that malnutrition
and parasites make to anaemia. Spatial targeting of ancillary micronutrient supplementation and control of other anaemia
causes, such as malaria and helminth infection, can contribute to efficiently reducing the burden of anaemia in preschool
children in Africa.
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Introduction

The most up-to-date global estimates of childhood anaemia

indicate that 293.1 million children aged ,5 y are anaemic

worldwide, and 28.5% of those are located in sub-Saharan Africa

(SSA) [1]. Childhood anaemia is considered a severe public health

problem in SSA, reaching 67% prevalence, or 83.5 million

children, in the region [1]. Anaemia in infancy and childhood is

associated with reduced cognitive development [2], growth [3],

immune function [4], and survival.

Anaemia is usually multifactorial in origin, and malnutrition,

infectious diseases, inherited haemoglobinopathies [5], and

thalassemias [6] are thought to be the major contributors.

The main micronutrient deficiency contributing to anaemia is

iron deficiency [7], but other micronutrients, such as vitamin A

[8], vitamin C [9], and folate [10] are important in the

pathophysiology of anaemia. Among the most common infectious

diseases in SSA, malaria [11], HIV [12], bacteraemia caused by

organisms such as Steptococcus pneumoniae, non-typhi Salmonella

species, and Haemophilus influenzae type b [13,14], and helminth

infections caused by hookworm and Schistosoma haematobium (the

aetiological agent of urinary schistosomiasis) [15–17] are known to

cause anaemia. The general mechanisms by which these infections

lead to anaemia include blood loss, sequestration of red blood cells

by the spleen, haemolysis by antibodies, and anaemia of

inflammation (via TNF-alpha and IL-6 production) [18,19]. In

the case of parasite infections, synergisms between multiple species

infections (coinfection) and high parasite burden (infection

intensity) are known to exacerbate anaemia [20–22].

The most common form of anaemia is caused by low levels of

iron (or iron-deficiency anaemia), and efforts to mitigate its effects

include the population delivery of iron supplements and food

fortification with iron [23]. However, in addition to undernutri-

tion, immune responses to infections can lead to infection-induced

hypoferremia, which prevents the growth of pathogens and can be

anti-inflammatory by reducing a potential prooxidant. This well-

recognised phenomenon shows that iron deficiency can protect

against common infectious agents, and recent empirical evidence

suggests iron supplementation is linked to increased severity of

infectious disease in the presence of malaria and/or undernutrition

in certain subgroups [24]. Anaemia cases in which blood

haemoglobin concentration (Hb) falls below 70 g/l are potentially

life-threatening situations, and control can be achieved by

providing hospital emergency treatment, which includes iron

and folate supplementation and blood transfusions [25].

Anaemia control can also focus on infectious disease causes of

anaemia. In the case of malaria control programmes, the adoption

of artemisinin-based combination therapies for the treatment of

malaria patients and the large-scale deployment of long-lasting

insecticide-treated bed nets among high-risk groups, especially

young children and pregnant women, are currently being

promoted [26,27]. An alternative strategy is chemoprophylaxis

with antimalarial drugs: intermittent preventive treatment for

women in pregnancy [28] and once-a-term mass administration of

a full therapeutic course of antimalarial drugs to schoolchildren

[29] are effective at reducing malaria parasitaemia and halving the

rates of anaemia among these high-risk groups. The fundamental

aim of the helminth control programmes is morbidity control, and

the prevalence of anaemia has been used as a measurable target in

control programmes for schistosomiasis and soil-transmitted

helminths [30]. The basis of control of helminth infections is

mass administration of single-dose antihelminthics [31]. In areas

with high prevalence of helminth infection, treatment of severe

anaemia cases generally includes deworming [32]. However,

supplementation has been found to be inefficient in the presence of

inflammation due to iron sequestration, and deworming is

warranted when anaemia coexists with high parasite prevalence

[25]. Mass deworming has been shown to cause a small increase in

Hb in preschool and school-age children in SSA [33]. With the aim

of alleviating the anaemia burden of endemic populations,

micronutrients are also being distributed as part of deworming

programmes [34]. For example, vitamin A supplementation is being

given to preschool and school-age children in many countries in

Africa as a single dose immediately after deworming [35].

Targeting the correct set of interventions to population

subgroups at increased risk of anaemia would have important

implications in more efficient delivery of limited national

resources. Modern spatial risk prediction methods are being used

as control tools for targeting malaria [36] and helminth infection

[37] interventions in SSA. To date there are no studies that have

predicted spatially the risk of anaemia. Furthermore, the

contribution that malnutrition and infections make to the overall

anaemia burden is largely unknown. Population attributable

fractions (PAFs) are useful for translating surveillance data on risk

factor prevalence and disease occurrence into numbers that can

help policymakers and the public appreciate the potential benefits

to be gained by risk factor reduction and health promotion [38].

This information could provide an important evidence base to

work out the best delivery balance between micronutrient

supplementation and food fortification versus deworming and

malaria control.

In this paper, we describe unique preschool anaemia data from

national surveys in three contiguous countries in the West African

region (Burkina Faso, Ghana, and Mali) and predict, to our

knowledge for the first time, the prevalence of anaemia and mean

Hb across the region. In doing so, we adjust for malnutrition and

the prevalence of infection of the major parasitic contributors and

estimate the attributable risk of anaemia due to malnutrition,

malaria, and helminth infections. We aimed to develop a

predictive decision-support tool for quantifying the overall burden

of anaemia, spatial heterogeneity in the anaemia burden, and the

contribution that malnutrition and parasitic infections make to

preschool anaemia.

Methods

Data
The preschool anaemia data used in this study were collected

within the Demographic and Health Surveys (DHS) programme.

These datasets are in the public domain and are available from

Measure DHS (http://www.measuredhs.com/login.cfm) on de-

mand. Anaemia data were collected by the MEASURE DHS+
programme using standardised protocols and anaemia testing

procedures [39]. Capillary blood samples in young children were

obtained by heel prick and were tested using the Hemocue blood

haemoglobin testing system, which is considered a durable and

reliable system under field conditions [39]. More detailed

information on DHS survey design and anaemia testing data are

available online (http://www.measuredhs.com) and is summarised

in Text S1.

Anthropometric measures (height-for-age Z-score, an indicator

of stunting; weight-for-height Z-score, an indicator of wasting; and

weight-for-age Z-score, an indicator of underweight) and data on

anaemia status for children aged 1–4 y were extracted from the

DHS household survey datasets for Burkina Faso (2003), Ghana

(2003), and Mali (2006). Although these surveys included data for

children aged ,1 y, we selected children aged 1–4 y only since

children aged ,1 y are known to experience a physiological

Childhood Anaemia Burden in West Africa
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decrease of Hb [11] and Hb in children 0–1 is dependent on

maternal iron provisioning and therefore is likely to be confounded

by maternal anaemia status—these physiologic factors would inhibit

accurate estimation of anaemia risk in infants. To classify the

undernutrition of preschool-age children we used composite index

of anthropometric failure (CIAF) groupings, which provide a

summary statistic of anthropometric failures [40]. The CIAF is a

method of partitioning undernutrition in children into seven

mutually exclusive categories including no anthropometric failure

(CIAF Group A), single anthropometric failures (stunting only,

CIAF Group F; wasting only, CIAF Group B; and underweight

only, CIAF Group Y), and multiple anthropometric failures

(stunting and underweight, CIAF Group E; wasting and under-

weight, CIAF Group C; and wasting, stunting, and underweight,

CIAF Group D).

The geographical unit of the DHS surveys is the sample

‘‘cluster’’. These are usually census enumeration areas, sometimes

villages in rural areas or city blocks in urban areas. Coordinates

taken at the centre of each cluster were used to geo-locate clusters

in the three study countries. We extracted spatially predicted

values of P. falciparum parasite rate in the 2- to 10-y age group (Pf

PR2–10) for each DHS cluster using the geographical information

system ArcView version 9.3 (ESRI). These spatial predictions were

created by the Malaria Atlas Project (http://www.map.ox.ac.uk/)

using model-based geostatistics (MBG); the Pf PR2–10 was

estimated based on data from microscopy (approximately 80%)

and rapid diagnostic tests (approximately 20%) [36]. We used

previously reported parasitological survey data of hookworm and

S. haematobium infections in Burkina Faso, Ghana, and Mali and

MBG [37,41,42] to predict helminth infection risk across the

region. Data for preschool-age children were not collected in these

parasitic surveys, and predictions specific to the 1- to 4-y age group

were, therefore, not available. We age-standardised the spatial

prediction maps available for the 5- to 9-y age group to the 1- to

4-y age group based on age-prevalence profiles of these infections

(more detail in Text S1). Spatially predicted values of prevalence

of infection and coinfection with S. haematobium and hookworm in

children aged 1–4 y were then extracted for each DHS cluster in

the geographical information system for spatial modelling. A

565 km resolution rural/urban surface derived from the Global

Rural-Urban Mapping Project beta product was obtained from

the Center for International Earth Science Information Network

of the Earth Institute at Columbia University (http://sedac.ciesin.

columbia.edu/gpw/global.jsp). The values of this surface were

extracted for each DHS survey cluster in the geographical

information system to define whether the residence was urban

or rural.

Spatial Risk Prediction
Blood Hb is the key indicator for anaemia, and different age

groups have different cut-off points for the haemoglobin level

below which an individual is classified as anaemic [23]. A cut-off

of ,110 g/l was used to define anaemia in children aged 1–4 y,

based on altitude-adjusted Hb available in a continuous scale.

Within the group of anaemic individuals, the severity level can

also be defined by clinically relevant altitude-adjusted Hb cut-

offs: mild anaemia, 100–109 g/l; moderate anaemia, 70–99 g/l;

and severe anaemia, , 70 g/l [23]. The initial candidate set of

predictor variables included gender, age in months, number of

members in the household, residence (rural/urban), CIAF group,

and the cluster-level ecological variables of Pf PR2–10, prevalence

of S. haematobium infection, prevalence of hookworm infection,

and prevalence of S. haematobium and hookworm mono- and

coinfection.

We developed spatial prediction models using the Bayesian

statistical software WinBUGS version 1.4 (Medical Research

Council Biostatistics Unit and Imperial College London). All

models had the individual covariates plus a geostatistical

random effect, in which spatial autocorrelation between

locations was modelled using an exponentially decaying

autocorrelation function (Text S1). Model selection for the

prediction stage was based on the evaluation of the deviance

information criteria (DIC) of each model (the lower the DIC,

the better the model fit). Spatial prediction was based on MBG,

using the model with the lowest DIC [43]. Statistical notation of

Bayesian geostatistical models and spatial interpolation proce-

dures are presented in Text S1.

Model Validation
To assess the predictive performance of the final models of

prevalence of anaemia and Hb, a single validation dataset was

generated by random selection of 25% of the data (more detail

in Text S1). The ability of the models to predict known mean

prevalence of anaemia and mean Hb was assessed by three

summary statistics: mean prediction error, mean absolute

prediction error, and the correlation coefficient between the

predicted and the actual values. The mean prediction error

provides a measure of the bias of the predictor, the mean

absolute prediction error provides a measure of the mean

accuracy of individual predictions, and the correlation coeffi-

cient provides a measure of association between the observed

data and prediction sets. The correlation between the observed

and prediction data were visualised using scatter plots with a

least-squares best fitting line and 95% confidence intervals. The

ability of the final model to predict anaemia endemicity class

membership was assessed by comparing the predicted preva-

lence of anaemia to the observed prevalence, dichotomised at

80%. Following the same procedure, the predicted mean Hb

was compared to the observed mean Hb, dichotomised at 90 g/

l. The area under curve (AUC) statistic of the receiver operating

characteristic curve was used for the comparison [44]. An AUC

value of 0.7 was taken to indicate acceptable predictive

performance.

Estimation of the Number of Children Aged under 5 y
with Anaemia and the Population Attributable Fraction
of Anaemia Due to Different Contributors

We extracted population density data (total heads per 2.5 arc-

minute grid cell) for Burkina Faso, Ghana, and Mali from the

Gridded Population of the World (GPWv3) map for 2009 [45]. The

population structure and population growth rate of each country

was obtained from the World Population Prospects 2008 Revision

Population Database (Population Division of the Department of

Economic and Social Affairs of the United Nations Secretariat;

http://esa.un.org/unpd/wpp/unpp/panel_population.htm). How-

ever, the age categories were slightly different to those used in our

analysis. The proportion aged 0–4 y obtained from the World

Population Prospects database was discounted by a factor of 0.2 to

obtain the proportion aged 1–4 y (the age group in our study). The

population density map was multiplied by the proportion of the

population aged 1–4 y in each country and by the estimated

population growth rate for the period 2005–2011 to derive a map of

the number of children aged 1–4 y in 2011 in each grid cell.

Estimates of the PAF for specific predictors are used to guide

policymakers in planning public health interventions [46].

Estimation procedures for PAF of anaemia for helminth infections

in the 1- to 4-y age group are presented in Text S1.

Childhood Anaemia Burden in West Africa
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Results

Survey Results
A total of 7,147 children aged 1–4 y, including 3,477 girls and

3,670 boys, in Burkina Faso (2,096 children), Ghana (2,360

children), and Mali (2,691 children) were included in the analysis.

We included in the analysis all children with complete geograph-

ical (i.e., DHS cluster coordinates), demographical (i.e., age,

gender, and number of members in household), and morbidity

(i.e., Hb and malnutrition status) information. The mean age in

months was 34.4 (standard deviation [SD]: 13.7), and the mean

number of members per household was 7.7 (SD: 4.4). The spatial

distribution of the raw prevalence of anaemia at 1,192 locations in

the study area is presented in Figure 1. Results from the DHS data

used show that the prevalence of mild, moderate, and severe

anaemia was 21%, 66%, and 13% in Burkina Faso; 28%, 65%,

and 7% in Ghana, and 26%, 62%, and 12% in Mali (Table 1).

There was a significant difference in the proportion of mild

anaemia between Burkina Faso and the other countries (p = 0.015),

and there was also a significant difference in the proportion of

Figure 1. Mean prevalence of anaemia at 1,192 DHS survey sites. Surveys conducted in Burkina Faso (2003), Ghana (2003), and Mali (2006).
doi:10.1371/journal.pmed.1000438.g001
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severe anaemia between Burkina Faso and Ghana (p = 0.021), but

not between Burkina Faso and Mali. None of the remainding

geographical differences in anaemia levels were significant. The

results indicate that prevalence of anaemia is highest in children

aged 1–2 y and decreases with increasing age (Figure 2). By

contrast, Hb steadily increases with age (Figure 3). The mean Hb

was lower in Burkina Faso (89 g/l) than in Ghana (97 g/l)

(p = 0.027) and Mali (94 g/l) (p = 0.047). It was lower in males

(94 g/l) than females (96 g/l) (p.0.05), and for children aged 1–2 y

(87 g/l) than for children aged 2+ y (99 g/l) (p,0.001). The

prevalence of stunting, wasting, and being underweight in the study

area was 87.8%, 89.7%, and 71.2%, respectively. The prevalence of

anthropometric failures based on CIAF groupings was the

following: 3.3% for no anthropometric failures (Group A), 7.1%

for single failures (Groups Y and F), 7.0% for wasting and

underweight (Group C), and 62.4% for wasting and stunting and

underweight (Group D). The mean Pf PR2–10 and rates of S.

haematobium infection, hookworm infection, and S. haematobium/

hookworm coinfection for the study area were 52.0% (SD: 12.5),

26.8% (SD: 19.1), 8.2% (SD: 10.0), and 3.6% (SD: 5.7), respectively.

Predicted Risk of Childhood Anaemia
It can be seen from the 95% credible interval, that individual-

level variables significantly associated with risk of anaemia in all

models tested are age in months, residence (rural versus urban),

and having three anthropometric failures (CIAF Group D);

gender, the number of members in the household, and other

CIAF groupings were not associated with anaemia risk (Table 2).

Table 1. Number and proportion of children aged 1–4 y with mild anaemia, moderate anaemia, and severe anaemia in 5,888
anaemic children in the West Africa region.

Background
Characteristic Mild Anaemia Moderate Anaemia Severe Anaemia

Burkina
Faso Ghana Mali Burkina Faso Ghana Mali

Burkina
Faso Ghana Mali

Age

1–2 y 50 (0.12) 118 (0.23) 109 (0.20) 327 (0.26) 361 (0.30) 406 (0.30) 137 (0.57) 66 (0.55) 111 (0.43)

2+ y 353 (0.88) 404 (0.77) 448 (0.80) 941 (0.74) 825 (0.70) 930 (0.70) 103 (0.43) 54 (0.45) 145 (0.57)

Sex

Male 205 (0.51) 251 (0.48) 297 (0.53) 616 (0.49) 579 (0.49) 628 (0.47) 109 (0.45) 61 (0.51) 114 (0.44)

Female 198 (0.49) 271 (0.52) 260 (0.47) 652 (0.51) 607 (0.51) 708 (0.53) 131 (0.55) 59 (0.49) 142 (0.56)

Household size

2–7 members 132 (0.33) 339 (0.65) 280 (0.50) 407 (0.32) 731 (0.62) 603 (0.45) 80 (0.33) 60 (0.50) 111 (0.43)

7+ members 271 (0.67) 183 (0.35) 277 (0.50) 861 (0.68) 455 (0.38) 733 (0.55) 160 (0.67) 60 (0.50) 145 (0.57)

Overalla 403 (0.21) 522 (0.29) 557 (0.26) 1,268 (0.66) 1,186 (0.65) 1,336 (0.62) 240 (0.13) 120 (0.07) 256 (0.12)

Mild anaemia defined as 100–109 g/l; moderate anaemia, as 70–99 g/l, and severe anaemia, as ,70 g/l. West Africa region includes Burkina Faso (n = 1,911), Ghana
(n = 1,828), and Mali (n = 2,149).
aNumbers in parentheses are the proportion of anaemia cases in the country.
doi:10.1371/journal.pmed.1000438.t001

Figure 2. Profile of anaemia by age in Burkina Faso, Ghana, and Mali. Anaemia (y-axis; Hb,110 g/l) by age in months (x-axis; in months)
with smooth fit line (red line) generated by a loess smoother, in children aged 1–4 y in the DHS surveys for Burkina Faso (2003), Ghana (2003), and
Mali (2006).
doi:10.1371/journal.pmed.1000438.g002
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In all models tested, the Pf PR2–10 was significantly and positively

associated with anaemia risk. In model 6, the fixed effect of

prevalence of hookworm and the product term between the

prevalence of S. haematobium and the prevalence of hookworm

infection were significantly and positively associated with risk of

anaemia. While not significant at the 5% level, prevalence of S.

haematobium (models 4 and 6) and the prevalence of coinfection

(model 3) were positively associated with anaemia. The model with

the lowest DIC was model 6, and, therefore, this model was used

in the prediction phase. This model was able to predict prevalence

of anaemia being greater that 80% with an AUC.0.8 (Table 3).

The risk of anaemia in children aged 1–4 y was consistently high

across the entire study area, with maximal prevalence (.95%) in a

large focus straddling the borders of Burkina Faso and Mali

(Figure 4). Smaller sized foci of high prevalence of anaemia were

also predicted for southern areas of Mali, central areas of Burkina

Faso, northern areas in Ghana, and areas adjacent to Volta Lake

in Ghana. Phi (Q) indicates the rate of decay of spatial

autocorrelation and varied from 13.68 in model 3 to 14.80 in

model 5. Therefore, after accounting for the effect of covariates in

model 6, the radii of the foci were approximately 23 km (note, Q is

measured in decimal degrees and 3/Q determines the cluster size;

one decimal degree is approximately 111 km at the equator).

Predicted Mean Haemoglobin Concentration
All individual-level variables except number of members in

household, age in months, and single anthropometric failures

(CIAF Groups Y and F) were significantly associated with mean

Hb in all models tested (Table 4). While rural residences and two

or more anthropometric failures were significantly and negatively

associated with the mean Hb, there was a significant positive

association with mean Hb in male children. As with the models of

risk of anaemia, Pf PR2–10 was significantly associated with mean

Hb in all models tested. At the 5% level neither S. haematobium nor

hookworm infection was significantly associated with mean Hb;

however, S. haematobium/hookworm coinfections, hookworm

monoinfections, and hookworm prevalence of infection were

negatively associated with mean Hb. Estimates presented in

Figure 5 are the mean posterior predicted mean Hb values from

model 6 (the model that yielded the lowest DIC); this model was

able to predict Hb greater than 90 g/l with an AUC .0.7

(Table 3). Figure 5 shows overlapping similarities to the map

showing the predicted risk of anaemia (Figure 4) in that areas

where Hb was predicted to be lowest (,80 g/l) for children 1–4 y

are localised in a large focus straddling the borders of Burkina Faso

and Mali. After accounting for the effect of covariates in model 6,

the radii of the foci were approximately 22 km (Table 4).

Risk of anaemia attributable to S. haematobium and
hookworm infections

We estimated the PAF of anaemia due to CIAF Group D, P.

falciparum, S. haematobium, and hookworm separately from model 6,

and that due to coinfections from Model 3. Our results indicate

that the estimated risk of anaemia attributable to CIAF Group D,

P. falciparum, S. haematobium, hookworm, and S. haematobium/

hookworm coinfection is 36.8%, 14.9%, 3.7%, 4.2%, and 0.9%,

respectively.

Number of children and geographical distribution of
childhood anaemia

The predicted total number of children aged 1–4 y with

anaemia in Burkina Faso, Ghana, and Mali for 2011 is presented

in Table 5. Our results indicate that in the three countries,

approximately 6.7 million children aged 1–4 y are anaemic.

Severe malnutrition, P. falciparum infection, hookworm infection, S.

haematobium infection, and S. haematobium/hookworm coinfection

were responsible for an estimated 2.5 million, 1.0 million, 250,000,

285,000, and 61,000 anaemia cases, respectively, in 2011. The

areas with the greatest predicted number of anaemic children are

located central Burkina Faso and southern Ghana (Figure 6).

Figure 6 shows the number of children with anaemia in each

565 km pixel.

Discussion

This study presents new cartographic resources that shed new

light on the ranking of anaemia prevalence and anaemia severity

within the countries studied by depicting important sub-national

geographical heterogeneities, representing an added value over

and above what could be achieved directly from national-level

Figure 3. Age patterns of mean haemoglobin concentration. Age (x-axis; in months) patterns of mean Hb (y-axis; g/l) with smooth fit line (red
line) generated by a loess smoother, in children aged 1–4 y in the DHS surveys for Burkina Faso (2003), Ghana (2003), and Mali (2006).
doi:10.1371/journal.pmed.1000438.g003
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Table 3. Summary of validation statistics for predictive models of anaemia prevalence and haemoglobin concentration in Burkina
Faso, Ghana, and Mali.

Validation Measure Prevalence of Anaemia Haemoglobin Concentration

Area under the ROC curve (95% CI) 0.82 (0.75, 0.88) 0.77 (0.69, 0.83)

Mean errora 0.03 (4.88) 27.99 (9.36)

Mean absolute errora 0.12 (18.57) 10.96 (12.83)

Correlation 0.79 0.82

aThe observed values were compared to the mean of the posterior distribution of the each predicted value of prevalence of anaemia and Hb. The estimates in
parenthesis are the percentage of the overall mean attributed to the error estimate.

CI, confidence interval; ROC, receiver operating characteristic.
doi:10.1371/journal.pmed.1000438.t003

Table 2. Associations with anaemia risk, based on model-based geostatistical Bernoulli models.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Male (versus Female) 0.09
(20.15, 0.31)

0.09
(20.15, 0.32)

0.09
(20.15, 0.32)

0.09
(20.14, 0.32)

0.10
(20.14, 0.32)

0.09
(20.14, 0.231)

Number of members
in householda

20.04
(20.08, 0.01)

20.04
(20.08, 0.007)

20.04
(20.08, 0.006)

20.04
(20.08, 0.01)

20.04
(20.08, 0.007)

20.04
(20.08, 0.007)

Age in monthsa 20.03
(20.05, 20.01)

20.03
(20.05, 20.01)

20.03
(20.05, 20.01)

20.03
(20.05, 20.01)

20.03
(20.05, 20.01)

20.03
(20.05, 20.01)

Rural (versus urban) 0.69
(0.27, 1.13)

0.68
(0.26, 1.11)

0.69
(0.24, 1.13)

0.67
(0.24, 1.11)

0.67
(0.25, 1.10)

0.69
(0.27, 1.11)

CIAF Groups Y and F (versus
CIAF Group A)

20.19
(20.79, 0.43)

20.19
(20.76, 0.43)

20.17
(20.76, 0.45)

20.20
(20.78, 0.41)

20.19
(20.75, 0.38)

20.02
(20.77, 0.41)

CIAF Group C (versus CIAF
Group A)

0.11
(20.44, 0.64)

0.10
(20.41, 0.63)

0.13
(20.42, 0.66)

0.10
(20.44, 0.63)

0.11
(20.41, 0.59)

0.10
(20.42, 0.60)

CIAF Group D (versus CIAF
Group A)

0.67
(0.13, 1.19)

0.66
(0.15, 1.19)

0.66
(0.12, 1.19)

0.66
(0.13, 1.18)

0.66
(0.16, 1.14)

0.66
(0.15, 1.16)

PfPR2–10
a 0.37

(0.17, 0.57)
0.32
(0.11, 0.53)

0.30
(0.04, 0.51)

0.36
(0.17, 0.56)

0.28
(0.03, 0.49)

0.29
(0.04, 0.50)

Prevalence of S. haematobium
monoinfectionsa

0.05
(20.13, 0.25)

Prevalence of hookworm
monoinfectionsa

0.11
(20.09, 0.33)

S. haematobium/hookworm
coinfectiona

0.23
(20.05, 0.53)

Prevalence of S. haematobiuma 0.05
(20.13, 0.25)

0.11
(20.09, 0.32)

Prevalence of hookworma 0.22
(0.03, 0.47)

0.35
(0.11, 0.67)

Interaction: prevalence of
S. haematobium 6prevalence
of hookworma

0.28 (0.04, 0.57)

Intercept 1.61
(0.95, 2.37)

1.60
(0.94, 2.31)

1.59
(0.88, 2.25)

1.62
(0.91, 2.23)

1.64
(1.02, 2.28)

1.63
(0.97, 2.29)

Q (rate of decay of spatial
correlation)

14.24
(3.14, 19.73)

13.80
(2.80, 19.73)

13.68
(1.86, 19.68)

15.38
(3.23, 19.71)

14.80
(2.80, 19.71)

14.25
(2.01, 19.63)

s2 (variance of spatial
random effect)

1.45
(0.97, 1.95)

1.45
(0.95, 1.97)

1.36
(0.91, 1.98)

1.32
(0.01, 1.94)

1.40
(0.91, 1.98)

1.39
(0.92, 1.97)

DIC 2,584.4 2,583.5 2,587.8 2,586.5 2,583.7 2,572.5

Association values are given as posterior mean (95% Bayesian credible interval).
aVariables were standardised to have mean = 0 and SD = 1.
doi:10.1371/journal.pmed.1000438.t002
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summary statistics of the DHS data alone. The approach addresses

important operational constraints for anaemia control in the

African continent, and the resulting maps could provide the next

step needed for efficient and effective anaemia control in preschool

children in the following ways. First, they could be used by

national programme managers as decision-support tools for

targeting the delivery of ancillary micronutrient supplementation

and fortified food, with the aim of reducing iron-deficiency

anaemia. Second, empirical maps of anaemia in this age group

would allow the identification of subgroups where the secondary

effects of micronutrient supplementation could be minimised. For

example, the main concern about iron supplementation is the fact

that it has been linked to increased severity of infectious disease in

the presence of malaria and/or undernutrition in preschool

children [24]. Finally, anaemia maps would allow the monitoring

and evaluation of the impact of anaemia control programmes and,

in the case of severe anaemia, planning resource allocation to

combat life-threatening anaemia [37].

Burden of Childhood Anaemia for West Africa in 2011
Based on the World Health Organization classification system

for anaemia prevalence [23], it is clear that anaemia is a severe

Figure 4. Predictive geographical risk of anaemia in children aged 1–4 y, based on a model-based geostatistical Bernoulli model.
doi:10.1371/journal.pmed.1000438.g004
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public health problem in the study area. We demonstrated that

anaemia risk in children aged 1–4 y is high throughout the study

area, with the highest risk in a large region extending across the

borders of Burkina Faso and Mali. We predicted that the number

of childhood anaemia cases is highest in Burkina Faso, followed by

Ghana and Mali, and the magnitude of our predictions is

consistent with estimates recently reported by the World Health

Organization [1]. Using a predictive map of mean Hb we have

shown that areas of severe anaemia are much smaller but overlap

with areas where the prevalence of anaemia was predicted to be

highest (.95%). These results suggest that resources for the

treatment of moderate to severe anaemia, such as iron

supplementation, deworming, and blood for emergency transfu-

sion, should be prioritised towards populations located in the

clusters of high anaemia risk identified in this study.

This study reveals that malnutrition plays a central role in

preschool anaemia burden in West Africa. The model including

malnutrition, PfPR2–10, and helminth coinfection (Model 6)

indicates that almost 40% of anaemia cases in preschool children

in 2011 would have been averted by improving the nutritional

status of children. Socio-economic status is a well-known risk

factor for anaemia and infection at small spatial scales [47], and

our results show that rural households are at significantly increased

risk of anaemia compared to urban households. The same model

also underlines the role of malaria infection in preschool children

anaemia burden in the West African region in that the proportion

of anaemia attributable to malaria was approximately 15%. These

results are supported by earlier findings in Kenya using individual-

level data (14% for infected preschool-age children and 7% for the

whole population) [17]. The risk of anaemia attributable to

hookworm infection (4.2%) is comparable to that estimated for S.

haematobium (3.7%) and is significantly increased in hookworm/S.

haematobium coinfections. This is consistent with evidence suggest-

ing that morbidity associated with these infections is more

pronounced in individuals with multiple infections [21]. Hook-

worm and S. haematobium infections have the smallest attributable

risks both because the relative risk for these factors is modest and

more importantly because the frequency of their mean prevalence

Table 4. Associations with altitude-adjusted haemoglobin concentration, based on model-based geostatistical Gaussian models.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Male (versus Female)
0.13
(0.13, 0.23)

0.19
(0.15, 0.23)

0.19
(0.15, 0.24)

0.19
(0.15, 0.23)

0.19
(0.15, 0.23)

0.19
(0.15, 0.23)

Number of members
in householda

20.64
(21.87, 0.67)

20.64
(21.86, 0.67)

20.60
(21.85, 0.69)

20.61
(21.71, 0.66)

20.65
(21.83, 0.67)

20.69
(21.79, 0.70)

Age in monthsa 0.12
(20.10, 0.28)

0.13
(20.06, 0.28)

0.13
(20.05, 0.29)

0.13
(20.04, 0.29)

0.11
(20.07, 0.29)

0.15
(20.01, 0.30)

Rural (versus urban)
24.71
(27.24, 22.14)

24.70
(27.55, 22.19)

24.67
(27.41, 22.03)

24.62
(27.39, 22.02)

24.75
(27.43, 22.24)

24.69
(27.39, 21.89)

CIAF Groups Y and F
(versus CIAF Group A)

0.78
(22.48, 4.29)

0.76
(22.68, 4.28)

0.77
(22.62, 4.25)

0.79
(22.55, 4.31)

0.82
(22.40, 4.42)

0.69
(22.55, 4.09)

CIAF Group C
(versus CIAF Group A)

23.45
(26.50, 20.47)

23.51
(26.61, 20.53)

23.21
(26.47, 20.27)

23.52
(26.57, 20.57)

23.53
(26.53, 20.47)

23.59
(26.64, 20.37)

CIAF Group D
(versus CIAF Group A)

27.85
(210.35, 24.78)

27.83
(210.39, 24.72)

27.81
(210.37, 24.64)

27.80
(210.30, 24.61)

27.79
(210.43, 24.60)

27.92
(210.42, 24.58)

PfPR2–10
a 22.15

(23.19, 21.17)
21.81
(22.93, 20.78)

22.11
(23.20, 21.07)

22.15
(23.15, 21.11)

21.85
(22.93, 20.83)

21.82
(23.08, 20.81)

Prevalence of S. haematobium
monoinfectionsa

0.10
(20.76, 1.23)

Prevalence of hookworm
monoinfectionsa

20.87
(21.94, 0.08)

S. haematobium/hookworm
coinfectiona

20.40
(21.48, 0.52)

Prevalence of S. haematobiuma 0.17
(20.82, 1.37)

0.15
(20.76, 1.05)

Prevalence of hookworma 20.98
(21.89, 0.01)

21.09
(22.23, 20.04)

Interaction: prevalence of
S. haematobium 6prevalence
of hookworma

20.37
(21.31, 0.64)

Intercept
99.85
(94.74, 102.5)

99.81
(94.83, 102.3)

97.62
(94.78, 102.5)

98.41
(94.82, 102.6)

98.54
(94.12, 102.7)

98.97
(94.85, 102.3)

Q (rate of decay of spatial
correlation)

15.43
(7.59, 18.22)

15.23
(8.59, 17.92)

15.75
(8.12, 18.21)

15.51
(8.07, 18.29)

14.78
(8.38, 18.57)

15.24
(9.53, 18.68)

s2 (variance of spatial
random effect)

45.51
(36.78, 68.14)

46.91
(36.89, 68.08)

47.55
(35.75, 67.97)

47.91
(34.56, 68.67)

40.98
(26.22, 66.97)

54.64
(37.42, 69.98)

DIC 26,544.5 26,543.1 26,545.4 26,545.8 26,671.7 26,533.7

Association values are given as posterior mean (95% Bayesian credible interval).
aVariables were standardised to have mean = 0 and SD = 1.
doi:10.1371/journal.pmed.1000438.t004
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in the population is low compared to malnutrition and malaria.

Nevertheless, these results suggest that hookworm and S.

haematobium infections are also important in the aetiology of

anaemia in preschool children in West Africa, and deworming

should be included in programmes aimed at controlling anaemia

in this age group.

We calculated that a total of 6.7 million children aged 1–4 y in

Burkina Faso, Ghana, and Mali are anaemic. Our regional- and

country-level estimates of number of children with anaemia are in

line with estimates recently put forward by the World Health

Organization in the three study countries [1]. In that regard, our

study generated an important cartographic resource, providing

important new information about sub-national priority areas for

targeting anaemia control in the region and the quantity of resources

needed in those areas (Figure 6).

Using Predictive Parasite Infection Maps to Model
Anaemia

Important uncertainties should be noted from the anaemia

DHS datasets and the prediction surfaces for parasite infection

Figure 5. Predictive geographical variation of mean haemoglobin concentration in children aged 1–4 y, based on a model-based
geostatistical Gaussian model.
doi:10.1371/journal.pmed.1000438.g005
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used in our models, which are likely to be propagated through the

modelling framework. The outcome input data from the DHS

surveys (anaemia and Hb) were collected in different years (2003

for Burkina Faso and Ghana and 2006 for Mali), and the covariate

input prediction surfaces for parasite infection (malaria and

helminth predictive surfaces) were for 2007. In order to assess

relationships between anaemia indicators and potential contribu-

tors, we assumed that there was no contraction in anaemia cases in

the three countries between the year anaemia data was collected

and 2007. Although this temporal disparity may not be so

problematic in the case of the DHS data for Mali, it may be

problematic for Burkina Faso and Ghana; an overestimation of

effects in those countries could be observed particularly in areas

where the effects of intervention efforts to control anaemia were

substantial. However, the degree to which the observed relation-

ships are obscured by past spatially variable intervention efforts is

not quantified in the literature.

A rigorous assessment of the uncertainty associated with the

mapped outputs of the input African malaria map was undertaken

by [36]. This assessment provides great confidence about the input

surface for the countries in our study in that the probability of

correct endemicity class prediction was highest in West Africa. In

this region, uncertainty was most important in small areas in

southwest Ghana and northwest Mali. These latter estimates

adjust for population density (using the population-weighted index

in uncertainty) and reflect the co-occurrence of both low density of

PfPR2–10 surveys and large populations in these regions. Despite

the fact that point predictions generated by the malaria model are

reasonably accurate, the model was shown to underestimate the

probability of PfPR2–10 taking low values. This means that in low

endemicity areas the PfPR2–10 may be overestimated [36].

However, our study is located in countries where malaria

endemicity is high, and therefore we do not expect this suboptimal

performance to significantly affect the point values of malaria

endemicity used in our models. Similarly, the results of uncertainty

assessment for the helminth infection covariate surfaces give us

great confidence about their use in our models. The predictive

ability of endemicity class membership (,50% for S. haematobium

infection, 10% for hookworm infection, and 5% for S. haemato-

bium/hookworm coinfection) was moderately good, with all AUC

values above 0.7 [37].

Finally, by using existing continental-level and other mapped

layers as proxies of parasite infection, we have adopted an

ecological approach to modelling anaemia prevalence and Hb.

This approach was chosen because comparable individual-level

infection data were not available for the study area. Instead, the

mean prevalence of parasite infection was used as a proxy for the

true infection status of preschool children included in the analysis.

This approach provides a somewhat imprecise measurement of

exposure to P. falciparum and helminth infection and therefore may

result in regression dilution bias arising from imprecise exposure

measurement, which is most likely to lead to underestimation of

the observed effects of parasite infections [48]. Although the

observed relationships are biologically plausible, in the absence of

individually collected data it is not possible to know to what extent

the magnitude of relationships represent an artefact introduced by

ecological fallacy.

Using Population Attributable Fractions to Determine the
Role of Competing Factors in Anaemia

We used PAFs to represent the fraction of the total anaemia risk

in the population that would not have occurred if the effect

associated with the contributor of interest were absent while

distributions of other contributors in the population remained

unchanged [48,49]. The PAF estimates attributable outcome and

not necessarily preventable outcome numbers, as it may not be

possible to remove the risk factor from the population altogether.

Hence the numbers may overestimate achievable impact and are

therefore measures of potential impact. An alternative statistic

could have been used, namely, the population impact of

eliminating a risk factor (the potential number of disease events

prevented in a population over the next t years by eliminating a

risk factor) [50].

PAF estimation is of public health significance when the risk

factors being investigated are clearly the most proximal in the

causal pathway and when there is consensus that the exposure is

amenable to intervention [38,51]. The nutritional factors and

infections included in our anaemia model are well known to be

causally related to anaemia, but as outlined above, these do not

represent the complete multifactorial nature of anaemia.

Haemoglobinopathies and thalassemias are importance inherit-

ed haematological conditions, particularly in the population of

West Africa [52], but predictive surfaces for the sickle cell trait

have only recently become available [53]. This study adopted an

ecological approach to anaemia modelling in that the true

infectious status of children is assigned by spatially overlaying

available mapped parasite endemicity surfaces. In doing so, the

estimated relative risks for these factors are prone to regression

dilution bias, which may contribute to more conservative PAF

estimates. In the absence of comparable individual-level data,

the practical and logical limitations of including surrogate

factors in PAF estimation are not trivial to assess, but our results

are consistent to the only study available using individual-level

data [17].

Table 5. Predicted number of children aged 1–4 y with anaemia in Burkina Faso, Ghana, and Mali in 2011.

Country

Total Population
for 2009
(in Thousands)a

Annual Population
Growth Rate for
2005–2011 (Percent)b

Percentage
of Children
Aged 1–4 yc

Number of Children
Aged 1–4 y with Anaemia
(in Thousands)

Percentage of Children
Aged 1–4 y with
Anaemia

Burkina Faso 15,922 3.39 15.7 2,585 90.51

Ghana 22,547 2.09 11.2 2,400 87.50

Mali 13,588 2.37 13.8 1,792 87.03

aSource: based on a 2.5 arc-minute resolution Gridded Population of the World (GPWv3) map for 2009.
bSource: World Population Prospects 2008 Revision Population Database (Population Division of the Department of Economic and Social Affairs of the United Nations

Secretariat; http://esa.un.org/unpp).
cThe estimates provided by the World Population Prospects database are for children aged 0–4.99 y. To obtain estimates of the percentage of children aged 1–4 y (the
age group included in our analysis), the estimates presented by the World Population Prospects database were discounted by a factor of 0.2.

doi:10.1371/journal.pmed.1000438.t005
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Another issue related to the interpretation and public health

relevance of a PAF concerns specification of the exposure group

[51]. For PAF estimation we have retained the continuous nature

of the parasite surfaces to enable spatial prediction across all the

areas and to avoid arbitrary categorisation of parasite endemicity

surfaces, which could yield reference levels with few or no

observations, resulting in PAF estimates with low power. We

calculated the PAF for the mean of each parasite surface in the

region, which corresponds to the fraction of total anaemia risk in

the population that would have been reduced had the children

been living in areas where the mean prevalence of the risk factors

was very close to zero. Full consideration of continuous covariates

is theoretically possible and is a matter of statistical modelling, and

PAF estimates (model-based) have been developed for continuous

exposures [54]. Our PAF estimation may be extended in future

work to estimate a more general measure than PAF, namely, the

generalised impact fraction (the fraction reduction of anaemia risk

that would result from changing the current distribution of the

contributing factors to some modifiable distribution) [55].

However, to set the level of reduction of the risk factor would

require evidence of the effectiveness of malnutrition and parasite

interventions, which is not objectively available.

Figure 6. Predictive geographical variation of number of children aged 1–4 y with anaemia, for 2011.
doi:10.1371/journal.pmed.1000438.g006
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Accuracy of the PAF estimates also depends on the represen-

tativeness of the input data from the population of interest and the

completeness of the multivariable model. The DHS anaemia data

are to the best of our knowledge the most complete and

representative anaemia data available in the public domain. The

anaemia data were collected using standardised methods and

quality control protocols (see http://www.measuredhs.com/start.

cfm). The input data used to produce smooth maps of malaria

included 3,384 geo-positioned records where parasite rates had

been diagnosed either using microscopy (2,764 [81.7%]) or rapid

diagnostic tests (n = 587 [17.3%]) [36]. The schistosomiasis and

hookworm data were obtained in nationally representative surveys

using Kato Katz and urine filtration methods [41,42]. In PAF

estimation the multivariable model needs to be as complete as

possible; if one or several factors act as true confounders of the

association between exposure and disease, then the crude PAF

estimates are in general biased and there is a need for adjustment

when estimating the PAFs [55]. Regression models allow one to

take into account adjustment factors as well as interaction of

exposure with some or all adjustment factors [54]. We are

confident in our statistical control of confounding by adjusting our

analysis for age, sex, and socio-economic factors; we also

considered interactions between proximal parasite infections.

However, even if one uses adjusted estimates of the relative risk,

PAF estimates can be biased in the presence of unaccounted

confounding factors, and overestimation of PAFs can occur

[49,56]. Malaria endemicity values may be confounded by the

presence of bed net usage, which in turn is known to be influenced

by socio-economic status. We found collinearity between bed net

usage and socio-economic indicators in the DHS data, which

provided statistical support for the inclusion of socio-economic

indicators only. Furthermore, these indicators are also related to a

broader group of distal factors contributing indirectly to anaemia

(e.g., water, sanitation, and deworming).

The order of a variable in the causal pathway and the way it is

entered in a multivariable model influence its PAF estimation [57].

The impact of different combinations of proximal infection

contributors on the observed relationships with anaemia indicators

was assessed by building different models (Tables 2 and 4). In so

doing, we noticed the effect of variable order on the resulting

coefficients, and PAF estimation was conducted based on the

model with best statistical support for model complexity and fit to

the data. Furthermore, indirect effects can be noticed when more

distal factors impact proximal risk factors by increasing their rate

or prevalence. Some of the anthropometric failures used in our

models as proxies of malnutrition, and stunting, in particular, can

be the result of an indirect effect of both parasite infections and

malnutrition, but collinearity between these factors was not

identified at variable screening.

Finally, the PAFs refer not to the general population but rather

to the study population in West Africa. The results generated from

an adjusted PAF model for a specific population may not fit

settings in other populations [49]. PAFs in other populations may

differ because of varying prevalence of risk factors and the impact

of additional socio-demographic factors that were not included in

the original sample [56].

Accuracy of Geostatistical Anaemia Modelling and
Potential Refinements

The frequency distributions for the predicted anaemia and Hb

surfaces cover substantially smaller ranges of values than those of

the DHS input data. The resulting anaemia and Hb predictive

surfaces are certainly smoother than the raw data from which they

are predicted because the MBG modelling approach makes

predictions at unsampled locations using linear associations

between covariates and the DHS survey data. This smoothing

effect (or interpolation) has important repercussions on the models’

ability to accurately predict anaemia endemicity over very short

distances.

The models performed satisfactorily when predicting point

values and endemicity classes of anaemia indicators. However,

certain aspects of the uncertainty statistics are suboptimal in that

the anaemia risk model tends to overestimate prevalence by 5%

and the Hb model tends to underestimate Hb by 10 g/l.

Nevertheless, despite the different sources of uncertainty that are

embedded in the MBG modelling approach, the resulting

predictive maps represent an important evidence base for

operational managers of anaemia control in the region.

The computational demands of the MBG modelling approach

restricted the range of modelling procedures we could utilise to

improve the predictive ability of the anaemia and Hb models. A

number of potential improvements to the geostatistical approach

could be employed in the following ways. First, future iterations of

these maps should consider the incorporation of other covariates,

particularly the assessment of the additional influence of inherited

blood disorders (haemoglobinopathies and thalassemias) once

these become available. Second, our approach could be updated

once the existing mapped surfaces have been revised with the

inclusion of diagnostic uncertainty into their modelling frame-

works. This is particularly important for schistosomiasis in low

transmission settings [58]. Third, prediction surface uncertainty

around the predicted mean of infection covariates could be

incorporated in the modelling framework by modelling the

distribution of probable values using a beta distribution param-

eterized by the predicted posterior mean and the posterior

standard deviation for each parasitological survey location.

Fourth, the inclusion of spatial variation of spatial dependency

in anaemia risk (non-stationarity) could be another possible

refinement but was considered computationally infeasible. Future

iterations of the present models could incorporate non-stationarity:

models could assume separate regional fixed coefficients and

include a series of random coefficient models incorporating

different correlation structures. Fifth, the 565 km resolution may

not have been sufficiently precise to classify exposures, and a

reduced resolution could have been chosen at the expense of

computational run time. For example, an urban-rural map of

565 km resolution may not be sufficiently precise to define clusters

as rural or urban, since settlements may vary in size across the

study area. Finally, infections considered here are known to cause

multiple competing morbidities, and the methods presented here

could be extended to investigate spatial heterogeneity of co-

morbidities attributable to malaria and helminth infections. This

would involve applying a multinomial analogue of the present

model. Although analysis of the spatial variation in other

childhood morbidity indicators, such as stunting, fever, pneumo-

nia, and diarrhoea, has been attempted at the national scale in

Malawi [59,60] and Burkina Faso [61], and at the continental

scale in the case of paediatric fevers associated to malaria infection

[62], none of these studies have investigated the differential role of

malnutrition and parasite infection metrics in prevalence of co-

morbidities at a regional or continental scale.

Conclusions
The combination of anaemia and mean Hb predictive maps has

allowed the identification of communities in West Africa where

preschool-age children are at increased risk of morbidity. The use

of anaemia maps as an alternative to aggregated country-level

estimates has important practical implications for targeted control
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in the region and could contribute to the efficient allocation of

nutrient supplementation programmes and delivery of fortified

foods as well as the planning and evaluation of resource needs for

geographical delivery of transfusion services for severe anaemia

cases. This study shows that existing continental-level disease and

other mapped layers can be used to predict anaemia risk. The

development of maps indicating the geographical risk profile of

anaemia controlling for malnutrition and major infections would

allow assessment of the risk of anaemia due to different causes,

which would in turn constitute an important evidence base to work

out the best balance between interventions. In the future, these

maps could be updated in subsequent methodological iterations to

incorporate further modelling refinements.

Supporting Information
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Found at: doi:10.1371/journal.pmed.1000438.s001 (0.11 MB
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Editors’ Summary

Background. Global estimates for the time period 1993–
2005 suggest that that worldwide, nearly 300 million
children had anemia, that is, hemoglobin levels less than
110 g/l. In sub-Saharan Africa, two-thirds of all children were
anemic, representing 83.5 million children. These statistics
are important because anemia in infancy and childhood is
associated with poor cognitive development, reduced
growth, problems with immune function—and ultimately,
decreased survival. Malnutrition (including micronutrient
deficiency, especially of iron, vitamin A, vitamin C, and
folate), undernutrition, and infectious diseases, particularly
HIV, malaria, and helminth infections (caused by hookworm
and Schistosoma haematobium—which causes urinary
schistosomiasis), are major causes of anemia in children.
Although iron supplementation can often correct anemia, in
some circumstances, iron deficiency can protect against
common infectious agents, and giving iron can, on occasion,
increase the severity of infectious disease in some children.
Focusing on the treatment and prevention of infectious
diseases that cause anemia is therefore an important
alternative strategy in the treatment of anemia.

Why Was This Study Done? Control tools for targeting
interventions for malaria and helminth infection in sub-
Saharan Africa include modern spatial risk prediction
methods that combine statistical models with geographical
information systems (similar to those used in car navigation
systems). However, to date no studies have used these tools
to spatially predict the risk of anemia. Furthermore, the
contribution that malnutrition and infections make to the
overall anemia burden in Africa is largely unknown. In this
study the researchers used these tools to predict the
prevalence of anemia in three West African countries and
to estimate the attributable risk of anemia due to
malnutrition, malaria, and helminth infections.

What Did the Researchers Do and Find? The researchers
used geographically linked data from the most recent
Demographic and Health Surveys (DHS) in Burkina Faso
(2003), Ghana (2003), and Mali (2006), which included
capillary blood sampling and testing and detailed
anthropometric (height and weight) measurements. A total
of 7,147 children aged 1–4 years (3,477 girls and 3,670 boys)
in the three countries were included in the analysis. The
researchers mapped DHS survey locations in the three study
countries using DHS cluster coordinates in a geographic
information system. Using data from the Malaria Atlas
Project, the researchers extracted spatially predicted values
of Plasmodium falciparum parasite rate for each DHS cluster
using a geographical information system and used
previously reported parasitological survey data of
hookworm and S. haematobium infections to predict

helminth infection risk across the region. Then the
researchers developed spatial prediction models using
Bayesian statistics to estimate of the population attri-
butable fraction for specific predictors for anemia. Data
from the DHS showed that the prevalence of mild, moderate,
and severe anemia was 21%, 66%, and 13% in Burkina Faso;
28%, 65%, and 7% in Ghana, and 26%, 62%, and 12% in Mali.
The prevalence of stunting, wasting, and being underweight
in the study area was 87.8%, 89.7%, and 71.2%, respectively,
and the mean P. falciparum parasite rate, and rates of S.
haematobium infection, hookworm infection, and S.
haematobium/hookworm coinfection for the study area
were 52.0%, 26.8%, 8.2%, and 3.6%, respectively. The
overall results indicate that in the three countries,
approximately 6.7 million children aged 1–4 years have
anemia. Severe malnutrition, P. falciparum infection,
hookworm infection, S. haematobium infection, and
hookworm/S. haematobium coinfection were responsible
for an estimated 2.5 million, 1.0 million, 250,000, 285,000,
and 61,000 anemia cases, respectively. Central Burkina Faso
and southern Ghana had the highest number of anemic
children.

What Do These Findings Mean? These results add insight
and detail to anemia prevalence and anemia severity within
different geographical areas in three West African countries.
The combination of anemia and mean hemoglobin
predictive maps identifies communities in West Africa
where preschool-age children are at increased risk of
morbidity. The use of anemia maps has important practical
implications for targeted control in these countries, such as
guiding the efficient allocation of nutrient supplements and
fortified foods, and enabling risk assessment of anemia due
to different causes, which would in turn constitute an
evidence base to calculate the best balance between
interventions.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000438.

N This study is further discussed in a PLoS Medicine Perspec-
tive by Abdisalan Noor

N The WHO Web site has comprehensive information on the
worldwide prevalence of anemia

N More information on Demographic Health Surveys is
available

N More information on global predictions of malaria is
available
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