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Comparing paired vs non-paired
statistical methods of analyses when
making inferences about absolute risk
reductions in propensity-score matched
samples
Peter C. Austina,b,c∗†

Propensity-score matching allows one to reduce the effects of treatment-selection bias or confounding when
estimating the effects of treatments when using observational data. Some authors have suggested that methods
of inference appropriate for independent samples can be used for assessing the statistical significance of
treatment effects when using propensity-score matching. Indeed, many authors in the applied medical literature
use methods for independent samples when making inferences about treatment effects using propensity-score
matched samples. Dichotomous outcomes are common in healthcare research. In this study, we used Monte
Carlo simulations to examine the effect on inferences about risk differences (or absolute risk reductions)
when statistical methods for independent samples are used compared with when statistical methods for paired
samples are used in propensity-score matched samples. We found that compared with using methods for
independent samples, the use of methods for paired samples resulted in: (i) empirical type I error rates
that were closer to the advertised rate; (ii) empirical coverage rates of 95 per cent confidence intervals
that were closer to the advertised rate; (iii) narrower 95 per cent confidence intervals; and (iv) estimated
standard errors that more closely reflected the sampling variability of the estimated risk difference. Differences
between the empirical and advertised performance of methods for independent samples were greater when
the treatment-selection process was stronger compared with when treatment-selection process was weaker.
We recommend using statistical methods for paired samples when using propensity-score matched samples
for making inferences on the effect of treatment on the reduction in the probability of an event occurring.
Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Propensity-score matching is increasingly being used to estimate the effects of treatments, exposures
and interventions on outcomes in observational studies. The propensity score is the probability of
treatment assignment conditional on the observed baseline covariates [1]. If treatment assignment is
strongly ignorable, then conditioning on the propensity score allows one to obtain an unbiased estimate
of average treatment effects [1].

Matching on the propensity score allows one to construct a matched sample in which systematic
differences in observed baseline covariates are reduced or eliminated between treatment groups [2].
Outcomes often can be directly compared between treatment groups in the propensity-score matched
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sample. There is a lack of consensus in the literature as to the appropriate statistical methods to
use when assessing the statistical significance of the estimated treatment effect in a propensity-score
matched sample. Schafer and Kang suggest that, within the matched sample, the treated and untreated
subjects should be regarded as independent [3]. Thus, if outcomes were continuous, a two-sample t-test
could be used for testing the statistical significance of a difference in means between treatment groups,
while the Pearson Chi-squared test could be used to test the statistical significance of the difference in
proportions between treatment groups. Recent systematic reviews of propensity-score matching in the
medical literature have found that authors frequently use statistical methods for independent samples
when assessing the statistical significance of the estimated treatment effect in the propensity-score
matched sample [4--6].

In contrast to this, it has been argued elsewhere that a propensity-score matched sample does not
consist of independent observations [5]. Treated and untreated subjects matched on the propensity
score will have observed baseline covariates that come from the same multivariate distribution [1].
Thus, on average, the baseline characteristics of matched treated and untreated subjects will be more
similar than the baseline characteristics of randomly selected treated and untreated subjects in the
propensity-score matched sample. When confounding is present, baseline covariates are related to the
outcome. Therefore, the outcomes of matched treated and untreated subjects are likely to be more
similar to one another compared to the outcomes of randomly selected treated and untreated subjects
in the propensity-score matched sample.

In medical and clinical research, dichotomous outcomes are common [7, 8]. Propensity score methods
allow for direct estimation of risk differences (or absolute risk reductions), in which the proportion
of subjects in whom the event occurs can be directly compared between treatment groups in the
propensity-score matched sample [9]. The objective of the current study was to compare the effect
on statistical inference when statistical methods for independent samples are used compared with
when statistical methods for paired samples are used for comparing differences in proportions between
treatment groups in the propensity-score matched sample. The study had four specific objectives: First,
to compare the empirical type I error rate when using McNemar’s test compared with when using
the standard Pearson Chi-squared test for comparing the proportion of subjects in whom the event
occurred between treatment groups; second, to compare the empirical coverage rates of 95 per cent
confidence intervals when standard errors are estimated using methods for paired data compared with
when methods for independent samples are used; third, to compare the precision of estimated 95 per
cent confidence intervals when standard errors are estimated using methods for paired data compared
with when methods for independent samples are used; and fourth, to compare the variance of the
empirical sampling distribution of the risk difference with the estimated variance of the risk difference
when using methods for independent samples and methods for paired samples. These four objectives
will be addressed using Monte Carlo simulations.

2. Monte Carlo simulations—methods

In this section, we describe the Monte Carlo simulations that were used to compare statistical inference
when methods for independent samples were used compared with when methods for paired samples
were used.

2.1. Data-generating process

We used a data-generating process identical to one used in a prior study that examined optimal
caliper widths for use with propensity-score matching [10]. Briefly, we simulated data sets such that
approximately 25 per cent of the sample was exposed to the treatment. The data-generating process
was designed to induce a specific average treatment effect for the treated (ATT), the measure of effect
that is estimated when propensity-score matching is used [11]. Furthermore, in the simulated data sets,
the marginal probability of the outcome would be approximately 0.29 if all subjects in the population
were not exposed. We then examined scenarios in which the risk differences due to treatment in
treated subjects were 0, −0.02, −0.05, −0.10 and −0.15 (i.e. absolute reductions in the probability
of the outcome due to treatment were 0, 0.02, 0.05, 0.10 and 0.15). First, we randomly generated 10
independent covariates (X1 − X10) from independent standard normal distributions for each of 10 000

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1292--1301

1293



P. C. AUSTIN

subjects. We then assumed that the following logistic regression model related the probability of
treatment to these 10 baseline covariates:

logit(pi,treat) = �0,treat+�L X1,i +�L X2,i +�L X3,i +�M X4,i +�M X5,i +�M X6,i

+�H X7,i +�H X8,i +�H X9,i +�VH X10,i

We then generated a treatment status indicator (Zi ) for each subject from a Bernoulli distribution
with subject-specific probability equal to pi,treat. Those subjects with Zi =1 denote the treated subjects
in whom the ATT is defined. We assumed that the following logistic regression model related the
probability of the outcome to these covariates and an indicator variable (Z) denoting treatment:

logit(pi,outcome) = �0,outcome+�Zi +�L X1,i +�L X2,i +�L X3,i +�M X4,i +�M X5,i +�M X6,i

+�H X7,i +�H X8,i +�H X9,i +�VH X10,i

In the above regression model, pi,outcome denotes the probability of the outcome for the i th subject
and � denotes the log-odds ratio relating treatment to the outcome. We then generated subject-specific
outcomes from a Bernoulli distribution with probability pi,outcome. The regression coefficients for the
baseline covariates in the above two regression models were set as follows: �L = log(1.1), �M = log(1.25),
�H = log(1.5) and �VH = log(2). These are intended to reflect low, medium, high and very high effect
sizes. We fixed the value of �0,treat =−1.344090 so that approximately 25 per cent of the subjects would
be treated. We fixed the value of �0,outcome =−1.098537 so that the probability of the event occurring
in the population if all subjects were untreated would be approximately 0.29. To induce a risk difference
of 0, � was set to be 0. For risk differences of −0.02, −0.05, −0.10 and −0.15, the required value of
� equaled log(0.90619), log(0.7795362), log(0.6001387) and log(0.45292), respectively. The reader is
referred elsewhere for a more detailed explanation of how these values of � were determined [12].

The above scenario assumed that the 10 covariates (X1 − X10) were all independently distributed
standard normal random variables. We also examined four additional covariate scenarios. In the second
covariate scenario, the 10 covariates were from a multivariate normal distribution such that the mean
and variance of each random variable were equal to 0 and 1, respectively, while the correlation between
pairs of random variables was equal to 0.25. In the third covariate scenario, the first five covariates
(X1 − X5) were assumed to be independent Bernoulli random variables with parameter 0.5, while the
last five covariates (X6 − X10) were assumed to be independent standard normal random variables. In
the fourth covariate scenario, the first nine covariates were assumed to be independent Bernoulli random
variables with parameter 0.5, while the tenth covariate was a standard normal random variable. In the
fifth covariate scenario, all the 10 covariates (X1 − X10) were all independent Bernoulli random variables
with parameter 0.5. The values of �0,treat, �0,outcome and � were modified in order to preserve the
proportion of treated subjects, the marginal probability of the outcome, and the required treatment effect.
We refer to the five covariate scenarios as the independent normal covariates scenario, the correlated
normal covariates scenario, the first mixed covariates scenario, the second mixed covariates and the
independent Bernoulli covariates scenario, respectively. Within each of the five covariate scenarios and
for each of the five absolute risk reductions, we randomly generated 1825 data sets, each consisting
of 10 000 subjects. We refer to the above set of 25 scenarios as the scenarios with a 0.29 outcome
probability and a weak treatment-selection model.

We also examined three additional sets of five covariate scenarios. In the next set of five scenarios,
the data-generating process was modified so that the probability of the outcome if all subjects were
untreated was 0.15. We refer to this set of five 25 scenarios as the scenarios with a 0.15 outcome
probability and a weak treatment-selection model. We then modified these two sets of 25 scenarios by
changing the weak treatment-selection model to a strong treatment-selection model. A strong treatment-
selection process will induce greater differences in baseline covariates between treated and untreated
subjects in the unmatched sample. In these two sets of 25 scenarios, the coefficients for the treatment-
selection model and the outcomes model were changed to: �L = log(1.5), �M = log(1.75), �H = log(2),
and �VH = log(2.5). In the two sets of simulations in which there was a strong treatment-selection model,
we observed low percentages of treated subjects successfully matched to untreated subjects in some of
the covariate scenarios. Therefore, in these two sets of scenarios, minor modifications were made to the
data-generating process by adding additional untreated subjects to the sample. Ten additional copies
of each untreated subject were created within each replication of the Monte Carlo simulations. For
these 10 additional subjects, outcomes were generated independently using the same subject-specific
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probability of an outcome. In these last two sets of simulations, the initially generated data set was
of size 1000 (rather than of size 10 000). Then 10 copies of each untreated subject were added to the
simulated sample so as to increase the number of potential control subjects.

2.2. Statistical analyses

In each simulated data set, we estimated the propensity score using a logistic regression model to
regress treatment status on the 10 baseline covariates. Propensity-score matching was used to construct
a matched sample consisting of pairs of treated and untreated subjects. We used greedy nearest neighbor

matching on the logit of the propensity score using a caliper of width equal to 0.2
√

(�2
1 +�2

2)/2, where

�2
i is the variance of the logit of the propensity score in the i th treatment group. This caliper width was

used as it has been shown to result in optimal estimation of risk differences in a variety of settings [10].
In the propensity-score matched sample, the absolute risk reduction was estimated as the sample

difference of the proportion of treated subjects in whom the outcome occurred and the proportion of
untreated subjects in whom the outcome occurred in the propensity-score matched sample. When the
true absolute risk reduction was 0 (the null hypothesis), the statistical significance of the estimated risk
difference was assessed using two different methods. First, using methods for independent samples, the
Pearson Chi-squared was used to assess the statistical significance of the difference in the probability
of the outcome occurring between treatment groups [13]. Second, using methods for paired samples,
McNemar’s test was used for this comparison.

The variance of the difference in proportions was estimated in two different methods. First, using
methods for independent samples, let pT and pC denote the observed probability of the outcome
occurring in treated and untreated subjects, respectively, in the propensity-score matched sample.
Furthermore, assume that there are N propensity score matched pairs. Then the standard error of the
estimated risk difference is given by

√
pT (1− pT )/N + pC (1− pC )/N [13]. Second, using methods for

paired samples, we assume that in the matched sample there were a pairs in which both the treated
and untreated subjects experienced the event; b pairs in which the treated subject experienced the event
while the untreated subject does not; and c pairs in which the untreated subject experienced the event
while the treated subject did not. Then, the variance of the difference in proportions was estimated
by ((b+c)−(c−b)2/n)/n2 [14]. In both cases, 95 per cent confidence intervals were estimated as
pT − pC ±1.96×se(pT − pC ), where se(pT − pC ) denotes the estimated standard error of the risk
difference.

For each of the 100 scenarios (2 treatment-selection models×2 probabilities of outcomes×5
covariate scenarios×5 absolute risk reductions), we simulated 1825 data sets. The above analyses
were conducted using each of the 1825 simulated data sets. In the 20 scenarios in which the true risk
difference was 0, we estimated the empirical type I error rate as the proportion of simulated data sets
in which the null hypothesis of no-treatment effect was rejected with a significance level of less than
0.05. Owing to our use of 1825 simulated data sets, an empirical type I error rate that was less than
0.04 or greater than 0.06 would be classified as being statistically significantly different from 0.05. For
each of the 100 scenarios, we determined the proportion of estimated 95 per cent confidence intervals
that contained the true risk difference. As above, due to the use of 1825 simulated data sets, empirical
coverage rates that are less than 0.94 or that exceed 0.96 are statistically significantly different from
the advertised coverage rate of 0.95. We also determined the mean width of the estimated 95 per cent
confidence intervals across the 1825 simulated data sets. Finally, we compared the standard deviation
of the empirical sampling distribution of the estimated treatment effects (i.e. the standard deviation
of the 1825 estimated risk differences across the simulated data sets) with the mean of the estimated
standard errors of the estimated treatment effect.

3. Monte Carlo simulations—results

The empirical type I error rates for the 20 different scenarios in which there was a true null treatment
effect are reported in Table I. We also report the mean percentage of treated subjects that were
successfully matched to an untreated subject across the 1825 simulated samples. When the Pearson Chi-
squared test was used to test the statistical significance of the risk difference, the empirical type I error
rates were less than 0.04 in 14 (70 per cent) of the 20 different scenarios. In contrast, when McNemar’s
test was used, the empirical type I error rate were never less than 0.04. In one (5 per cent) of the
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Table I. Empirical type I error rates for statistical methods for paired vs independent samples.

Mean percent of Pearson chi-squared test McNemar’s test
Covariate scenario treated subjects matched (independent sample method) (paired sample method)

0.29 outcome probability, weak treatment-selection model
Independent normal 90.4 0.0427 0.0614
Correlated normal 75.2 0.0351 0.0537
Mixture scenario 1 91.4 0.0296 0.0521
Mixture scenario 2 96.1 0.0422 0.0499
Independent Bernoulli 99.7 0.0416 0.0477

0.15 outcome probability, weak treatment-selection model
Independent normal 90.4 0.0378 0.0493
Correlated normal 75.2 0.0345 0.0537
Mixture scenario 1 91.4 0.0405 0.0499
Mixture scenario 2 96.1 0.0427 0.0515
Independent Bernoulli 99.7 0.051 0.0537

0.29 outcome probability, strong treatment-selection model
Independent normal 93.5 0.0208 0.0405
Correlated normal 78.6 0.0208 0.0526
Mixture scenario 1 95.2 0.029 0.0526
Mixture scenario 2 97.7 0.0334 0.051
Independent Bernoulli 99 0.0395 0.0532

0.15 outcome probability, strong treatment-selection model
Independent normal 93.5 0.0258 0.0521
Correlated normal 78.6 0.0214 0.0466
Mixture scenario 1 95.2 0.0323 0.0477
Mixture scenario 2 97.7 0.0312 0.0433
Independent Bernoulli 99 0.0384 0.0504

Note: Cells contain results averaged over 1825 Monte Carlo simulations.

20 scenarios, the empirical type I error rate exceeded 0.06 (the empirical type I error rate was 0.0614 in
this scenario). Thus, in the majority of covariate scenarios, the use of a method for independent samples
(i.e. the Chi-squared test) resulted in a type I error rate that was statistically significantly different
from the advertised rejection rate. When the results were stratified by the strength of the treatment-
selection process, when methods for independent samples were used, the empirical type I error rate
was statistically significantly different from 0.05 in 40 per cent of the 10 scenarios when there was a
weak treatment-selection process; however, the empirical type I error rate was statistically significantly
different from 0.05 in 100 per cent of the scenarios when there was a strong treatment-selection
process.

The empirical coverage rates of 95 per cent confidence intervals, the mean length of 95 per cent
confidence intervals, and the ratio of the mean length of estimated 95 per cent confidence intervals
obtained using methods for independent samples to the mean length of estimated 95 per cent confidence
intervals obtained using methods for paired samples are reported in Tables II–V for the four different
sets of five covariate scenarios. In 71 of the 100 scenarios, the empirical coverage rates of 95 per cent
confidence intervals obtained using a method for independent samples were statistically significantly
different from 0.95 (i.e. empirical coverage rates exceeded 0.96 or were less than 0.94). The median
empirical coverage rate was 0.964 (25th and 75th percentiles: 0.955 and 0.971) across the 100 scenarios.
Thus, in over half of the 100 scenarios, the empirical coverage rates were significantly different from
the advertised rate of 0.95. In contrast, in 15 of the 100 scenarios, the empirical coverage rates of 95
per cent confidence intervals obtained using methods for paired samples were statistically significantly
different from 0.95. The median empirical coverage rate was 0.949 (25th and 75th percentiles: 0.944
and 0.951). As above, we examined the results for the independent method of analysis separately in
scenarios with a weak treatment selection-process and in scenarios with a strong treatment selection-
process. In 24 (48 per cent) of the 50 scenarios with a weak treatment-selection process, methods
for independent samples resulted in 95 per cent confidence intervals whose empirical coverage rates
were not statistically significantly different from 0.95. However, in only 5 (10 per cent) of the 50
scenarios with a strong treatment-selection process, did methods for independent samples result in 95
per cent confidence intervals whose empirical coverage rates were not statistically significantly different
from 0.95.

1296

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1292--1301



P. C. AUSTIN

Table II. Coverage and width of empirical 95 per cent confidence intervals and estimation of sampling
variances of treatment effects – 0.29 treatment effect, weak treatment-selection model.

Ratio of mean estimated
variance of treatment effect

Coverage of 95 per cent Lengths of 95 per cent
Ratio of length

to variance of empirical

True risk
confidence intervals confidence intervals

of independent CI
sampling distribution

difference Independent Paired Independent Paired to paired CI Independent Paired

Independent normal covariates
0 0.957 0.938 0.057 0.053 1.075 1.084 0.944

−0.02 0.963 0.947 0.057 0.053 1.075 1.076 0.938
−0.05 0.964 0.949 0.056 0.052 1.077 1.093 0.956
−0.1 0.963 0.95 0.055 0.051 1.078 1.126 0.99
−0.15 0.961 0.944 0.053 0.05 1.06 1.138 1.008

Correlated normal covariates
0 0.965 0.946 0.063 0.057 1.105 1.255 1.02

−0.02 0.975 0.958 0.063 0.057 1.105 1.247 1.016
−0.05 0.97 0.948 0.063 0.057 1.105 1.24 1.013
−0.1 0.972 0.951 0.062 0.056 1.107 1.262 1.037
−0.15 0.969 0.952 0.061 0.055 1.109 1.244 1.032

Mixture covariate scenario 1
0 0.97 0.948 0.056 0.053 1.057 1.131 0.991

−0.02 0.964 0.951 0.056 0.053 1.057 1.124 0.986
−0.05 0.961 0.95 0.056 0.052 1.077 1.111 0.977
−0.1 0.964 0.95 0.054 0.051 1.059 1.122 0.992
−0.15 0.962 0.949 0.053 0.05 1.06 1.124 1.001

Mixture covariate scenario 2
0 0.958 0.95 0.054 0.052 1.038 1.091 0.988

−0.02 0.958 0.95 0.054 0.051 1.059 1.093 0.991
−0.05 0.962 0.951 0.053 0.051 1.039 1.07 0.972
−0.1 0.953 0.942 0.052 0.05 1.04 1.07 0.977
−0.15 0.955 0.945 0.05 0.048 1.042 1.085 0.998

Independent Bernoulli covariates
0 0.958 0.952 0.052 0.051 1.02 1.07 1.014

−0.02 0.953 0.95 0.052 0.05 1.04 1.078 1.023
−0.05 0.955 0.95 0.051 0.05 1.02 1.077 1.024
−0.1 0.95 0.946 0.05 0.048 1.042 1.072 1.022
−0.15 0.959 0.954 0.048 0.047 1.021 1.058 1.014

The ratio between the mean length of confidence intervals obtained using methods for independent
samples and the mean length of confidence intervals obtained using methods for paired samples ranged
from a low of 1 to a high of 1.197; the median ratio was 1.074 (25th and 75th percentiles: 1.045 and
1.113) across the 100 scenarios. Thus, in half of the 100 scenarios, the estimated confidence intervals
were at least 7.4 per cent wider when methods for independent samples were used compared with when
methods for paired samples were used. As above, the relative difference between the widths of the
confidence intervals was greater when there was a strong treatment-selection process compared with
when there was a weak treatment-selection process.

The analyses reported in the above two paragraphs suggest that confidence intervals constructed
using methods for paired samples tend to have coverage rates that were closer to the advertised
rates compared with when methods for independent samples were used. Furthermore, methods for
paired samples resulted in estimates with greater precision, since the estimated confidence intervals are
narrower compared with when methods for independent samples were used.

The square of the ratio between the mean estimated standard error when methods for independent
samples were used and the standard deviation of the empirical sampling distribution of the estimated
risk differences across the 1825 simulated data sets is reported in the second rightmost column of
Tables II–V. A similar ratio obtained when methods for paired samples was used is reported in the
rightmost column of Tables II–V. When methods for independent samples were used, this ratio ranged
from a low of 0.950 to a high of 1.508; the median ratio was 1.149 (25th and 75th percentiles: 1.085 and
1.250, respectively) across the 100 scenarios. Thus, in 50 per cent of the scenarios, variance estimates
obtained using methods for independent samples overestimated the sampling variance of the estimated
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Table III. Coverage and width of empirical 95 per cent confidence intervals and estimation of sampling
variances of treatment effects – 0.15 treatment effect, weak treatment-selection model.

Ratio of mean estimated
variance of treatment effect

Coverage of 95 per cent Lengths of 95 per cent
Ratio of length

to variance of empirical

True risk
confidence intervals confidence intervals

of independent CI
sampling distribution

difference Independent Paired Independent Paired to paired CI Independent Paired

Independent normal covariates
0 0.962 0.951 0.047 0.045 1.044 1.113 1.005

−0.02 0.953 0.942 0.047 0.044 1.068 1.097 0.993
−0.05 0.944 0.929 0.045 0.043 1.047 1.07 0.974
−0.1 0.873 0.856 0.043 0.041 1.049 1.074 0.99
−0.15 0.685 0.665 0.04 0.039 1.026 1.073 1.009

Correlated normal covariates
0 0.965 0.946 0.053 0.049 1.082 1.193 1.019

−0.02 0.956 0.939 0.053 0.049 1.082 1.207 1.034
−0.05 0.923 0.895 0.051 0.048 1.063 1.192 1.027
−0.1 0.722 0.676 0.049 0.046 1.065 1.153 1.005
−0.15 0.311 0.265 0.047 0.044 1.068 1.138 1.01

Mixture covariate scenario 1
0 0.959 0.95 0.047 0.045 1.044 1.105 1.004

−0.02 0.956 0.944 0.046 0.044 1.045 1.106 1.008
−0.05 0.953 0.944 0.045 0.043 1.047 1.126 1.03
−0.1 0.91 0.896 0.042 0.041 1.024 1.099 1.018
−0.15 0.744 0.723 0.039 0.038 1.026 1.058 0.998

Mixture covariate scenario 2
0 0.957 0.948 0.045 0.043 1.047 1.039 0.968

−0.02 0.952 0.944 0.044 0.042 1.048 1.027 0.959
−0.05 0.95 0.942 0.042 0.041 1.024 0.994 0.932
−0.1 0.925 0.919 0.04 0.039 1.026 0.955 0.906
−0.15 0.883 0.877 0.036 0.036 1 0.95 0.917

Independent Bernoulli covariates
0 0.949 0.946 0.042 0.042 1 1.038 1.002

−0.02 0.955 0.949 0.041 0.041 1 1.03 0.996
−0.05 0.952 0.95 0.04 0.039 1.026 1.031 1.001
−0.1 0.953 0.951 0.036 0.036 1 0.983 0.961
−0.15 0.946 0.945 0.032 0.032 1 0.972 0.962

risk difference by at least 14.9 per cent. In 25 per cent of the scenarios, these methods overestimated the
sampling variance of the estimated risk difference by at least 25.0 per cent. Furthermore, the estimated
standard error overestimated the empirical standard deviation of the sampling distribution to a greater
extent when there was a strong treatment-selection process compared with when there was a weak
treatment-selection process. When methods for paired samples were used, the ratio ranged from a low
of 0.906 to a high of 1.071; the median ratio was 1.003 (25th and 75th percentiles: 0.985 and 1.023,
respectively) across the 100 scenarios.

4. Discussion

We compared statistical inference when methods for independent samples were used compared with
when methods for paired samples were used for significance testing and for variance estimation when
estimating risk differences in propensity-score matched samples. We found that compared with using
methods for independent samples, the use of methods for paired samples resulted in: (i) empirical type I
error rates that were closer to the advertised rate; (ii) empirical coverage rates of 95 per cent confidence
intervals that were closer to the advertised rate; (iii) narrower 95 per cent confidence intervals; and (iv)
estimated standard errors that were more closely reflected the sampling variability of the estimated risk
difference.

As noted in the Introduction, applied researchers using propensity-score matching frequently use
statistical methods for independent samples when estimating the statistical significance of estimated
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Table IV. Coverage and width of empirical 95 per cent confidence intervals and estimation of sampling
variances of treatment effects – 0.29 treatment effect, strong treatment-selection model.

Ratio of mean estimated
variance of treatment effect

Coverage of 95 per cent Lengths of 95 per cent
Ratio of length

to variance of empirical

True risk
confidence intervals confidence intervals

of independent CI
sampling distribution

difference Independent Paired Independent Paired to paired CI Independent Paired

Independent normal covariates
0 0.979 0.958 0.181 0.157 1.153 1.391 1.044

−0.02 0.980 0.956 0.181 0.157 1.153 1.391 1.044
−0.05 0.976 0.951 0.181 0.157 1.153 1.370 1.032
−0.1 0.975 0.950 0.180 0.157 1.146 1.356 1.026
−0.15 0.979 0.957 0.179 0.156 1.147 1.398 1.066

Correlated normal covariates
0 0.979 0.944 0.188 0.157 1.197 1.470 1.027

−0.02 0.982 0.945 0.189 0.158 1.196 1.478 1.034
−0.05 0.981 0.952 0.191 0.160 1.194 1.508 1.057
−0.1 0.968 0.928 0.193 0.162 1.191 1.470 1.039
−0.15 0.947 0.897 0.193 0.163 1.184 1.334 0.954

Mixture covariate scenario 1
0 0.970 0.946 0.180 0.158 1.139 1.251 0.966

−0.02 0.976 0.947 0.180 0.158 1.139 1.288 0.995
−0.05 0.971 0.942 0.179 0.158 1.133 1.240 0.961
−0.1 0.969 0.945 0.178 0.157 1.134 1.268 0.987
−0.15 0.964 0.940 0.176 0.156 1.128 1.218 0.956

Mixture covariate scenario 2
0 0.966 0.949 0.176 0.161 1.093 1.205 1.003

−0.02 0.970 0.951 0.176 0.160 1.100 1.206 1.004
−0.05 0.969 0.944 0.175 0.159 1.101 1.207 1.005
−0.1 0.968 0.951 0.172 0.157 1.096 1.223 1.021
−0.15 0.968 0.946 0.169 0.155 1.090 1.191 1.003

Independent Bernoulli covariates
0 0.959 0.946 0.172 0.161 1.068 1.137 0.989

−0.02 0.964 0.948 0.172 0.160 1.075 1.117 0.973
−0.05 0.966 0.948 0.170 0.159 1.069 1.150 1.004
−0.1 0.965 0.951 0.167 0.156 1.071 1.128 0.990
−0.15 0.966 0.956 0.163 0.153 1.065 1.121 0.992

treatment effects [5]. The results of our series of Monte Carlo simulations suggest than when outcomes
are dichotomous and the risk difference (or the absolute risk reduction) is used as the measure of
treatment effect, then statistical methods of inference that account for the matched nature of the
propensity-score matched sample are preferable to methods for the analysis of independent samples.
The use of methods for independent samples will result in conservative confidence intervals – that
is, confidence intervals whose coverage rates exceed the advertised rate. Furthermore, the estimated
confidence intervals will tend to be wider, with an associated loss in precision, when methods for
independent samples are used compared with when methods for matched samples are used. However,
one should note that the estimated risk difference does not depend on whether one assumes that methods
for matched samples or methods for independent samples should be used.

The current study complements prior published research. An earlier study found that in many settings,
methods for paired samples tended to result in improved inference compared with when methods for
independent samples were used for the analysis of propensity-score matched samples [15]. In the
prior study, empirical coverage rates of confidence intervals and variance estimation was studied for
differences in means, rate ratios and relative risks. Furthermore, empirical type I error rates were
studied for these three measures of effects as well as for odds ratios and hazard ratios. This prior study
did not examine inferences about risk differences. The recent description of a data-generating process
for simulating data in which treatment induces a specified absolute risk reduction [12] permitted the
examination of inferences for risk differences that was conducted in the current study.

It is important to examine the effect of different methods of analysis on inference when estimating
risk differences or absolute risk reductions. Binary outcomes are common in healthcare research [8].
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Table V. Coverage and width of empirical 95 per cent confidence intervals and estimation of sampling
variances of treatment effects – 0.15 treatment effect, strong treatment-selection model.

Ratio of mean estimated
variance of treatment effect

Coverage of 95 per cent Lengths of 95 per cent
Ratio of length

to variance of empirical

True risk
confidence intervals confidence intervals

of independent CI
sampling distribution

difference Independent Paired Independent Paired to paired CI Independent Paired

Independent normal covariates
0 0.974 0.947 0.168 0.148 1.135 1.252 0.976

−0.02 0.974 0.952 0.167 0.147 1.136 1.286 1.006
−0.05 0.972 0.946 0.164 0.145 1.131 1.257 0.989
−0.1 0.974 0.952 0.159 0.142 1.120 1.265 1.012
−0.15 0.968 0.948 0.152 0.138 1.101 1.199 0.984

Correlated normal covariates
0 0.978 0.953 0.188 0.161 1.168 1.360 0.997

−0.02 0.977 0.950 0.187 0.160 1.169 1.341 0.988
−0.05 0.973 0.945 0.184 0.159 1.157 1.297 0.963
−0.1 0.970 0.945 0.179 0.156 1.147 1.262 0.954
−0.15 0.973 0.949 0.173 0.152 1.138 1.259 0.977

Mixture covariate scenario 1
0 0.967 0.952 0.164 0.147 1.116 1.234 0.993

−0.02 0.972 0.953 0.162 0.146 1.110 1.236 0.997
−0.05 0.973 0.951 0.159 0.144 1.104 1.296 1.055
−0.1 0.971 0.955 0.154 0.139 1.108 1.248 1.030
−0.15 0.969 0.948 0.147 0.135 1.089 1.208 1.020

Mixture covariate scenario 2
0 0.969 0.956 0.154 0.143 1.077 1.208 1.042

−0.02 0.973 0.957 0.152 0.141 1.078 1.228 1.061
−0.05 0.973 0.957 0.148 0.138 1.072 1.234 1.071
−0.1 0.965 0.955 0.141 0.133 1.060 1.188 1.047
−0.15 0.961 0.950 0.133 0.126 1.056 1.151 1.039

Independent Bernoulli covariates
0 0.960 0.950 0.146 0.139 1.050 1.117 1.008

−0.02 0.964 0.954 0.143 0.136 1.051 1.148 1.039
−0.05 0.963 0.954 0.139 0.133 1.045 1.140 1.037
−0.1 0.957 0.950 0.131 0.126 1.040 1.079 0.996
−0.15 0.948 0.939 0.122 0.118 1.034 1.004 0.947

When outcomes are binary, the effect of treatment on outcomes can be described using four different
metrics: the risk difference, the relative risk, the number needed to treat (NNT) and the odds ratio.
Propensity-score matching has been shown to result in biased estimation of both conditional and
marginal odds ratios [16, 17]. The NNT is the reciprocal of the absolute risk reduction. Comparisons
of different propensity score methods for estimating absolute risk reductions and relative risks are
described in greater detail elsewhere [9, 18].

In conclusion, we recommend that when propensity-score matching is used to reduce or eliminate the
effects of treatment selection bias or confounding, that statistical methods for paired samples be used
when estimating the effect of treatment or exposure on absolute risk reductions or risk differences.
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