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Purpose: We recently demonstrated that molecular therapy using aminoglycosides can overcome the underlying genetic
defect in two zebrafish models of ocular coloboma and showed abnormal cell death to be a key feature associated with
the optic fissure closure defects. In further studies to identify molecular therapies for this common congenital
malformation, we now examine the effects of anti-apoptotic compounds in zebrafish models of ocular coloboma in vivo.
Methods: Two ocular coloboma zebrafish lines (pax2.I/noi®?%¢ and lamb1/gup™%) were exposed to diferuloylmethane
(curcumin) or benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD-fimk; a pan-caspase inhibitor) for up
to 8 days post-fertilization. The effects of these compounds were assessed by morphology, histology, terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and western blot analysis.

Results: The size of the coloboma in gup zebrafish mutants treated with diferuloylmethane was greatly reduced. In treated
mutants a reduction in TUNEL staining and a 67% decrease in activated caspase-3 protein were observed. The release of
cytochrome ¢ from the mitochondria into the cytosol was reduced fourfold by in vivo diferuloylmethane treatment,
suggesting that the drug was acting to inhibit the intrinsic apoptotic pathway. Inhibition of caspases directly with zZVAD-
fmk also resulted in a similar reduction in coloboma phenotype. Treatment with either diferuloylmethane or zZVAD-fmk
resulted in a statistically significant 1.4 fold increase in length of survival of these mutant zebrafish (p<0.001), which
normally succumb to the lethal genetic mutation. In contrast, the coloboma phenotype in noi zebrafish mutants did not
respond to either diferuloylmethane or zVAD-fmk exposure, even though inhibition of apoptotic cell death was observed
by a reduction in TUNEL staining.

Conclusions: The differential sensitivity to anti-apoptotic agents in /ambi-deficient and pax2.I-deficient zebrafish
models, suggests that apoptotic cell death is not a final common pathway in all ocular coloboma genotypes. When
considering anti-cell death therapies for ocular colobomatous defects attention should be paid to the genotype under
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investigation.

During early eye development a critical morphogenetic
event is the formation and closure of the optic fissure to allow,
for example, ingression of the hyaloid vasculature to supply
the developing retina [1]. This process requires precisely
coordinated sculpting and folding of epithelial tissue, so that
the edges of the optic fissure can align, converge and fuse. The
most common abnormality of this process, failure of this optic
fissure to close, leads to the congenital malformation known
as ocular coloboma, with an incidence of 0.5—7 per 10,000
births [2]. As an example of failure of developing tissue to
fuse, ocular coloboma can be grouped along with other
developmental anomalies such as spina bifida and cleft lip/
palate [3-5]. Potentially affecting the retina, choroid and optic
nerve as well as the iris, it has been reported in up to 11.2%
of blind children worldwide [6] making this untreatable
developmental abnormality an important area to study.
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The first step in delineating the signaling pathways that
lead to proper folding, apposition and fusion of developing
eye tissue is to identify molecular events causing optic fissure
closure defects [7-13]. Although a large number of genetic
defects have been associated with ocular coloboma [14], the
molecular and cellular mechanisms underlying this are poorly
understood. Data from several sources has however emerged
to suggest that apoptotic cell death pathways are abnormally
activated in cases of coloboma [15,16]. These data suggest
that modulation of apoptotic cell death could be a viable
strategy for inhibiting coloboma formation independent of the
underlying cause [17-19].

We had previously shown that the zebrafish model
system is particularly suited to drug testing in vivo. In two
ocular coloboma models we showed that translational bypass
of the premature stop codon mutation in each mutant using
aminoglycosides was able to rescue the colobomatous defect
and concomitantly inhibit cell death in the eye [16]. In this
study we proposed to identify other pharmaceutical
approaches to modifying molecular pathways triggered by
coloboma mutations.
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Diferuloylmethane (commonly known as curcumin) is a
natural polyphenol component found in the rhizome of the
Curcuma longa plant. Extensive studies have revealed diverse
pharmacological effects induced by diferuloylmethane
reported both in vitro and in vivo, including anti-inflammatory
[20], antioxidant [21], anti-tumor [22], and neuroprotective
(anti-cell death) actions [23-26]. zVAD-fmk is a broad
spectrum caspase inhibitor that is commonly used to
investigate cell death signaling in vitro, and several studies
have shown that it has beneficial anti-cell death effect in vivo.
For example, it delays disease onset and extends the survival
in the amyotrophic lateral sclerosis transgenic mouse model
[27], it rescues renal hypoplasia in paired box 2 (Pax2)-
deficient mice [28] and promotes cochlear hair cell survival
in the Pou4f3 mouse model of deafness [29]. In this study we
tested the ability of  diferuloylmethane  and
benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethylketone
(zVAD-fmk) to attenuate the congenital coloboma phenotype
in zebrafish models of ocular coloboma.

METHODS

Zebrafish strains and maintenance: Zebrafish strains
(wildtype AB [30], noi*** [31] and gup™® [32]) were
maintained and staged according to morphological criteria
using established protocols [33,34]. The noi strain has a
nonsense mutation in the pax2.1 gene with a mild coloboma
phenotype, whereas the gup strain has a nonsense mutation in
the laminin beta 1 (lambl) gene with a severe coloboma
phenotype. Research was carried in accordance with the
principles and guidelines of The Animals (Scientific
Procedures) Act 1986, UK, the Canadian Council of Animal
Care and the ARVO statement for the use of animals in vision
research. Embryos were raised at 28.5 °C on a 14 h light/10 h
dark cycle in 100 mm? Petri dishes containing aquaria water.
To aid image analysis, 0.2 mM phenylthiourea (PTU; Sigma-
Aldrich, Oakville, ON, Canada) was added to the embryos at
10 h post-fertilization (hpf) to inhibit pigment formation.

Anti-apoptosis treatment: All chemicals were obtained from
Sigma-Aldrich (Oakville, ON, Canada). Stock solutions of
zVAD-fmk and zF A-fmk (negative control for zZVAD-fmk) in
dimethyl sulfoxide (DMSO) and diferuloylmethane in PBS
(137mM NaCl, 2.7 mM KCl, 4.3 mM Na;HPOy, and 1.47 mM
KH2POq4, pH of 7.4) were added to aquaria water. Initial dose—
response experiments in zebrafish embryos were performed
to determine non-toxic dosages. Mutant embryos were
dechorionated at 10 hpf and treated with diferuloylmethane,
zVAD-fmk, zFA-fmk or kept in control (drug-free) aquaria
water until either 6 or 8 days post-fertilization (dpf). An
equivalent volume of DMSO was added to control cultures
where necessary. For each treatment 30 embryos were used
and three independent experiments were performed.
Quantitative data are expressed as meant+SEM. Statistical
analysis of the data by pair-wise comparisons between the
control, untreated mutants and each treatment group was
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performed using the Mann—Whitney test. A p value <0.05 was
considered significant.

Retinal histology and morphological studies: Embryos were
fixed in 4% paraformaldehyde (PFA) overnight at 4 °C before
histological or terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) analysis analysis. After fixation
in 4% PFA, embryos were washed 3 times in PBS and
dehydrated through a graded ethanol series (50%, 70%, 90%,
and 3 times in 100%). Embryos were transferred into cedar
wood oil and then embedded in paraffin wax. Microtome
sections of 5 um thickness were cut, mounted on Superfrost
Plus slides (Thermo Scientific, Ottawa, ON, Canada) and
counterstained with hematoxylin and eosin. Images were
captured with an EM-CCD camera (Hamamatsu Photonics
Ltd, Welwyn Garden City, UK) using a widefield Axiovert
microscope Carl Zeiss Inc, New York, NY). Whole-mount
morphological images were taken with a DFC300 FX camera
(Leica Microsystems Ltd., Milton Keynes, UK) mounted on
a Z16F stereomicroscope (Leica Microsystems Ltd.).

TUNEL assay: PTU-treated embryos at 6 dpf from each
treatment group were fixed in 4% PFA and embedded in wax
as described above. Retinal sections were dewaxed by
washing twice in Histoclear (National Diagnostics, Hessle,
UK), followed by 2 washes in 100% ethanol and once in 70%
ethanol, before rinsing in deionised H.O. For wholemount
TUNEL assays, embryos were dehydrated through a graded
methanol series (25%, 50%, 75%, and twice in 100%) and
stored in 100% methanol at —20 °C. After rehydration, both
sections and wholemount embryos were digested with
proteinase K (10 pg/ml) for 15 min and 1 h, respectively.
Embryos were refixed with 4% PFA for 20 min at room
temperature (RT), followed by several washed in PBS. The
ApopTag® Peroxidase In Situ Apoptosis Detection Kit
(Millipore, Bedford, MA) was used to detect levels of
apoptotic cell death, following the manufacturer’s
instructions.

Western blot analysis: Specific primary antibodies were
obtained from commercial sources and used as follows: 1:200
cleaved caspase-3 rabbit polyclonal and 1:2,000
glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
mouse monoclonal (Abcam, Cambridge, MA); 1:500
cytochrome c rabbit polyclonal (Santa Cruz Biotech, Santa
Cruz, CA); 1:4,000 B-actin mouse monoclonal (Sigma-
Aldrich, Oakville, ON, Canada); 1:1,000 cox IV mouse
monoclonal (Acris Antibodies, San Diego, CA).

Briefly, 25 wildtype and mutant embryos at 6 dpf were
snap frozen in liquid nitrogen and homogenized by sonication
in lysis buffer (10 mM Tris pH 7.5, 10 mM NaCl, 1% SDS,
1x Protease Inhibitor Cocktail (Roche, Indianapolis, IN).
Insoluble material was removed by a 10 min centrifugation
(25,000% g). For subcellular fractionation, frozen embryos
were homogenized in hypotonic buffer (50 mM HEPES 7.5,
10 mM NaCl, 1 mM DTT, 1x Protease Inhibitor Cocktail) by
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sonication. Nuclei and unbroken cells were pelleted by
centrifugation at 800% g for 10 min. The supernatant was
collected and centrifuged at 100,000 g for 1 h at 4 °C using
a Beckman Optima Ultracentrifuge (Beckman Coulter,
Mississauga, ON, Canada) to obtain cytosolic fractions
(supernatant) and mitochondrial fractions (pellet). Protein
concentration was determined by the DC protein assay (Bio-
Rad, Mississauga, ON, Canada).

Equal amounts of protein (40 pg) were separated on a
12% SDS-polyacrylamide gel and transferred to Immobilon-
FL membrane (Millipore, Bedford, MA). The membrane was
incubated in 5% non-fat milk powder in PBS/0.1% Tween-20
(PBST) for 2 h at room temperature and incubated overnight
at 4 °C, simultaneously with two primary antibodies raised in
different hosts. Following 3 washes in PBST, the membrane
was incubated in the dark for 1 h with two Li-COR secondary
antibodies simultaneously (IRDye 680LT goat anti-rabbit;
IRDye 800CW goat anti-mouse; Mandel Scientific, Guelph,
ON, Canada). After the membrane was washed 3 times in
PBST in the dark, protein bands were visualized using a Li-
COR Odyssey detector. The Li-COR software and Image J
were used to quantify band intensity.

RESULTS

Therapeutic dose for diferuloylmethane and zVAD-fmk in
zebrafish: To determine the highest dose of drug that could be
tolerated, we performed survival experiments. The survival
rates of wildtype embryos dosed continuously from 10 hpf
(before optic fissure morphogenesis) with increasing
concentrations of diferuloylmethane from 1 uM to 1 mM was
measured at 6 dpf (Figure 1A), and behavioral and gross
morphological defects were noted in surviving larvae.
Embryos treated with 5 uM diferuloylmethane displayed
normal morphology and behavior with 100% survival rates at
6 dpf, and retinal sections had a normal histological
appearance at 6 dpf (Figure 1B,C). Doses of >5 pM yielded
toxic side effects including pericardial edema, bent tails,
spinal curvature, shorter body length, and abnormal
swimming behavior. Doses of >12.5 uM were lethal in 100%
of embryos. These results were consistent with previous
studies examining the effects of diferuloylmethane on
zebrafish development [35]. Hence, a 5 uM concentration was
chosen as the optimum therapeutic dose for in vivo testing in
zebrafish mutants. Similar dose response curves were
performed for zVAD-fmk and zFA-fmk and the optimum
dose of 300 pM for both compounds was determined to have
no toxic side effects (Figure 1D,E).

Effect of diferuloylmethane and zVAD-fmk on coloboma
mutant morphology: Mutant gup embryos were dosed with
5 uM diferuloylmethane or 300 uM zV AD-fmk at 10 hpf and
incubated up to 6 dpf. At48 hpf, treated gup mutants displayed
asmaller optic fissure closure defect with both drugs (compare
Figure 2A,B with Figure 2C,D), but with similar systemic
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features compared to untreated mutants. In contrast, the zZFA-
fmk control drug at a concentration of 300 uM had no effect
of the size of the coloboma (Figure 2E). By 6 dpf, the size of
the optic fissure was greatly reduced with both drugs revealing
a persistent milder coloboma phenotype (compare Figure
3A,C with Figure 3E,G) whereas zFA-fmk had no effect on
the coloboma phenotype (Figure 31). To determine whether
this effect of drug treatment was through a reduction of cell
death, we performed TUNEL-staining (Figure 3B,D,F,H.,J).
In whole-mount analysis there was no TUNEL-positive
staining at the position of the optic fissure in treated gup
mutants compared to untreated mutants, suggesting that
diferuloylmethane and zZVAD-fmk had caused a reduction in
apoptotic cell death (compare Figure 3D with Figure 3F,H).

To determine whether diferuloylmethane or zVAD-fmk
treatment would also be effective in other models of
coloboma, these drugs were tested in the noi mutant model of
coloboma from 10 hpf and incubated up to 6 dpf. When noi
mutant fish were treated with 5 pM diferuloylmethane the
amount of TUNEL-labeled cells present in wholemount fish
was greatly reduced throughout the whole fish and the eye
(compare Figure 4B with Figure 4C). Conversely however,
the size of the coloboma appeared enlarged rather than
reduced. Similarly, although 300 uM zVAD-fmk reduced
TUNEL staining in the fish, it had no discernible effect on the
coloboma defect (Figure 4D).

To further explore this beneficial reduction in coloboma
size seen with diferuloylmethane in gup zebrafish, we used
TUNEL-staining to examine cell death in whole-eye sections
at 6 dpf. Diferuloylmethane treatment again confirmed far
fewer TUNEL-positive cells throughout the eye of mutant
zebrafish compared to untreated zebrafish (Figure 5A). This
experiment however showed that although the size of optic
fissure was reduced, there was no formation of a lens with
diferuloylmethane treatment.

Effect of diferuloylmethane on caspase activity and
mitochondrial cytochrome c release in gup zebrafish: To
determine if the reduction in TUNEL-positive labeling caused
by diferuloylmethane is a caspase-dependent process, protein
extracts were obtained from 6 dpf embryos and tested for
activated caspase-3 activity by western blot. Zebrafish lysates
from gup mutant fish displayed high levels of cleaved
caspase-3 activity (maximally 100%) compared to wildtype
embryos (2.7%; Figure 5B). However, mutant embryos
treated with diferuloylmethane had a 67% reduction in the
level of cleaved caspase-3 protein. We therefore tested
whether this reduction in caspase-3 activity was associated
with inhibition of the intrinsic apoptotic pathway, by assessing
whether cytochrome ¢ was released from the mitochondria
into the cytosol [36]. In wildtype zebrafish at 6 dpf,
cytochrome c levels were highest in the mitochondrial fraction
and were only detected at low levels in the corresponding
cytosolic fraction (Figure 6). In untreated mutants at 6 dpf,
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Figure 1. Effect of drug treatment on wildtype zebrafish. A: Wildtype embryos were dosed continuously from 10 hpf with diferuloylmethane.
Percentage survival of embryos at 6 dpf was determined for each treatment group (30 embryos/group), n=3, mean+SEM. Error bars smaller
than the symbol are not visible. B-E: Left panels, wholemount eye; center panels, coronal retinal section; right panels, wholemount larvae.
B: Wildtype phenotype untreated at 6 dpf. C: Wildtype phenotype at 6 dpf treated with 5 uM diferuloylmethane from 10 hpf. D: Wildtype
phenotype at 6 dpf following 300 uM zVAD-fmk treatment. E: Wildtype phenotype at 6 dpf following 300 uM zFA-fmk treatment. Scale
bar left panel=200 pm. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium, ON,

optic nerve.
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Figure 2. Representative morphology of gup mutants at 48 hpf following drug treatment. Left panel, enlarged image of wholemount eye, scale
bar=200 um. Right panel, whole embryo morphology, scale bar=500 um. A: Wildtype control, complete closure of optic fissure. B: Untreated
gup mutant, displaying large open optic fissure at ventral aspect of eye. C: gup mutant treated with 5 pM diferuloylmethane, displaying open
optic fissure which is smaller in size compared to untreated mutants. D: gup mutant treated with 300 uM zVAD-fmk, displaying a smaller
open optic fissure than untreated mutants. E: gup mutant treated with 300 pM zFA-fmk, displaying a large open optic fissure as in untreated
mutants. Optic fissure closure defect delineated by black dotted line.

1477



http://www.molvis.org/molvis/v17/a166

Molecular Vision 2011; 17:1473-1484 <http://www.molvis.org/molvis/v17/a166>

© 2011 Molecular Vision

A

Ky

-

o
.
—_—

2

g
-
>

b

w ./
.'a.;'

“0

Cc

gup +F 6 dpf

Figure 3. Representative images of drug treatment in gup mutants at 6 dpf. A, C, E, G, I: Enlarged wholemount of the eye, scale=200 pm,
and wholemount larvae, scale=500 um. B, D, F, H, J: corresponding TUNEL stained wholemount of PTU-treated eye and larvae. A, B:
Wildtype zebrafish showing normal morphology and minimal apoptosis in the eye and wholemount. C, D: Untreated gup mutants displaying
large coloboma in ventral aspect of the eye, TUNEL-positive labeled tissue at the site of the unfused optic fissure and throughout the whole
fish. E, F: gup mutants treated with 5 uM diferuloylmethane (+D) showing small colobomatous defect, minimal TUNEL-positive staining in
the eye, and reduced levels in the whole larvae compared to untreated mutants. G, H: gup mutants treated with 300 uM zVAD-fmk (+V)
showing small colobomatous defect, minimal TUNEL-positive staining in the eye, and reduced levels in the whole larvae compared to untreated
mutants. I, J: gup mutants treated with 300 pM zFA-fmk (+F) showing large colobomatous defect and TUNEL-positive staining at the site

of the unfused fissure.

cytochrome ¢ was elevated sixfold in the cytosol, with a
corresponding reduction in the mitochondrial fraction.
However, when gup mutants were treated with
diferuloylmethane from 10 hpf to 6 dpf, the release of

cytochrome c into the cytosol was greatly reduced to just
twofold over wildtype levels.

Effect of diferuloylmethane and zVAD-fmk on survival: Since
gup mutants showed extensive TUNEL labeling throughout
the larva, which was reduced by the presence of
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Figure 4. Representative images of the effect of diferuloylmethane on TUNEL-labeling in noi mutant larvae at 6 dpf. A: TUNEL-labeling in
wholemount larvae (left) and wholemount eye (right) of wildtype zebrafish (wt). B: Extensive TUNEL labeling in larvae and eye of untreated
noi mutant zebrafish. C: noi mutant larvae treated with 5 uM diferuloylmethane. D: noi larvae treated with 300 pM zVAD-fmk. Arrow points
to optic fissure closure defect delineated by black dotted line. Scale bar whole eye=200 pum; scale bar larval fish=500 um.

diferuloylmethane, we speculated whether the mutant larva
would survive past its usual life-span of only 5 days (the
lamb 1 mutation is embryonic lethal). Mutant embryo survival
was therefore tested in the presence of either:
diferuloylmethane, zZVAD-fmk or zFA-fmk. The presence of
diferuloylmethane from 10 dpfincreased the embryo life-span

from 5.0+1.0 days to 7.1£1.4 days in treated embryos (Figure
7A), representing a statistically significant (p<0.001)1.4 fold
increase in survival. Similarly, zVAD-fmk also increased
embryo survival from 5.0+1.0 days to 7.0+1.5 days (p<0.001).
No effect on embryo survival was observed with zFA-fmk.
Furthermore, the size of the coloboma was even smaller in
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Figure 5. Effect of diferuloylmethane on
cell death in gup mutant larvae. A:
Comparison of TUNEL-positive cells in
coronal cryosections of the eye from
mutant gup embryos (left), mutant gup
embryos treated with 5 pM
diferuloylmethane (center) and
wildtype embryos (right) at 6 dpf.
Histological sections counterstained

caspase-3

gapdh

gup gup+D

with methyl green. B: Representative
western blot of lysates from untreated
mutant larvae (gup), mutant larvae
treated with 5 pM diferuloylmethane
(gup+D) and wildtype larvae (wt).
Upper lanes, correspond to cleaved
caspase-3; lower lanes, corresponding
gapdh loading controls.

wt

mitochondria

cytosol

Wt gup gup+D Wt gup gup+D Figure 6. Representative western blots

showing cytochrome c levels in gup

R S w— | — - —_—— CYtOC  utants treated with diferuloylmethane.

Cytochrome ¢ (cyto c) levels were

|B cti determined in embryos treated for 6

cox IV ——— cm——  — - -aclin days. Mitochondrial and cytosolic

- - fractions were normalized with cox IV

or B-actin, respectively. Quantitation of

western  blot of cytochrome ¢

- & 1.00 -8 o & localization in larvae is shown directly

E -] 075 s E 2 beneath western blots. Wildtype levels

w E & 6.1 o .E in each fraction are set to 1.0. Wt,

E= 0.50 — —4 E'E wildtype; gup, untreated mutant larvae,

E . E gup+D, mutant plus diferuloylmethane.
gf 0.25 - — |2 g‘?
R o [0l [ 0 E

mitochondria

cytosol

mutants treated with curcumin or zZVAD-fmk at 8 dpf (Figure
7C,D) compared to 6dpf (Figure 3E,G).

DISCUSSION
This study demonstrates that an anti-cell death strategy (using
diferuloylmethane or zVAD-fmk) not only substantially
ameliorates the ocular coloboma phenotype in the gup
(lamb1) zebrafish but also increase embryo survival rate. Our
results also suggest that this reduction in disease severity in
the gup model occurs through inhibition of the intrinsic
(mitochondrial) apoptotic pathway via a caspase-3 dependent
mechanism. Persistence of an albeit smaller colobomatous

defect, and absence of the lens with diferuloylmethane
however suggests that this benefit is partial. Contrastingly, in
a second coloboma model where pax2. 1 is deficient (noi line),
apoptotic cell death in the eye was again reduced by
diferuloylmethane and zVAD-fmk, but we could detect no
improvement in phenotype, suggesting that caspase-
dependent cell death is not critical in the pathogenesis of
ocular disease in noi zebrafish.

Of the many different mechanisms at play during normal
neurodevelopment, cell death, specifically apoptotic cell
death has emerged as an important, late event [37]. During eye
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Figure 7. Effect of caspase inhibition on survival and optic fissure closure. A: Mean survival of gup mutant embryos with no treatment or
with either diferuloylmethane, zZVAD-fmk or control inhibitor zFA-fmk. n=30 for each group, mean+SEM (*p<0.001). B: Wildtype (wt)
larval phenotype at 8 dpf. C: Phenotype of gup mutants treated with 5 uM diferuloylmethane. D: Phenotype of gup mutant embryos treated
with 300 uM zVAD-fmk. E: Phenotype of gup mutants treated with 300 uM zFA-fmk. Arrows indicate the position of the coloboma. Size
bar in left panels=200 pm; size bar in right panels=500 pm. 1481
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development, we have shown that abnormal apoptotic cell
death can be triggered during pathological states [16].
Although the in vivo effects of diferuloylmethane are thought
to be diverse [20-22], our TUNEL and western blot studies
suggest that, in the gup zebrafish, diferuloylmethane’s effects
are due to an inhibition of cell death through an attenuation of
the intrinsic, mitochondrial apoptotic pathway. This is in
keeping with other studies, both in vitro [23,25] and in vivo
[24,26,38]. Our data therefore supports the conclusion that
mitochondrial cytochrome c release, caspase activation and
apoptotic cell death are critical elements of ocular coloboma
pathogenesis in the gup zebrafish and this can be inhibited by
diferuloylmethane  treatment. Previous safety and
bioavailability studies [39-41] suggest that diferuloylmethane
is a viable option for further pre-clinical studies in mammalian
model systems. However, since ocular coloboma is a
congenital anomaly, in utero safety and bioavailability studies
would be needed before undertaking clinical trials of
diferuloylmethane or one of its more efficacious analogs.

Contrastingly, our studies in the noi zebrafish suggest that
such a strategy may not be universally applicable in all cases
of ocular coloboma. Although results suggest that apoptotic
cell death is triggered and can be inhibited in the noi zebrafish,
this does not prevent the evolution of a colobomatous eye. A
comparable situation is seen in some retinal dystrophy
mutants where photoreceptor cell death is a common if not
universal feature [17,19]. Not all mutants however respond to
inhibitors of apoptotic cell death [42-44]. This leads us to
speculate that other cell death mechanisms may be at play in
the noi coloboma model.

Uncharacterized mechanisms other than cell death may
have more critical influences on coloboma pathogenesis in
this noi zebrafish. It is however possible that other cell death
mechanisms in addition to caspase-dependent cell death, are
at play and are more important in the pathogenesis of this
model. Inhibitors of calpain [45] and poly (ADP-ribose)
polymerase (PARP) [46], key elements in caspase-
independent cell death, have for example been shown to be
effective in some retinal degeneration models. In addition, it
has been shown that in the absence of caspase-dependent cell
death, autophagy cell survival mechanisms can be activated
to stimulate cell death [47,48]. Autophagic cell death has been
shown to be important in normal embryologic development
[49] and play a role in neural tube defects, an epithelial fusion
defect similar to ocular coloboma [50]. Inhibitors of
autophagy have thus been effective in neuronal cell survival
[51] and hepatic fibrosis [52]. Necroptosis, regulated necrosis
without inflammation, has also recently been highlighted as
an alternative cell death pathway [53,54]. A role for
necroptosis has been established in eye disease [55] and
neurodegeneration [56], but a convincing role in
developmental disease has yet to be shown [57]. The
relevance of these alternate cell death pathways to the
pathogenesis of ocular coloboma awaits further study,

© 2011 Molecular Vision

however it is likely that cross-talk between many different cell
death pathways [58] determines final cell termination events.

In conclusion, this study highlights caspase-3 dependent
cell death as a critical contributor in some, but not all inherited
forms of optic fissure closure defects. As more becomes
known about the different cell death pathways and the
associated genotype-phenotype correlations, then more
specific therapies for different cell death mechanisms can be
formulated.
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