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Abstract
Tuberculosis (TB) is a deadly infectious disease caused by Mycobacterium tuberculosis (Mtb). No
available vaccine is reliable and, although treatment exists, approximately 2 million people still
die each year. The hallmark of TB infection is the granuloma, a self-organizing structure of
immune cells forming in the lung and lymph nodes in response to bacterial invasion. Protective
immune mechanisms play a role in granuloma formation and maintenance; these act over different
time/length scales (e.g. molecular, cellular and tissue scales). The significance of specific immune
factors in determining disease outcome is still poorly understood despite incredible efforts to
establish several animal systems to track infection progression and granuloma formation.

Mathematical and computational modeling approaches have recently been applied to address open
questions regarding host-pathogen interaction dynamics, including the immune response to Mtb
infection and TB granuloma formation. This provides a unique opportunity to identify factors that
are crucial to a successful outcome of infection in humans. These modelling tools not only offer an
additional avenue for exploring immune dynamics at multiple biological scales, but also
complement and extend knowledge gained via experimental tools. We review recent modelling
efforts in capturing the immune response to Mtb, emphasizing the importance of a multi-organ and
multi-scale approach that has tuneable resolution. Together with experimentation, systems biology
has begun to unravel key factors driving granuloma formation and protective immune response.

Tuberculosis (TB) is a deadly infectious disease in humans caused by the bacteria Mycobacterium
tuberculosis (Mtb)1. An estimated 2 billion people, or one-third of the world’s population, are
infected with Mtb, and approximately 2 million people died of TB in 2008. A unique feature of
Mtb is its ability to persist in the infected host during a latent clinical state. About 90% of those
infected with Mtb have asymptomatic, latent TB infection (sometimes called LTBI) with a 10%
lifetime chance of progressing to TB disease (or active TB)1, 2. If untreated, the death rate for
active TB is more than 50%2. In addition, the presence of HIV/AIDS increases the risk of
reactivation of latent TB by 10% per year. Antibiotics reduce the risk of reactivation, but do not
lead to cure. A vaccine does exist (not used in the USA or UK) but the efficacy is variable at
best3. Thus, there is a global urgency to understand this disease ranging from the epidemiology to
genetic levels. This article briefly summarizes some of the successes that systems biology
approaches, in particular mathematical and computational modelling, have had on exploring the
within-host dynamics of this world-health problem.
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IMMUNOBIOLOGY AND PATHOGENESIS OF TB
When considering the dynamics of an infectious disease, there are many perspectives of
interest, e.g. how it spreads through a population (epidemiology), the dynamics of the
bacterial genetics in different portions of the world, or how the host and pathogen interact.
Although we and others have explored TB from these and other perspectives4-6, our focus
here will be to review studies exploring the host immune response to infection with Mtb.
The immunological processes by which the host controls this infection are incompletely
understood. Mtb is a small non-motile bacterium that primarily infects the lungs in adult
humans. TB infection begins when the mycobacteria reach the pulmonary alveoli, where
they invade and replicate within a phagocytic cells termed macrophages1 7. Mtb divides
every 16 to 24 hours, an extremely slow rate compared to typical bacteria, which divide on
the order of minutes8. Mtb has evolved ways to evade many protective host immune
mechanisms; as a consequence, Mtb is able to multiply almost unchecked within a resting
macrophage. Bacteria are also internalized by another phagocytic cell type, dendritic cells, at
the site of infection; these cells are less permissive for Mtb replication and are specialized
for transporting bacteria to local, draining lymph nodes (LNs) to initiate T cell priming and
an adaptive immune response by the host. This response is required to contain infection, but
is unable to clear it. The failure to clear bacteria elicits a unique immune response at the site
of infection, the appearance of granuloma, the hallmark of Mtb infection.

A granuloma appears as a spherical collection of macrophages, T cells, B cells and other
immune cells with the goal of immunologically restraining and physiologically containing
bacterial infection (Figure 1). The typical spatial arrangement of cells is a ring of T-cells
surrounding a core of infected macrophages. Granuloma form in response to a cascade of
cytokine and chemokine signals9 at the site of infection. Initially they form in the lungs, but
later can be observed in LNs as well. To complicate matters, there are various types of
human (primate) TB granulomas (caseous, necrotic, fibrotic, etc) and ranges in between
these10. Many questions regarding the form and function of granuloma remain unanswered,
yet granulomas remain as the central player to understanding prevention, treatment and
therapy for TB. Ultimately, formation and maintenance of “good” or “working” granuloma
are essential for control of Mtb infection. What defines “good” is not known.

Animal models of tuberculosis
Mtb infects most mammals. There are several established animal models for Mtb, including
mice, zebrafish, guinea pigs, rabbits, and monkeys11. However, immunologic reagents are
only readily available for mice and non-human primates (NHP). Mice are most commonly
used, and the availability of genetically identical and engineered mice has proven invaluable
in addressing the roles of various cells and cytokines in control of infection. Two limitations
to the mouse model are the lack of latent infection (infection is chronic and progressive in
mice) and the pathology: mouse granulomas are not similar in structure to human
granulomas. NHPs are similar to humans in almost all aspects, with active TB, latent
infection and reactivation TB observed, as well as pathology and granulomas that are
identical to humans12, 13. The immunologic reagents available for monkeys allow one to
obtain quantitative and qualitative data on cell populations and functions in the lungs and
LNs10, 12-14. However, the peculiar slow-progression of TB in NHPs (and humans) makes
comprehensive data collection particularly difficult (and expensive) for scientists. Studies in
animal models and some human data have identified various necessary immune factors
important in control of Mtb infection, but sufficient conditions have yet to be uncovered. A
protective immune response requires priming and activation of antigen-specific CD4+ and
CD8+ T-cells, production of chemokines to impact recruitment of cells to the infection site,
production of cytokines (e.g. IFN-γ, IL-12, TNF, IL-10) some of whose role is to activate
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macrophages, and macrophage effector molecules that kill bacteria (such as nitric oxide).
These factors all comprise the granuloma, but the role of spatial information within
granuloma for these effector cells and molecules is not currently available. Yet, it is likely
the balance, location and concentrations of these and numerous other factors within the
granuloma that dictates the outcome of infection and disease.

WHAT CAN SYSTEMS BIOLOGY DO FOR TB RESEARCH?
Experimental biology has and will continue to be a successful and necessary approach to
exploring infection with Mtb and other pathogens. However, many questions in tuberculosis
remain unanswered: Which collection of immune factors is responsible for determining
whether an individual develops active TB or latent infection? Where is latent infection
established and where does it reactivate? What events occur in the LN that affect control at
the level of the lung, and vice versa, and how do these physiological compartments
communicate? What factors affect timing of initiation of the immune response in the LN and
lung? What new approaches for treatment and control might be useful? Difficulties in
approaching these questions experimentally include the number and expense of experiments
required to fully explore all these interacting factors and various outcomes, the time required
to do experiments in the most relevant animal system (the NHP), and the difficulty in
integrating data from multiple experiments and from experiments aimed at various organs
and at various length (molecular, cellular, tissue, organism, population) and time scales (e.g.
seconds to lifetimes) into a comprehensive view. For example, molecular data on TNF
binding over a period of minutes, granuloma formation over a period of days (mice) to
weeks (NHP), T cell priming in the LN (days), and cellular trafficking among multiple
organs are all necessary components of understanding granuloma formation and ultimately
the immune response to Mtb. While there is no “standard dataset” available for model
development, numerous types of data are available in the literature. Some of these are
summarized in Table 1. Using a systems biology approach, data from both animal and
computational systems can be integrated and synthesized to explore a complex biological
system and address relevant questions. One goal of this approach is to create a
computational model system that reflects human biology, providing an opportunity to
perform experiments that are impractical or not feasible in vivo or in vitro as well as
generate testable hypotheses.

A Systems Biology Approach to Understanding Immunity to Mtb
We believe that for the study of the immune response during Mtb infection, a multi-organ
(compartment) and multi-scale quantitative approach is necessary to capture the unique,
complex and interdependent interactions between Mtb and the host and to allow us to
integrate information across length and time scales. A general paradigm for understanding
the immune response during Mtb infection and guiding development of a computational
framework is shown in Fig. 2 and Table 2.

Two important aspects of model development are highlighted in the figure. First, the
biological processes that are relevant to the immune response occur at different length
scales; molecular, cellular, and tissue level scales are shown. Thus, models that include
relevant detail at multiple scales are important. Models developed and validated with
experimental data at individual physiological scales are then linked to form a multi-scale
model and allow information to flow in particular directions. If the results from a model
developed at the smallest scale are passed to the model developed at the next larger scale,
the information flow is “bottom-up”. This can be done in various ways: the larger scale
model may contain the entire smaller scale model, for example, or may simply use a
parameter that is calculated in the smaller scale model. Alternatively, the linking may also
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need to incorporate information flow that is “top-down” if changes at larger scales affect
behaviour at smaller scales. Analysis can begin at any scale (the “middle-out” approach, as
pointed out by the Nobel laureate Sydney Brenner): “Analysis must start somewhere, but it
doesn’t really matter where. In the best of all systems-biological world, we will eventually
meet up, anyway”15. The multi-scale model allows the relevance of events at that one scale
to be observed at higher or lower scales as well. Second, models need to incorporate events
occurring in both the lung and the draining LN, necessitating a multi-organ (compartment)
model. Indeed, it is likely that the movement of cells between these compartments
determines the speed and efficiency of an immune response.

Importantly, models developed should have tuneable-resolution, by which we mean the
ability to fine-grain or coarse-grain model components at will. For example, to answer
questions about how a particular cytokine’s binding kinetics affect granuloma formation,
immune system models that explicitly include molecular processes involving this cytokine
are most useful, but those models do not need extensive detail in the LN compartment and a
relatively coarse-grained treatment there may suffice. Since models are often used to answer
different questions at different times, then the accessibility to a model that allows for fine-
graining in some scale(s) of interest and coarse-graining in others is desired. In addition,
such tuneable resolution yields some computational assistance as well: it can improve
debugging, increase the speed of computation and assist in analysis.

LESSONS LEARNED FROM DIFFERENT MODELS AIMED AT
UNDERSTANDING THE IMMUNE RESPONSE DURING TB

Over the past decade we have developed a series of mathematical and computational models
in an effort to qualitatively and quantitatively characterize the immune response to Mtb
infection in lung16-23, and in lung and LN24-26. Table 2 summarizes our work and the
work of others in this area. In addition, we have integrated experimental data into the
development and testing of our models (for examples, see Table 1) allowing us to make
predictions regarding mechanisms, dynamics and data that are currently open questions for
TB researchers. We will focus on a few models to highlight key findings that different
models reveal, while emphasizing the importance of each approach.

Single Organ Models
The past 20 years saw a boom in the use of mathematical models to study within-host-
pathogen interactions; most of these models explore viruses such as HIV-1/AIDS and
Hepatitis C interacting with the immune system27, 28 and use a system of nonlinear,
ordinary differential equations (ODEs) to describe time course behavior of cells and other
system elements. The first model published to capture within-host dynamics during a
bacterial infection explored Mtb infection dynamics at the site of infection20, and next
generation models included additional cell types and cytokines that play a role in the
immune response in the lung environment18, 19. To develop these models, we created
equations that were based on known interactions of immune cells in the lung during
infection with Mtb. We used data from literature to estimate parameter values when
available and performed uncertainty and sensitivity analysis29 to define the parameter
space. In addition, we validated our models using known experimental results for gene
knock-out and depletions from mouse, NHP and humans. In this way, we ensured that the
models behaved according to known dynamics. Once tested, the model was used to make
predictions regarding dynamics and data currently not available.

Few other studies have been done on modelling within-host dynamics of TB30, 31.
Magombedze et al30 built an ODE system based on our previously published work but with
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the emphasis on analytical results (e.g., bifurcation analysis). Day et al31 built a model to
understand the environment in the lung during infection and introduced two novelties to
host-pathogen modeling: first, they represented macrophages by activation phenotypes
(classically versus alternatively activated macrophages, CAM vs AAM) and, second, they
focus on the concept of switching time (i.e., the time needed to switch from an AAM-
dominated to a CAM-dominated lung environment during infection). They argued that the
biological relevance of increasing switching times is that a delay in CAM presence in lung
may be responsible for Mtb gaining an initial “foothold”.

Modeling makes predictions about processes that are currently not possible to observe
experimentally. A key modeling contribution to our understanding of Tb regards the
cytokine IL-10. This is a cytokine that serves to down-regulate the immune response,
suppressing excessive inflammation during infection. During mouse deletion and depletion
studies, it was determined that this molecule had no strong effect on disease outcome for
Mtb32. Our studies suggested something different- a subtle phenotype that was missed. Our
simulations of IL-10 deletion and depletion showed that the system went from an
asymptotically stable steady state to a less stable oscillatory state- one that was easily missed
with experimental approaches. This suggests that IL-10 is an important stabilizer of the
system that was later confirmed with experiments performed based on our work 33, 34.
Another key result made possible by the mathematical formulation was to show how
selective deletion of CD8+ T cell subsets. As a second example, models suggested a
differential contribution for CD8+ T cell effectors that are cytotoxic as compared with those
that produce IFN-γ; it is not possible to delete one subset or the other in experiments, but
this can be done in the model. We also predicted the minimum levels of effector memory
cells of each T cell subset (CD4+ and CD8+) that provide effective protection following
vaccination19.

As useful as these temporal models are in predicting certain aspects of immunity, they
cannot recapitulate details of granuloma formation because they do not include a way to
capture spatial structure. It was recognized in the early 90’s that cellular automata models
were a way to capture stochastic, discrete events occurring in the immune system35. After
the development of object oriented programming, agent-based models (ABMs) appeared and
provided more flexibility in capturing agents (cells, etc) and their behaviours36. The first
ABM to describe the immune response to a pathogen was developed for Mtb and
specifically to characterize mechanisms that control granuloma formation and function22.
Next generation models have included additional cell types (e.g., effector CD8+ T cells and
regulatory T cells), cytokines (e.g., TNF) and chemokines (e.g., CCL5, CCL10) as data on
those became available21. By defining simple rules of interactions between cells
(macrophage and effector T cells), bacteria (Mtb) and environment (a 2-D grid representing
a 2 mm by 2 mm section of lung tissue), unique spatially-specific mechanisms emerge as
important immune control factors in TB infection (figure 3A). Here again, model rules were
based on experimental data regarding cell-cell interactions that were available and the model
was tested against cell depletion and deletion data for humans, primates and mouse systems.
Currently, there are no experimental methods available to observe the dynamics of
individual granuloma formation over a long time in primates and humans. Thus, our models
are the first to look at the dynamics of granuloma formation in the lung from initial infection
onwards.

Cytokines have multiple actions, but one cannot experimentally separate these effects of an
individual molecule , We used the ABM of a granuloma to separate the multiple known
activities of the cytokine TNF (macrophage activation; regulation of apoptosis; chemokine
and cytokine production; and regulation of cellular recruitment via trans-endothelial
migration) and study how each contributes alone and in combination to granuloma
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formation, maintenance, and ultimately pathology21. Key insights from these ABMs include
identifying a key role in granuloma formation of chemokine diffusion kinetics, macrophage
overcrowding within the granuloma, arrival time of T cells from the LN, as well as location
and number of T cells within the granuloma. For example by shortening the arrival time of
effector T cells at the infection site (lung), lower bacterial loads and clearance could be
obtained. This suggests that a specific vaccine could be effective in TB. After our initial
work, to our knowledge, only one other study has been published targeting the impact of
spatial effects and inherently stochastic processes on TB granuloma formation37 .
Warrender et al37 used a platform called CyCells simulator, obtaining results very similar to
the previously published ABM of Segovia et al22, although their focus was on early events
in Mtb infection driving disease outcome.

In addition to modelling the immune response in the lung, immune responses in LNs have
also been studied. Nearly all of these models are not TB-specific, but do give insights into
the DC-T cell interaction (c.f Table 2). One of the most useful outputs of these simulations
is a prediction of the number and dynamics of primed T cells produced in the LN and
available to travel to a site of infection38.

Multi-Organ Models
Multi-organ models are needed to capture important processes such as cellular activation
and immune cell priming that occur in the LN, leading to trafficking of cells back to sites of
infection 24-26 (Fig. 2). This involves linking models describing individual physiological
compartments together with consideration of scaling and flow between compartments.
Typically, little to no experimental data is available describing these events. Thus, the
models have to be validated individually and then linked. Multi-compartmental approaches
suggested that delays in either DC migration to the LN or T cell trafficking to infection sites
could dramatically alter infection outcomes, leading to either bacterial clearance or
overgrowth if not regulated properly. A natural progression towards a next generation multi-
organ model builds into the ABM formulation some of the mechanisms of T cell priming in
LNs. A first-time hybrid multi-organ model couples a discrete/stochastic system to a
continuous/deterministic system (manuscript in preparation). Building a hybrid model is a
first step before moving on to the final development, which is to link two compartment
ABMs. This remains an open problem.

Multi-scale Models and Tuneable Resolution
We have published multi-scale mathematical models addressing the effects of host genetics
and demographic factors on TB epidemics4, and investigated how multiple polymorphisms
interact to determine individual susceptibility to TB5. Fallahi-Sichani et al23 recently
developed a multi-scale PDE granuloma model that includes TNF/TNF receptor binding and
trafficking processes (see Figure 3B). This model represents a first attempt to quantify
impact of immune cell organization on TNF bioavailability within granuloma— data that are
presently not obtainable in vivo or in vitro. Organization of immune cells and molecular
level mechanisms (i.e., TNF/TNF receptor binding) are identified as important factors
regulating bioavailability. One great advantage of this modelling approach is that the action
of several known drugs could be tested on a molecular level basis, and not simply at a
phenomenological level as in Marino et al18 (see Figure 3C). Indeed, we are currently
extending this work by incorporating molecular scale TNF dynamics into a multi-scale
tuneable-resolution ABM of the granuloma to learn how TNF dynamics influence
granuloma development at each scale (in preparation).
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CONCLUSION
Despite all of the experimental and theoretical work on TB, it remains the main killer by
infectious disease in the world. Specific open questions are as basic as how treatment works
and what factors are important for vaccine development. A systems biology approach,
integrating both modelling and experimental aspects, is essential; however, challenges
remain in both areas. Development of multi-scale, multi-compartment models with tuneable
resolution requires significant effort in model development and validation. Experimental
techniques are needed that allow, for example, measuring in vivo and real-time cell and
bacterial counts during infection progression, or tracking cells moving within a single organ
(lung) or, more elusively, between organs over long time and large space. Collaboration
between experimental and modelling colleagues is crucial to achieve our goal of unravelling
mechanisms of TB infection, prevention, treatment and cure.

SIDEBAR 1: Immunology terminology

Monocyte: cell produced in the bone marrow that circulates throughout the bloodstream.
Monocytes leave the bloodstream in response to infection and inflammation, and develop
into macrophages or dendritic cells.

Macrophage: functions as a patrol cell and engulfs and kills foreign infectious invaders.
Macrophages also stimulate T cells to destroy these invaders.

Dendritic cell: cell that functions as part of the adaptive immune system. Dendritic cells
are called antigen presenting cells (APCs) because of their ability to present antigens to
B- and T-cells. Antigen presentation helps T- and B-cells to recognize pathogens and
respond faster the next time infection occurs.

T-cell: type of lymphocyte that helps to orchestrate the immune system by killing
pathogens and producing or helping to produce cytokines and chemokines.

B-cell: type of lymphocyte that produces antibodies that bind antigens.

Antigen: a substance or molecule that is recognized by the immune system as a
bacterium or virus.

Cytokines interferon-γ, interleukin-12, tumor necrosis factor and interleukin-10 (IFN-γ,
IL-12, TNF, IL-10): molecules produced by cells. Cytokines interact with cells of the
immune system in order to regulate the body’s response to disease and infection.

Chemokine: molecules manufactured by cells and tissues that stimulate movement and
activation of immune system cells to the area where the chemokine is produced.

SIDEBAR 2: Mathematical and Modeling Terminology

Differential Equations (DEs): a mathematical equation usually describing a
deterministic relation of some continuously varying quantities (modeled by functions)
and their rates of change in space and/or time (expressed as derivatives). There are two
major types: Ordinary Differential Equations (ODEs) and Partial Differential Equations
(PDEs).

ABM, Agent-Based Model: class of computational models for simulating the actions and
interactions of autonomous agents (either individual or collective entities) in a
heterogeneous environment where possibly global, system-wide dynamics and patterns
emerge from the local, likely stochastic, individual-level interactions.
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Hybrid model: a representation in which multiple types of mathematical models are used
simultaneously to describe a system (ODE, PDE, ABM, etc)

Multi-scale model: a model that allows for explicit consideration of events at a variety of
length and/or time scales.

Multi-Compartment model: a model that allows for variables to be allocated in different
environments that may correspond to different organs or tissues (compartments may each
also have multiple scales of interest). Each of the above representations can be
represented as a compartmental model.

Tuneable-resolution: a model that includes the ability to fine-grain or coarse-grain
particular sub-models ‘at will’.
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Figure 1. Example of a typical granuloma
Note: the letter c denotes the central necrotic core and infected macrophages surrounded by
a rim of lymphocytes (letter h)14, 39.

Marino et al. Page 12

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Multi-scale, multi-compartment view of the immune response to Mtb infection
Mtb introduced into the lung (left side of figure) is taken up by dendritic cells (DCs) and
macrophages (Mϕs). DCs travel through the lymphatics to a draining lymph node (LN)
bringing bacteria with them. In the LN, display of peptide-MHC (pMHC) complexes by
DCs (APCs) leads to T helper cell (Th) priming. These cells travel to the lung via blood.
Granulomas form in the lung and later, LNs (not shown). In both the lung and LN,
molecular events (e.g., pMHC binding, IL-10 and TNF-receptor binding) influence cell
behaviour (e.g., display of pMHC complexes, cell survival or activation) and cell behaviour
influences tissue level events (e.g., T cell priming and granuloma formation). Within a
granuloma, T cells secrete cytokines such as IFN-γ which activates macrophages to destroy
the bacteria with which they are infected40. Cytotoxic T-cells can also directly kill infected
cells, by secreting perforin and granulysin7. This leads to inhibition or killing of bacilli as
well. Another feature of the granuloma in primates is the extensive cell death within the
tissue, called necrosis, that develops in the center of the granuloma41. Importantly, bacteria
are not always eliminated within the granuloma, but can become dormant, resulting in a
latent infection1. Information flows both “bottom-up” and “top-down” (orange arrows) and
“to and from” compartments (blue arrows).
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Figure 3. Individual scale models to understand the role of TNF in TB
A. 2-D ABM simulation of a granuloma showing baseline solid granuloma and a necrotic
TNF−/− granuloma21. B. Virtual clinical trial of anti-TNF therapy shows the number of
reactivations per 100 virtual patients using two types of anti-TNF treatments and two
different reactivation thresholds 18. C. Prediction of a TNF gradient in a granuloma due to
secretion and uptake kinetics by different cells types 23
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TABLE 1

experimental data availability based on scale/organ modeled in TB infection

Scale/
Compartment Data Available Techniques Data Not Available

Individual
Granuloma

• Lymphocytes (numbers,
phenotypes, Mtb-specific)

• Macrophages (numbers,
phenotypes)

• Dendritic cells (numbers)

• Cytokines and Chemokines
(cellular source, levels)

• Mtb bacilli (total numbers of
extracelluar bacteria and locations)

• Description of infection dynamics
during absence of individual cells
and cytokines

• Limited 2-photon data on mice
liver granuloma formation

Flow cytometry,
ELISPOT,
Luminex, Immuno-Histo-
Chemistry (IHC), In-Situ
Hybridization (ISH), in
vivo
and in vitro cytotoxicity
assays, gene-knockout
(deletion) & cell and
cytokine depletions

• Continuous temporal data
from a single host

• Spatial information on
cytokine and chemokine
levels

• Intracellular bacterial count

• Multiple cell and cytokine
deletion and depletion

Individual Lymph
Node

• Same as granuloma data

• In vivo imaging of cell-cell
interaction

• Cell kinetic data

Flow cytometry,
ELISPOT
Luminex, in vivo and in
vitro cytotoxicity assays ,
2-photon microscopy

• Same as granuloma data

• Rates of cells entering and
leaving LN, classified by
phenotype, infection
dynamics of immune cells
entering and leaving LN
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