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With the human genome sequence approaching completion, a major challenge is to identify the locations and
encoded protein sequences of all human genes. To address this problem we have developed a new gene
identification algorithm, GenomeScan, which combines exon–intron and splice signal models with similarity to
known protein sequences in an integrated model. Extensive testing shows that GenomeScan can accurately
identify the exon–intron structures of genes in finished or draft human genome sequence with a low rate of
false-positives. Application of GenomeScan to 2.7 billion bases of human genomic DNA identified at least
20,000–25,000 human genes out of an estimated 30,000–40,000 present in the genome. The results show an
accurate and efficient automated approach for identifying genes in higher eukaryotic genomes and provide a
first-level annotation of the draft human genome.

A first draft of the human genomic sequence has been
completed (International Human Genome Sequencing
Consortium 2001; Venter et al. 2001). To make most
effective use of these data for evolutionary and func-
tional studies, one must first identify the locations, ex-
on–intron structures, and encoded proteins of the
thousands of genes that this sequence contains. For
example, human genetic studies relying on polymor-
phic markers such as SNPs will benefit from knowledge
of gene structures in the genomic neighborhood of the
polymorphism. Furthermore, microarray studies using
human expressed sequence tags (ESTs) require gene
structure information to help in identification of pu-
tative regulatory regions. In addition, inferences about
the probable presence or absence of particular genes or
gene families in the human genome depend on reliable
gene annotation. Full-length cDNA sequencing is the
most definitive way to characterize human gene struc-
ture. However, full-length cDNA sequence data are
presently available for only 10,000 human genes (Ma-
glott et al. 2000), less than one-third of the total using
conservative recent estimates of human gene numbers
(Ewing and Green 2000; Roest Crollius et al. 2000). To
identify the remaining genes that lack available cDNA
sequence will require other methods.

Two classes of computational approaches are
commonly used to detect genes in genomic sequences:
(1) statistically based ab initio gene-finding al-
gorithms (for reviews, Claverie 1997; Burge and Kar-
lin 1998) such as GENSCAN (Burge and Karlin 1997),
HMMGene (Krogh 2000), Fgenes (Salamov and So-
lovyev 2000), GRAIL (Xu and Uberbacher 1997), and

Genie (Reese et al. 2000), which use compositional
properties of exons, introns, and other gene features to
predict gene locations; (2) local alignment methods
such as the BLAST family of programs (Gish and States
1993; Altschul et al. 1997), which detect sequence
similarity to known genes, proteins, or ESTs. Each of
these approaches has particular strengths and limita-
tions. For example, the ab initio gene-finding program
GENSCAN (generally considered to be among the most
accurate programs of its type) can predict the precise
locations of 70%–80% of coding exons in sequences
containing single genes using compositional proper-
ties of the genomic sequence alone with only a few
percent missed or wrong exons (Burge and Karlin
1997). However, the accuracy of such programs on
large genomic sequences containing multiple genes ap-
pears to be significantly lower, with a higher rate of
apparent false-positive predictions (Dunham et al.
1999). On the other hand, local sequence alignment
algorithms such as BLASTX (Gish and States 1993) de-
tect similarities between open reading frames (ORFs) in
a genomic sequence and known proteins. BLASTX hits
can often indicate the approximate locations of many
coding exons in a genomic sequence but cannot iden-
tify every exon and do not accurately delineate exon
boundaries. In addition to local alignment methods
such as BLASTX, two more recently developed
algorithms, Procrustes (Gelfand et al. 1996) and
GeneWise (Birney and Durbin 2000) use global align-
ment of a homologous protein to translated ORFs in a
genomic sequence for gene prediction. Although these
methods can be highly accurate, they predict exactly
one gene per genomic sequence, require close similar-
ity to identify complete genes (Guigó et al. 2000), and
are so computationally intensive as to be impractical
for many genomic-scale applications.
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Therefore, we sought to develop a method that
would effectively combine the distinct types of evi-
dence used by these two classes of methods, sequence
similarity and exon–intron composition, into one in-
tegrated computer algorithm. In devising such an al-
gorithm, we had three principal goals: (1) to build on
the strengths of BLAST and GENSCAN and to incorpo-
rate aspects of the probabilistic models underlying
these two methods into a coherent whole; (2) to de-
velop a method efficient and reliable enough to be run
without human supervision on an entire vertebrate ge-
nome; (3) to focus on predicting gene structure as ac-
curately as possible in the typical case, when one or
more homologous but not identical proteins are avail-
able. These goals have largely been achieved in the
GenomeScan algorithm described below. Applying this
method to the human genome gives a large set of re-
liably inferred exon–intron structures of genes with se-
quence similarity to known proteins from human or
other organisms and provides a first layer of annota-
tion on the draft human genome.

RESULTS

GenomeScan Model and Algorithm
The basic idea of our approach is to combine sequence
similarity information, which can indicate the rough
locations of many coding exons, with modeling of ex-
on–intron and splice signal composition to aid in iden-
tification of additional exons and for determination of
precise exon–intron boundaries. Although this general
idea has been explored by other investigators (Birney
and Durbin 2000; Reese et al. 2000), the approach in-
troduced here is different and in some ways more gen-
eral than those used previously and gives superior re-
sults across a broad range of conditions, as discussed
below. Our new method derives from the probabilistic
model of the exon–intron structure and compositional
features of human genes used by GENSCAN, which has
been described in detail previously (Burge 1997; Burge
and Karlin 1997). This is a semi-Markov or generalized
Hidden Markov Model (HMM; Rabiner 1989; Kulp et
al. 1996) in which components of a gene such as ex-
ons, introns, 5� and 3� untranslated regions (UTRs), are
modeled as abstract states corresponding to variably
sized stretches of DNA sequence. The HMM architec-
ture allows enforcement of the natural grammatical or-
der of a gene—promoter precedes 5� UTR precedes ini-
tial coding exon, etc. Each state (e.g., internal coding
exon) has an associated length and is thought of as
generating a DNA sequence of this length according to
a probabilistic model of the sequence composition of
that state (e.g., a model of coding region composition).
In this model, each possible gene structure or set of
gene structures that may be present in the sequence
corresponds to an ordered list of states with associated

lengths and is referred to as a parse of the sequence. For
a given genomic sequence, the gene structure pre-
dicted by GENSCAN corresponds to the parse that has
maximum probability under its HMM model of gene
structure/sequence composition.

The crucial difference between GENSCAN and
GenomeScan is that in the latter algorithm the pre-
dicted gene structure corresponds to the parse that has
maximum probability conditional on available simi-
larity information. Here, the similarity information
will be the results of a BLASTX search of the input ge-
nomic sequence against an appropriate protein data-
base, but the algorithm could be adapted to use other
sorts of information such as the results of comparisons
of homologous genomic regions (Batzoglou et al. 2000;
Roest Crollius et al. 2000). The first step in our method
is to convert the information present in a set of BLASTX
hits into a corresponding set of probabilistic state-
ments about the likelihood that coding exons occur at
particular places in the query genomic sequence. Each
BLASTX hit alters the probabilities of the various parses
of the genomic sequence in the GenomeScan model,
increasing the likelihood of parses that are consistent
with the BLASTX information and reducing the likeli-
hood of those that are not, as described in Methods.
Because not every BLAST hit represents true homology
between the query genomic sequence and the subject
protein, the possibility that the hit may be artifactual
(e.g., a BLAST false-positive or pseudogene) is explicitly
considered and assigned an appropriate probability in
the GenomeScan model. Therefore, the final prediction
is generally compatible with most, but not necessarily
all, BLASTX hits that have been provided.

Three modifications of this basic framework have
been made that improve the accuracy significantly: (1)
BLASTX hits that fall very near the N- or C-terminus of
a subject protein are used to aid in identification of
initiation or termination codons, respectively; (2) pairs
of BLASTX hits which are adjacent in the same subject
protein and have proper separation in the query ge-
nomic sequence (�60 bases, the minimum length of a
human intron) are used to identify putative intronic
regions; and (3) multiple overlapping BLASTX hits,
which generally provide redundant information, are
pruned in a preprocessing step, keeping only the stron-
gest (lowest P-value) hit in each cluster of overlapping
hits. (These and other aspects of the algorithm are de-
scribed in more detail in Methods.) By default, the
GenomeScan program prints only those predicted
genes that have one or more BLASTX hits overlap-
ping predicted exons, so all GenomeScan-predicted
genes have at least modest similarity to a known pro-
tein as assessed by BLAST. Because of this, it is perhaps
more accurate to refer to the output of this program as
gene inferences rather than gene predictions (we used
both).
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Sample GenomeScan Predictions in Human
BAC-Sized Genomic Regions
As part of our testing, GenomeScan was run using
GenomeScript (see below) on several large, well-
annotated human genomic sequences using only avail-
able mouse proteins from GenPept Release 118 (June
2000) to aid in predictions. The results of GENSCAN,
BLASTX, and GenomeScan were then compared to the
annotated gene structures to identify strengths and
weaknesses of these methods for exon and gene iden-
tification—two representative examples are shown in
Figure 1. The first example (Fig. 1A) shows a 117-kbp
genomic contig from human chromosome 17q21 con-
taining four annotated genes and one pseudogene
(Smith et al. 1996). In this example, GENSCAN predicts
the exon–intron structures of three of the four genes
quite accurately (RHO7, VATI, IFP35) but has great dif-
ficulty with the fourth gene (BRCA1), missing seven of
the first eight exons. As homologs of most of these
genes have been sequenced in mouse, a majority of the
exons give BLASTX hits using the two-stage BLAST pro-
tocol that is part of GenomeScript (see below), showing
the power of this simple method when mammalian
homologs are available. Nevertheless, a total of eight
annotated exons in this sequence do not have a corre-
sponding BLASTX hit even at the extremely reduced
significance threshold used in this procedure and there
are three apparent false-positive BLASTX hits (at ∼ 63
kbp, ∼ 67 kbp, and overlapping the RPL21 pseudogene
at ∼ 49 kbp). Comparing the GenomeScan output to
that of BLASTX and GENSCAN, in many cases it is clear
that BLASTX is helping GenomeScan to identify exons
missed by GENSCAN in the expected way (e.g., the first
five exons of BRCA1). However, because of the proba-
bilistic way in which similarity information is treated
in the GenomeScan algorithm, not all of the predic-
tions agree completely with BLASTX. For example, the
program does not predict exons overlapping any of the
three false-positive BLASTX hits in this sequence. Fur-
thermore, in this sequence, GenomeScan correctly pre-
dicts all eight of the exons that lack BLASTX hits, one
of which was also missed by GENSCAN (exon 7 of
BRCA1, at ∼ 31.5 kbp). This example shows clearly that
GenomeScan is not simply the additive combination of
GENSCAN and BLASTX but effectively integrates these
two imperfect sources of information and occasionally
even makes simple inferences on its own (e.g., using
the fact that exon 8 of BRCA1 is incompatible in terms
of intron phase with exon 6 to aid in identification of
exon 7, see Fig. 1A).

A genomic region from human chromosome Xq28
containing seven annotated genes (Brenner et al. 1997)
is illustrated in Figure 1B. In this example, GENSCAN
predicts gene boundaries very poorly and produces
three apparent false-positive gene predictions (at ∼ 71
kbp, ∼ 133 kbp, and ∼ 137 kbp). As in the previous ex-

ample, mouse homologs of most of the genes present
are available and the two-step BLAST procedure is able
to identify the majority of exons, but there are several
apparent false-positive BLASTX hits. GenomeScan is
again able to identify the gene structures present far
more accurately than either GENSCAN or BLASTX and
correctly ignores all but one of the incorrect BLASTX
hits, producing only one apparent false positive pre-
dicted gene (at ∼ 57 kbp). GenomeScan also identifies
putative additional exons of two genes (PLEXR and SK)
and predicts a novel gene at ∼ 119 kbp which is sup-
ported by BLASTX (and GENSCAN) but not annotated in
the GenBank record. These extra predicted exons/
genes are supported by other evidence (see Fig. 1 leg-
end).

In applications, the GenomeScan algorithm is in-
tegrated with database searches using a procedure
called GenomeScript, which is described in Methods.
In brief, this script does the following to an input ge-
nomic sequence: (1) mask repetitive elements; (2) iden-
tify peptides with significant similarity to regions of
the genomic sequence using BLASTX and/or BLASTP;
(3) compare all ORFs in the masked genomic sequence
to these peptides using a more sensitive BLASTX search;
(4) run GenomeScan on the masked genomic sequence
using the BLASTX results as input.

Comparison of Gene Identification Algorithms
The accuracy of GenomeScan was tested by running
the program on sets of genomic sequences with known
gene locations, using proteins with various levels of
similarity as input and comparing the predicted genes
to the known genes in these sequences. Accuracy was
measured primarily in terms of the fraction of known
exons and genes identified (sensitivity) and in terms of
the proportion of predicted exons that correspond to
known exons/genes (specificity). GenomeScan was first
run on the SingleGene dataset (see Methods), consist-
ing of 175 human genomic sequences each containing
a single gene that was used in the testing of other simi-
larity-based gene finding programs by Guigó et al.
(2000). The results (Fig. 2) show a steady increase in
accuracy as similarity to the subject protein increases,
as expected. When only a very weakly similar pro-
tein is available (BLASTP P-value between 10�5 and
10�10), GenomeScan has only a slight advantage over
GENSCAN, predicting ∼ 80% of annotated exons cor-
rectly in this set, with similar levels of specificity. In
this dataset, the accuracy of GENSCAN is somewhat
higher than for the gene finders HMMGene (Krogh 2000)
and GRAIL (Xu and Uberbacher 1996) by most mea-
sures (accuracy statistics are listed in the Fig. 2 legend).
The gap between GENSCAN and GenomeScan increases
steadily with increasing similarity, and >90% of exons
are exactly predicted (with comparable specificity)
when a very strongly similar protein is available
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Figure 1 Examples of GenomeScan predictions. GenomeScan was run with GenomeScript, using similarity to available mouse proteins
from GenPept Release 118 (June 2000). Two examples are shown. Exons and genes on the forward strand are shown above the sequence
line; reverse strand exons and genes are shown below the sequence line. BLASTX hits with P < 0.05 are shown as green blocks above or
below the sequence line, according to the reading frame/strand indicated by BLAST. (A) GenBank locus HUMBRCA1 (accession no.
L78833). (B) GenBank locus HSU52111 (accession no. U52111). Only the first 140 kbp (of 153 kbp) of the sequence is shown for clarity.
The extra predicted exons upstream of PLEXR and SK and the extra predicted gene at ∼ 118 kb are supported by several human ESTs
(accession nos. AW663636, AA514687, AW071821, and others).
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(BLASTP P-value <10�120). Other measures of sequence
similarity besides BLAST P-value, such as bit score and
percent identity, give qualitatively similar results (data

not shown). Importantly, the accuracy of
GenomeScan is significantly higher than ei-
ther GENSCAN or the similarity-based gene
finders Procrustes and GeneWise, which
in turn are generally more accurate than
BLASTX itself (Guigó et al. 2000), across a
broad range of similarity levels. Only
when a very strongly similar protein is
available (P<10�120) does another method
(GeneWise) achieve comparable exon-level
accuracy. Nucleotide level sensitivity (frac-
tion of coding nucleotides predicted
correctly) in this dataset is qualitatively
similar (Fig. 2C) to exon level sensitivity
(Fig. 2A). However, nucleotide level speci-
ficity (fraction of predicted coding nucleo-
tides that are truly coding) is much less
variable across similarity levels and be-
tween methods (Fig. 2D), with GeneWise
performing consistently slightly better
than Procrustes or GenomeScan. The dis-
crepancy between the nucleotide and
exon-level specificity values observed for
Procrustes and GeneWise appears to re-
sult from the inherent conservative bias of
these methods and their tendency to end
predicted exons close to the end of the
aligned region, irrespective of the locations
of splice sites or initiation/termination sig-
nals.

An advantage of the SingleGene
dataset is that accuracy statistics have been
meticulously calculated for a variety of
similarity-based gene-finding algorithms,
allowing direct comparison between meth-
ods. However, the sequences in this dataset
are relatively small finished genomic se-
quences containing single genes, which are
not representative of the human genome as
a whole. In its present state of sequencing,
the publicly available human genome is
represented both by very long finished se-
quences and smaller rough draft contigs of-
ten containing no genes or partial genes.
Therefore, the accuracy measured in the
SingleGene set is likely to represent upper
limits rather than typical values for these
methods.

Representative Sets of Finished and Draft
Human Genome Sequences
To obtain measures of the accuracy of
GenomeScan that would be more repre-

sentative of its probable performance on the bulk
of available human genomic sequences, we con-
structed two new datasets, DraftGene and FinishGene,

Figure 2 Exon- and nucleotide-level accuracy of similarity-based gene-
prediction programs as a function of protein similarity. (A) Exon-level sensitivity
(ESn: percent of exons predicted exactly) and (B) exon-level specificity (ESp: per-
cent of predicted exons exactly correct) were calculated for subsets of the Single-
Gene dataset and grouped according to the level of BLASTP similarity (in the
context of a database search) between the encoded protein and the protein used
in the prediction for GenomeScan, Procrustes, and GeneWise as described by
Guigó et al. 2000). The definitions of the subsets and number of genes per subset
were as fol lows: 10�5 > P >10�10 (90); 10�10 > P > 10�20 (103);
10�20 > P >10�30 (102); 10�30 > P > 10�40 (97); 10�40 > P >10�60 (114);
10�60 > P > 10�80 (97); 10�80 > P > 10�120 (97); and P < 10�120 (72). For ex-
ample, 114 of the 175 sequences in the SingleGene dataset had a homolog with
BLAST P-value in the range 10�60< P < 10�40. For sequences in this subset, Ge-
nomeScan was run using the results of a BLASTX run of the genomic sequence
against the top hit in the nonredundant protein database that had sequence
similarity in the desired range (10�40 > P > 10�60). GeneWise and Procrustes
data, run using the same peptides as input, are from Guigó et al. (2000). (C)
Nucleotide-level sensitivity (NSn: percent of coding nucleotides predicted cor-
rectly) and (D) nucleotide-level specificity (NSp: percent of predicted coding
nucleotides that are correct). Accuracy statistics on the SingleGene dataset as a
whole for the ab initio gene-prediction methods GENSCAN, HMMGene 1.1, and
GRAIL 3.1, respectively, were as follows: ESn (0.79, 0.75, 0.47); ESp (0.77, 0.68,
0.61); NSn (0.93, 0.86, 0.68): NSp (0.91, 0.74, 0.94).
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as described in Methods. These two datasets represent
the same 206 human genes sequenced in draft and
finished form, respectively. Properties of the Single-
Gene, DraftGene, and FinishGene datasets are summa-
rized in Table 1, together with corresponding data for
the September 2000 freeze of the GoldenPath as-
sembled human genome sequence (http://genome.
ucsc.edu), which represents an assembly of finished
and draft human genomic sequences. Comparing the
data on sequence size, gene density, and C + G-percent
content between the DraftGene and GoldenPath
datasets reveals some biases in the DraftGene set. Prob-
ably because of the gene-centric way it was con-
structed, the DraftGene set has somewhat higher gene
density and C + G-percent content than the Golden-
Path and is probably also biased toward shorter genes
because of the requirement that the whole gene fit into
a single BAC clone (mostly <200 kbp). Nevertheless,
these data show that the DraftGene and FinishGene
sets are much more similar to the GoldenPath in all
respects than is the small, gene-dense SingleGene
dataset.

Prediction accuracy was measured by running
GenomeScan on both sets using proteins with various
levels of similarity as input and comparing the pre-
dicted gene structures to the cDNA-derived annota-
tions. Results are shown in Figure 3. The results for
GENSCAN + BLASTP were as follows: GENSCAN-
predicted genes that have a P<10�5 BLASTP hit to the
September 2000 nonredundant protein database (Gen-
Pept + PDB + SwissProt + PIR) are listed in the Fig. 3
legend. GENSCAN + BLASTP represents a possible alter-
native gene-annotation strategy that has not been ex-
tensively tested previously. As for the SingleGene set,
both sensitivity and specificity increase steadily as a
function of protein similarity and GenomeScan has a
significant advantage over GENSCAN when a protein
with at least moderate similarity is available. Most sig-
nificantly, the specificity (proportion of predicted ex-
ons that are correct) is far higher for GenomeScan than

for GENSCAN + BLASTP in these datasets. As expected,
accuracy is a bit lower overall in draft sequences than
finished sequences, but this is reflected primarily in the
prediction of exact exon boundaries (Fig. 3, solid
squares and triangles). In terms of overlap between pre-
dicted and annotated exons (unfilled squares and tri-
angles) as opposed to exact exon-boundary prediction,
the accuracy of GenomeScan is similar in finished and
draft sequences, with slightly lower sensitivity but
higher specificity in draft sequences. Both of these dif-
ferences are attributable to the fragmentation of genes
into multiple contigs that results from draft sequenc-
ing: Small contigs containing only one or a few exons
are more likely to be missed, whereas BLASTX searches
against smaller genomic regions result in fewer false-
positive hits. The specificity values listed are likely to
represent lower bounds for these methods since the
datasets consist of long human genomic sequences
that almost certainly contain additional exons/genes
not yet sequenced at the cDNA level and predictions
matching these exons/genes are counted as wrong.
Nevertheless, when a protein with at least moderate
similarity is available (P < 10�40), >80% of annotated
exons are overlapped by GenomeScan-predicted exons
and >70% of predicted exons overlap an annotated
exon, even in draft sequences.

Accuracy in these datasets was also measured at
the gene level (Table 2). Because GenomeScan, like
GENSCAN, is able to predict partial, as well as complete
genes, the fragmentation of DraftGene genes into mul-
tiple contigs presents no fundamental obstacle to these
algorithms. Gene level accuracy was measured by
counting the proportion of the exons of a gene that
were covered (overlapped) by GenomeScan predicted
exons: A gene is completely covered if all of its exons
are covered by predicted exons, partially covered if
some but not all exons are covered, or missed if no
exon was covered. The results (Table 2) show that
when a protein with at least moderate similarity or
stronger (P < 10�40) is available, only a negligible frac-

Table 1. Summary of Sequence Sets Used in This Study

Variable

Dataset

SingleGene FinishGene DraftGene GoldenPath

No. of sequences 175 194 1038 156500
No. of complete genes (partial) 175 206 116 (256) —
Mean sequence lengths (kbp) 7 96 14 17
No. of genes/Mbp (estimated) 144 17 14 (10)
No. of exons/complete gene (partial) 5.0 7.0 5.7 (3.0) —
Mean C + G% 49.6 45.1 45.2 39.9
No. of aa/complete protein (partial) 324 404 321 (170) —

Datasets are described in Methods. Some genes in the DraftGene set are represented by multiple partial genes
in different draft contigs, data for these genes are listed in parentheses. Gene density in the GoldenPath set
assumes 30,000 human genes in a 3000-Mbp genome.
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tion of genes are missed (�1%) in both finished and
draft sequences and >70% of genes are completely cov-
ered in finished sequences, compared to ∼ 50% in draft
data. Only when the level of similarity is very weak
(P > 10�20) does the algorithm miss a significant
proportion of genes: ∼ 1 in 10 in finished sequences
and ∼ 1 in 7 in draft data. Significantly, the number of
extra predicted genes (those not overlapping anno-
tated genes) remains relatively low, at ∼ 5%–10% of
the total number of predicted genes in both finished
and draft sequences, at all levels of protein similarity.
These data suggest a relatively low rate of false-
positives for GenomeScan, especially considering that
some fraction of these predictions likely represent
additional unannotated genes. Another important
property of a gene-prediction program is the ratio
between the number of complete and partial genes
predicted and the number of real genes present. Ta-
ble 2 shows that this ratio is close to 1:1 in finished
data at all levels of similarity but varies between
1.1:1 and 1.6:1 in draft data, with higher ratios occur-
ring at higher levels of protein similarity. This re-
flects the intrinsic fragmentation of the genes into
multiple contigs in draft sequences (1.8 contigs per
gene on average) in the DraftGene set and the higher
proportion of exon-containing contigs predicted cor-
rectly by GenomeScan at higher levels of protein simi-
larity.

To explore how well the accuracy re-
sults obtained on the FinishGene dataset
would extrapolate to larger finished re-
gions of the human genome, we compared
the GenomeScan predicted genes in the
May 19, 2000, version of the finished hu-
man chromosome 22 (Chr22) sequence
(Dunham et al. 1999) with the annotation
provided by the Sanger Centre. The results
of this comparison are summarized in
Table 3. Notably, >90% of the exons in
known and related genes were covered by
GenomeScan-predicted exons, confirming
the high exon level sensitivity observed in
Figure 2A. At the gene level, 95% of known
genes and 88% of related genes were cov-
ered, roughly comparable to the gene level
accuracy reported in Table 2. Table 3 also
shows a low rate of gene splitting by Ge-
nomeScan with <10% of genes overlapping
multiple predicted genes in all categories.
In addition, <10% of known or related
genes are predicted as parts of chimeric
genes by GenomeScan, compared to 27%
by GENSCAN (data not shown). This shows
a substantial improvement by GenomeS-
can in terms of defining gene boundaries,
a known weakness of GENSCAN. Overall,

approximately two-thirds of the 648 genes predicted
by GenomeScan on Chr22 overlapped known or re-
lated genes. An additional 12% matched annotated
predicted genes or immunoglobulin gene segments
(listed as “Other” in Table 3), whereas 11% matched
annotated pseudogenes and 11% did not match any
annotated gene (“extra predicted genes”). Because all
of these extra genes have at least moderate BLAST simi-
larity to known proteins, most are likely to represent
additional genes or pseudogenes not yet annotated by
the Chr22 team. Therefore, we conclude that the rate
of false-positive GenomeScan predictions in Chr22 is at
the most 11% (probably far lower), and that an addi-
tional ∼ 11% of predictions represent probable pseudo-
genes. The rate of false-positive predictions including
pseudogenes, therefore, is between 11% and 22%.
From Figure 3 and Table 2, the specificity of GenomeS-
can in draft sequence is comparable to that in finished
sequence, suggesting that similar rates of false-
positives can be extrapolated to the GoldenPath hu-
man genome sequence, which comprises an assembly
of all publicly available finished and draft sequences.

Application to the Human Genome
In a large-scale computational analysis, genes were
identified with GenomeScan in the entire September
2000 GoldenPath human genome sequence as de-
scribed in Methods. A total of 38,647 complete and

Figure 3 Exon-level accuracy of GenomeScan as a function of protein similarity
in draft and finished sequences. GenomeScan was run on subsets of the Finish-
Gene and DraftGene datasets, grouped according to the level of similarity to the
nearest proteins used in the predictions. (A) Exon-level sensitivity (percent of an-
notated exons predicted exactly) is displayed with solid squares/triangles and solid
lines; overlap sensitivity (percent of annotated exons overlapped by a predicted
exon) by open squares/triangles and dashed lines. (B) Exon-level specificity (per-
cent of predicted exons exactly correct) is displayed with solid squares/triangles
and solid lines. Overlap specificity (percent of predicted exons overlapped by an
annotated exon) is displayed by open squares/triangles and broken lines. For com-
parison, overlap exon-level sensitivity and specificity values for GENSCAN + BLASTP
(GENSCAN predictions that have a BLASTP hit with P < 10�5 against the nonre-
dundant protein database) were 0.90 and 0.48, respectively, in the FinishGene
dataset and 0.87 and 0.47, respectively, in the DraftGene dataset.
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partial human genes were predicted in this dataset us-
ing similarity to proteins from the nonredundant pro-
tein database (September 2000 version). In light of the
results obtained above in the DraftGene dataset (Table
2), which is similar in many respects to the GoldenPath
(Table 1), we estimate that each gene detected by
GenomeScan in the GoldenPath sequence is likely to
be represented by ∼ 1.4–1.5 predicted (complete and
partial) genes on average (C.B. Burge and R.-F. Yeh,
data not shown). Therefore, the total number of dis-
tinct genes represented by this set is ∼ 38,647/
1.5 = ∼ 26,000 to 38,647/1.4 = ∼ 28,000. Correcting for
the estimated rate of false-positives and pseudogenes
derived from Chr 22 (11%–22%), this set represents
20,000–25,000 distinct human genes.

DISCUSSION
The process of identifying genes in higher eukaryotic
genomes is complicated by several factors, including

complex gene organization, the presence of large num-
bers of introns and repetitive elements, and the sheer
size of the genomic sequence. These issues are particu-
larly acute for the human genome, which totals over 3
billion base pairs and contains far more intronic and
repetitive sequences than any previously sequenced
eukaryotic genome. To aid in the annotation of gene
locations in the human genome, we have developed a
novel algorithm, GenomeScan, which combines se-
quence similarity information with models of exon–
intron and splice signal composition to identify genes.
Systematic tests of the accuracy of GenomeScan
showed that it is more accurate than existing ab initio
and similarity-based algorithms across a broad range of
similarity levels (Fig. 2) and is able to detect all but a
few percent of genes in both draft and finished ge-
nomic sequence, provided only that a moderately simi-
lar homologous protein is available (Table 2). Approxi-
mately 80% of exons are identified in draft sequence

Table 3. Comparison of GenomeScan-Predicted Genes on Human Chromosome 22 with Annotated Genes

Variable

Category of gene

Known Related Pseudo Other

Total no. of genes annotated in Chr22 307 120 132 245
Percent of annotated genes in category covered by GenomeScan-predicted genes 95 88 67 67
Percent of annotated genes in category overlapping multiple GenomeScan-predicted genes 9 6 1 1
Percent of annotated exons in category covered by GenomeScan-predicted exons 94 92 74 74
Percent of all GenomeScan-predicted genes which match annotated genes in category 51 15 11 12

Genes were predicted with GenomeScan in the masked May 19, 2000 version of the Chr22 sequence, and compared to the Sanger
Centre annotation (http://www.sanger.ac.uk/HGP/Chr22/cwa_archive/Release_2_19-05-2000.shtml). Known genes, related genes,
predicted genes, immunoglobulin “gene segments”, and pseudogenes are distinguished in the annotation; the “Other” category
includes annotated predicted genes and gene segments. GenomeScan predicted a total of 648 genes in the Chr22 sequence, of which
11% did not overlap any annotated gene; thus, the entries in the last row of the table total 89% rather than 100%.

Table 2. Gene Level Accuracy of GenomeScan as a Function of Protein Similarity in DraftGene and FinishGene Datasets

Variable

Similarity category/dataset

10�5 > P > 10�20 10�40 > P > 10�80 10�120 > P > 10�180

Draft Finish Draft Finish Draft Finish

No. of genes in dataset 174 174 151 151 93 93
% of fragmented genes 42 0 43 0 55 0
No. of predicted genes* 186 172 205 159 152 104
Genes completely covered (%) 38 58 48 71 57 73
Genes partially covered (%) 49 32 51 28 42 27
Genes missed (%) 13 10 1 1 1 0
No. of “extra” predicted genes* 18 14 19 10 8 11

Sequences were grouped according to the level of similarity between the encoded protein and the available database proteins used
in the predictions as described in the legend to Fig. 3. All known genes in the FinishGene set are complete (all coding exons present
in a single sequence). Some genes in the DraftGene set represented by multiple “partial genes” in different draft contigs; these are
listed as fragmented genes. Known genes were classified as completely covered if all exons were covered by GenomeScan predicted
exons; partially covered, if some exons (but not all) were covered by GenomeScan predicted exons; and missed, if no exon was
covered by a GenomeScan-predicted exon. GenomeScan predicted genes which did not overlap any known gene are listed as “extra”
predicted genes.
*Includes predicted partial genes as well as complete genes.
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and ∼ 90% in finished sequence at moderate levels of
protein sequence similarity (Fig. 3) with relatively low
rates of false-positive predictions.

Application of this method to the available human
genome sequence produced a set of 38,647 putative
complete and partial genes, which we designate the
GenomeScan2000 gene set. Correcting for the esti-
mated rate of false-positives and pseudogenes (11%–
22%; Table 3), between 78% and 89% of predictions in
this set are likely to represent functional human genes.
To investigate the properties of this gene set in more
detail, the coding regions of all predicted complete and
partial genes were compared to available cDNA and
EST databases using BLASTN (Altschul et al. 1997). The
number of predicted complete genes with >2 exons,
partial genes, and all genes (including also one- and
two-exon genes) that matched complete cDNAs from
the RefSeq database (September 2000 version) are listed
in Table 4. The large number of predicted partial genes
reflects the fragmentation of genes in the underlying
GoldenPath genomic sequence rather than a property
of GenomeScan per se, as only a few percent of partial
genes are predicted in finished sequences (data not
shown). Therefore, this fraction will decline as se-
quencing of the human genome is completed. Of all
predicted complete and partial genes, 41.5% had a
BLASTN hit with �98% identity over 100 bp or more to
a RefSeq cDNA. Predicted gene structures that differ
from corresponding RefSeq cDNA alignments can be
used to assess the accuracy of exon–intron prediction
and may suggest alternatively spliced isoforms. An ad-
ditional 32.5% of predicted genes had a BLASTN hit
with �97% identity over 100 bp to a publicly available
human EST sequence (dbEST September 2000). These
GenomeScan genes provide a link between ESTs and

corresponding putative peptide sequences that can aid
in assigning function to genes represented only by
fragmentary EST data, including many ESTs on current
human gene microarrays (e.g., Iyer et al. 1999). The
remaining 26% of predicted genes did not match any
RefSeq cDNA or human EST using these criteria. These
predicted genes likely contain a higher proportion of
pseudogenes than the other subsets, but they also
probably contain the highest proportion of interesting
novel genes that perhaps are expressed at too low a
level or in too restricted a set of tissues to be efficiently
sampled by EST sequencing. It has been estimated that
∼ 20% of human genes are not represented in current
EST databases (Ewing and Green 2000).

The average sizes of the encoded proteins and
number of exons per gene for GenomeScan predicted
genes are also listed in Table 4. These data show that
predicted complete genes that have EST or cDNA hits
are comparable in size to the average human gene—at
least 450 amino acids, distributed across ∼ 9 exons (In-
ternational Human Genome Sequencing Consortium
2001)—and that predicted partial genes are on average
about half the size of a typical gene. Of predicted com-
plete genes with >2 exons, ∼ 76% had a hit to a human
EST (as defined above), consistent with the estimated
coverage of human genes by available ESTs (80%; Ew-
ing and Green 2000). Interestingly, the fraction of pre-
dicted partial genes that had hits to human ESTs (71%)
was close to that seen for complete genes, suggesting
that this subset contains a comparably high fraction of
functional genes. However, only ∼ 47% of predicted
one- and two-exon genes had EST hits, suggesting that
this subset of predictions may be enriched for nonex-
pressed pseudogenes or other false-positives. Compar-
ing across human chromosomes, the fraction of pre-

Table 4. Summary of GenomeScan-predicted Genes and Partial Genes in the Human Genome

Similarity
category

Type of predicted gene

Complete genes
(>2 exons) Partial genes

All genes
(partial + complete)

No. of
genes

No. of
exons/gene

No. of
aa/gene

No. of
genes

No. of
exons/gene

No. of
genes

% of all
predicted
genes

Known (cDNA) 5698 9.6 496 8901 4.9 16040 41.5
Protein + EST 4502 8.8 510 6537 5.5 12546 32.5
Proteins only 2767 5.2 303 4600 3.1 10061 26.0

All 12967 8.4 460 20038 4.7 38647 100.0

Genes were predicted in the September 2000 GoldenPath human genome sequence as described in Methods. Predicted coding
sequences (CDS) were first compared to cDNAs in the RefSeq cDNA database (September 2000) using BLASTN; those which had a
hit at least 100 bp long with at least 98% identity are listed as “known”. The remaining predicted coding sequences were searched
against dbEST (September 2000 release) using BLASTN; those which had a hit at least 100 bp long with at least 97% identity are listed
as “Protein + EST”. All other predicted genes are categorized as “Protein only” because all GenomeScan-predicted genes have at least
modest similarity to a known protein. Statistics are listed separately for predicted partial genes and predicted complete genes with at
least three exons; the category “all genes” includes these two groups as well as predicted 1- and 2-exon genes.
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dicted complete genes with >2 exons that had EST hits
was roughly constant, between 62% and 84% (data not
shown), with one striking exception: Only 27% of pre-
dicted multi-exon genes on the Y chromosome had
EST hits. This suggests that either (1) most Y genes are
very poorly expressed or expressed only in tissues not
well-sampled by EST databases, or (2) that the vast ma-
jority of predicted genes on the Y chromosome repre-
sent pseudogenes. The latter explanation is consistent
with previous studies indicating that the Y chromo-
some contains a higher than usual proportion of pseu-
dogenes (Lahn and Page 1999).

Based on comparisons of the human genome to
one-third of the genome of the pufferfish Tetraodon
nigroviridis, the human genome was estimated to con-
tain ∼ 28,000–34,000 genes (Roest Crollius et al. 2000).
These estimates, based on genomic sequence conserva-
tion, are comparable to some estimates based on EST
sequences (Ewing and Green 2000) but much lower
than others (Liang et al. 2000), underscoring the diffi-
culty of EST clustering and of accounting for artifacts
such as unprocessed mRNA or contaminating genomic
DNA in cDNA libraries. Updated human–pufferfish
comparisons have refined the human gene number es-
timate to ∼ 30,000 (H. Roest Crollius et al., in prep.) and
other recent analyses have placed human gene number
estimates in the 30,000–40,000 range (International
Human Genome Consortium 2001; Venter et al. 2001).
Based on our estimates that the GenomeScan2000 set
represents 20,000–25,000 expressed genes, we con-
clude that we have identified approximately two-thirds
of all human genes. Consistent with this estimate, 65%
of Exofish ecores (genomic regions conserved between
human and Tetraodon comprising almost exclusively
coding DNA) fall inside GenomeScan-predicted exons
(H. Roest Crollius et al., in prep.). This fraction is sig-
nificantly higher in finished sequences (data not
shown), suggesting that finishing of the draft human
genome sequence will enable a significantly larger frac-
tion of human genes to be identified using automated
approaches. Ecore analysis also provides a way to assess
and compare the completeness of different human
gene annotations. For example, 46% of ecores fall
within genes annotated by the Ensembl project (Hub-
bard and Birney 2000; http://www.ensembl.org), im-
plying that the GenomeScan2000 gene set contains a
significantly larger number of human genes. Some of
the extra ecores that fall outside of genes annotated in
the current GenomeScan and Ensembl datasets may
represent additional exons of genes identified by these
methods. Others will undoubtedly represent genes
missed by these approaches, and some might represent
false-positives of the Exofish approach.

How to identify the remaining human genes? One
promising general approach is to test for expression of
those GENSCAN-predicted genes that fall outside of the

boundaries of genes annotated by other methods (e.g.,
GenomeScan, Ensembl) using sensitive experimental
techniques. Recently, a microarray-based method has
been applied to identify expressed genes based on co-
expression of sets of adjacent exons predicted by
GENSCAN (Shoemaker et al. 2001). Using this approach,
evidence was found supporting the expression of the
vast majority of genes predicted by GENSCAN on Chr22,
including more than half of the predictions that lacked
similarity to any known gene, protein, or EST as of the
time of completion of the Chr22 sequence. A major
strength of the microarray method is that it can be
scaled up to test hundreds of thousands of predicted
exons (Shoemaker et al. 2001). However, such micro-
arrays cannot directly determine whether two exons
form part of the same transcript, relying on correlation
of expression patterns to make such inferences (Burge
2001). An alternative approach that can directly detect
splicing of exons in the same message is to use RT-PCR
with radio-labeled primers targeted to pairs of adjacent
predicted exons, followed by sequencing of the ampli-
fied product. Applying this strategy to predicted novel
genes on human Chr22 suggests that a significant
number of human genes not similar to known proteins
or ESTs can be identified with this approach (C.B.
Burge et al., in prep.).

Both the microarray and RT-PCR data confirm the
presence of a significant fraction of human genes that
are not similar to any previously identified in lower
organisms and will very likely lead to increases in es-
timates of human gene numbers. Exon locations iden-
tified by these approaches or by alignment of available
EST or cDNA sequences to the human genome could
potentially be integrated into the GenomeScan algo-
rithm. EST sequences in particular represent a rich
source of information about gene expression because
millions are available in public databases. However, a
small but significant fraction of EST sequences appear
to derive from unprocessed RNA or contaminating ge-
nomic DNA (Wolfsberg and Landsman 1997), causing
problems for automated gene prediction methods. For
example, Krogh (2000) found that the incorporation of
EST matches into the sophisticated HMMGene algorithm
resulted in lower overall accuracy, with increases in
sensitivity more than offset by decreases in specifici-
ty, and we have observed similar results in our pre-
liminary efforts to incorporate EST similarity into
GenomeScan (data not shown). For this reason, we
have chosen not to include EST information in con-
structing the GenomeScan2000 gene set. However, we
expect that improved methods for filtering and assem-
bly of EST sequences should address these problems in
the near future.

Alternative splicing is increasingly recognized as
an important and widespread form of gene regulation
that is thought to affect more than half of human
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genes (International Human Genome Sequencing
Consortium 2001). However, the mechanisms under-
lying alternative splicing are not well understood and
computational analysis of this phenomenon will re-
quire more specialized tools than those described here.
When GenomeScan is run on a genomic sequence con-
taining a known alternatively spliced gene, the pre-
dicted gene generally includes most or all of the alter-
natively spliced exons, often corresponding to the
longest ‘possible’ alternative product (‘possible’ in
quotes because in some cases the exons are mutually
exclusive, so this longest product is never observed).
For example, running GenomeScan on the massively
alternatively spliced Drosophila Dscam locus (GenBank
accession no. AF260530; Schmucker et al. 2000) using
BLASTX results against the human DSCAM protein (ac-
cession no. AAF27525) produces a long predicted gene
that includes many of the 95 known alternative exons
present in this locus. Similar results are obtained for
other known alternatively spliced genes (data not
shown). In terms of annotating novel putative alterna-
tively spliced genes, GenomeScan predictions, there-
fore, may be most useful in indicating a plausible set of
exons, but detailed prediction of exactly which spliced
isoforms occur in the cell is beyond the scope of this
method. Other methods based on EST alignment may
help in this regard. Full-length cDNA sequencing still
provides the gold standard for determining exon–
intron structures and alternative splicing of genes
(Kawai et al. 2001).

Comparative genomics should also prove to be a
powerful approach for identifying and annotat-
ing gene locations as additional vertebrate genomes
are sequenced (Batzoglou et al. 2000; Roest Crollius
et al. 2000). Given the generality of the model used
by GenomeScan, it should be relatively straight-
forward to integrate comparative genomic informa-
tion, such as TBLASTX alignments of homologous hu-
man and Tetraodon genomic regions into the algo-
rithm.

The work described here represents one of the
first reliable, fully automated approaches for annotat-
ing gene locations in a higher eukaryotic genome.
The GenomeScan2000 gene set is freely available for
downloading and analysis at http://genes.mit.edu/
genomescan. Integration of this set with other auto-
mated human gene annotations, such as those pro-
duced by the Ensembl project (http://www.ensembl.
org), should be particularly useful for future experi-
mental and computational analyses of the human pro-
teome. The GenomeScan algorithm can be accessed at
http://genes.mit.edu/genomescan.html. Because the
accuracy of the underlying gene model does not vary
significantly between different groups of vertebrates
(Burge and Karlin 1997), the method described here
should work equally well for gene identification in

other vertebrate genomes, such as zebrafish, mouse,
and rat, as these sequences are determined.

METHODS

Information in BLASTX Hits
In an HMM model like that used by GENSCAN, each possible
gene structure or set of gene structures that may be present in
the sequence corresponds to an ordered list of states with
associated lengths; such a list is referred to as a parse and
designated with the Greek letter �. Because the model deter-
mines a probability for generating each possible parse �i and
sequence S, the predicted gene structure for an HMM model
like GENSCAN is taken to be the parse that maximizes the joint
probability P(�i, S) over all possible parses of the given input
genomic sequence S. The crucial difference here is that we
wish instead to maximize the joint conditional probability P
(�i, S|�), conditional on similarity information �, such as the
results of a BLASTX search. The first step in our method is to
convert the information present in a set of BLASTX hits to a
given human genomic sequence into a corresponding set of
probabilistic statements about the likelihood that coding ex-
ons occur at particular places in the sequence. Each BLASTX
hit alters the probabilities of the various parses of the genomic
sequence in the GenomeScan model, increasing the likeli-
hoods of parses that are consistent with the BLASTX informa-
tion and reducing the likelihoods of those that are not, as
described below. Because the boundaries of BLASTX hits cor-
respond only roughly to the boundaries of coding exons,
parses are only required to have an exon (of the appropriate
reading frame) that overlaps the central, highest scoring re-
gion of the BLASTX hit, termed the centroid of the hit to be
considered consistent. Intuitively, the portion of a BLAST
alignment that has the most strongly positive BLOSUM62
score is most likely to be internal to a coding exon. Therefore,
the centroid of a BLASTX hit is defined using a steepest-slope
heuristic as the position C in the genomic sequence with
steepest slope over a window of 15 codons centered at C in
the cumulative BLASTX score plot. Cases in which the cumu-
lative score plot is significantly multimodal are handled by
breaking the BLASTX hit into multiple single-mode segments
with different centroids. BLASTX hits that extend over a dis-
tance of �100 codons in the genomic sequence are converted
to a series of segments, with centroids equally spaced along
the length of the hit at ∼ 75-bp intervals.

Each BLASTX hit B to a genomic sequence is converted to
an equivalent Genoa hit G (genome annotation) that summa-
rizes the information present in the hit, including the ge-
nomic coordinates, centroid, reading frame, and P-value. Any
parse of the sequence containing an exon that overlaps the
centroid of the Genoa hit in the appropriate reading frame is
said to be consistent with G, and the set of all such parses is
designated �G; all other parses are said to be inconsistent with
G . Of course, not every BLAST hit represents true homology
between the query genomic sequence and the subject protein.
This issue is made explicit by formally distinguishing the
event HG, that the region of the genomic sequence corre-
sponding to the BLASTX hit is functional and homologous to
the target protein, from the event AG, that the similarity rep-
resented is artifactual. The phrase functional and homologous is
meant to include only expressed, translated genes (i.e., ex-
cluding pseudogenes). Intuitively, the probability �A = P(AG)
that a Genoa hit is artifactual should be related to the BLASTX
P-value �B. However, the proportion of P < 10�10 BLASTX hits
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in the genome that represent pseudogenes is likely to be or-
ders of magnitude higher than one in 1010, for example. Thus,
�A is likely to be far higher than �B in general but is difficult
to estimate precisely. In practice, we use a root-r heuristic,
setting �A = (�B)1/r, where r is a small integer. For example,
with r = 5 a �B = 10�5 BLASTX hit would be treated as having
a �A = 10�1 = 10% chance of representing an artifact. The de-
fault value of r applied to results of the second BLAST in
GenomeScript (against a restricted peptide database) is 10,
and this value was used in all of the analyses described here.
This heuristic works well in practice, but other ways of esti-
mating �A may be worth investigating.

Consider the special case when the similarity informa-
tion consists of a single Genoa hit, G. Letting �G = P(HG) —so
that P(AG) = 1 � �G —the joint conditional probability P(�i,
S|�) is defined as:

P��i,S|G� = �� PG

P��G�
+ �1 − PG��P��i,S�

�1 − pG�P��i,S�

if �i ∈ �G

if �i ∉ �G

( 1)

where P(�i, S) is the GENSCAN joint probability and P(�G) is
the unconditional probability that one of the parses in �G is
correct. The term 1 � �G (always �1) in the �i ∉ �G case can
be thought of as the penalty that is applied to parses that are
inconsistent with the Genoa hit G. The more complicated
term

PG

P��G�
+ �1 − PG�

(always �1) can be thought of as the bonus that is applied to
parses which are consistent with G. In this way, gene struc-
tures that are consistent with the similarity information in a
Genoa hit are favored by the GenomeScan model, but incon-
sistent parses are not completely ruled out since the pos-
sibility that the Genoa hit may be artifactual is explicitly
considered in the model and assigned an appropriate prob-
ability.

Equation 1 can be derived as follows. Observing that the
information in a Genoa hit G affects the probabilities of parses
and sequences only through the mutually exclusive events
HG, AG, we have P(�i, S|G) = �GP(�i, S|HG) + (1 � �G)P(�i

S|AG). By definition of HG, P(�i, S|HG) = 0 for any parse that is
inconsistent with G. For any parse that is consistent with G,
we have P(S|�i, HG) = P(S|�i, �G) = P(S|�i) under the assump-
tion that HG influences the model only through the event �G

and that one of the parses consistent with G is correct. Be-
cause HG implies �G, but does not otherwise affect the rela-
tive likelihood of any particular parse, P(�i, S|HG) =
P(� i, S|�G) = P(� i, S)/P(�G), for any parse � i��G and
P(�i, S|HG) = 0 for any parse �i∉ �G. The quantity P(�G) may
be calculated using a modification of the forward–backward
algorithm described previously (Rabiner 1989; Burge 1997). In
the event AG, we have no additional information about the
likelihood of any particular parse or sequence, so P(�i,
S|AG) = P(�i, S) for any parse �i.

Multiple nonredundant Genoa hits are handled simi-
larly, making an assumption that is essentially equivalent to
independence between distinct Genoa hits. This quasi-
independence assumption provides a good approximation to
P(�i, S|�) and allows straightforward applications of the
Viterbi, forward and backward algorithms, which is one of the
principal virtues of HMM models.

Initiation Codons, Termination Codons, and Introns
Suppose that residues 6–50 of a protein match genomic coor-
dinates 116–250. It then stands to reason that an ATG located
five codons upstream at position 101 in the genomic se-
quence (if one occurs there) has higher likelihood of repre-
senting an initiation codon than some other randomly cho-
sen ATG in the sequence. In this case, the probability of any
parse that involves an initiation codon at position 101 is in-
creased by the factor Cstart (the default value of this parameter
is 1e6, determined empirically). An analogous argument and
treatment applies to termination codons. In addition, sup-
pose that BLASTX hit B1 matches residues 101–150 of protein
P to nucleotides 850–999 of the genomic sequence with P-
value �B1 and BLASTX hit B2 matches residues 151–200 of
protein P to nucleotides 2001–2150 of the genomic sequence
with P-value PB2. Assuming that both BLASTX hits represent
functional homology, the presence of an intron extending
roughly from coordinates 1000–2000 in the genomic se-
quence is strongly implied; this situation is handled in the
model by generating a special type of Genoa intron hit that
spans 1030–1970 with P-value �I = 1 � (1 ��B1

)(1 ��B2
), as-

suming independence between hits. The 30-bp offset (1030
rather than 1000, 1970 rather than 2000) is used to ensure
that the specified intronic region is very unlikely to overlap
with either of the flanking exons. Internally, the GenomeScan
program reduces the probabilities of parses that involve an
exon in the region specified by a Genoa intron hit in a man-
ner analogous to the way that regular Genoa hits reduce the
probabilities of parses that do not contain overlapping exons.
Additional technical details of the GenomeScan method are
described in the GenomeScan documentation at http://
genes.mit.edu/genomescan.

GenomeScript
GenomeScan is integrated with other analysis tools in a pro-
cedure called GenomeScript. GenomeScript performs the fol-
lowing series of analyses on an input genomic sequence: (1)
mask the repetitive elements using RepeatMasker (http://
www.genome.washington.edu/UWGC/analysistools/
repeatmask.html); (2) run GENSCAN on masked genomic se-
quence, search predicted peptides against an appropriate pro-
tein database, and retrieve protein hits that achieve a desired
level of significance (default: E < 10�5); (3) run a second
BLASTX search of the masked genomic sequence against this
subset of peptides with increased gap penalties (�G 20, �E 3)
and relaxed E-value cutoff (default: E < 0.05) and convert the
output to Genoa format (see above); and (4) run GenomeScan
on the masked genomic sequence using the Genoa hits from
the previous step as input. The second BLASTX search with
relaxed E-value cutoff allows very sensitive detection of cod-
ing exons (as seen in Fig. 1) but produces a certain level of
false-positive hits, most of which GenomeScan is able to filter
out (as in Fig. 1). A variant of this procedure replaces step 2
above (GENSCAN + BLASTP) by BLASTX of the masked ge-
nomic sequence against the protein database. This variant
procedure increases the run time of the BLAST database search
(typically rate-limiting) by one or two orders of magnitude
but has little effect on accuracy (data not shown), and so was
not used in the applications described here.

Datasets
The SingleGene dataset of 175 human genes was constructed
by deleting three sequences (accession nos. X63578, U34879,
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and Y07661) from the h178 dataset constructed by Guigó et
al. (2000). These three sequences have apparent annotation
errors—unrealistically short introns or evidence for additional
unannotated genes. The FinishGene and DraftGene datasets
were constructed as follows. First, all available full-length hu-
man cDNAs were aligned to available draft (htgs) and finished
human genomic sequences from GenBank release 118 using
the spliced alignment algorithm mRNAvsGen (L.L. Lim and
C.B. Burge, unpubl.), which is similar in concept to the sim4
program (Florea et al. 1998) but is tailored specifically for
aligning cDNA sequences rather than ESTs. Next, pairs of fin-
ished/draft genomic sequences were identified that contained
alignments to the same full-length cDNA. A total of 194 such
pairs were identified for which at least one cDNA was aligned
across its entire length to the finished genomic sequence and
at least the first and last exons of the gene were found in
contigs from the same draft BAC, implying that the BAC cov-
ers the genomic locus encoding the cDNA. These 194 finished
sequences, containing 206 genes also sequenced in draft
form, comprise the FinishGene dataset. Those draft contigs
containing exons or introns from these same 206 genes (as
determined by BLASTN) form the DraftGene dataset. On av-
erage, exons from each gene in the DraftGene set were repre-
sented by 1.8 different draft contigs, reflecting the modest
level of fragmentation resulting from the rough draft se-
quencing strategy. The median number of contigs per Draft-
Gene BAC was 18; the median sequence coverage was 4.3-fold
(one quarter of draft BACs did not have coverage informa-
tion). For both datasets, the exon–intron structures derived by
mRNAvsGen alignments of the corresponding full-length
cDNAs were treated as sequence annotation for the purposes
of calibrating gene prediction accuracy. The FinishGene and
DraftGene datasets are at http://genes.mit.edu/genomescan/
datasets.

Implementation
The GenomeScan program was written in the C programming
language and has been compiled and run on a variety of
Unix/Linux platforms. Run time for GenomeScan grows
roughly linearly with sequence length in the typical case;
typical run time for a 100-kb genomic sequence on a Pentium
III 500 MHz Linux workstation is ∼ 10 sec. The program re-
quires ∼ 0.5 MB of RAM per kbp of sequence so that 1–2 Mbp
genomic sequences can be analyzed on a computer with 1 GB
or more of RAM. GenomeScan was run using GenomeScript
with default parameters on contigs from the GoldenPath hu-
man genome on the BioCluster at the Compaq Enterprise
System Lab. The BioCluster comprises 25 ES40 nodes with
four processors (667 MHz Alpha EV67) and 4-GB memory
each. Before running GenomeScript, the GoldenPath was
masked with RepeatMasker (http://www.genome.washing-
ton.edu/UWGC/analysistools/repeatmask.html; June 19,
2000, version) and broken into individual contigs, breaking at
gaps represented by 100 or more unknown nucleotides (Ns) or
when necessary to produce a maximum practical contig size
of 500 kbp. Total run time for the September 2000 Golden-
Path was approximately 48 h.

ACKNOWLEDGMENTS
We thank Roderic Guigó, Eric Lander, David Lipman, and
David Page for helpful discussions; Phillip Sharp for com-
ments on the manuscript; Liana Lareau for expert technical
assistance; Anders Krogh for providing the HMMGene software;
Doug Hyatt for providing GRAIL, Compaq for computer re-

sources; and Merck and MIT for support. C.B.B. is a recipient
of a Burroughs Wellcome Fund Innovation Award in Func-
tional Genomics. L.P.L. is supported by United States Public
Health Service MERIT award R37-GM34277 to Phillip A.
Sharp. This work was made possible by the public availability
of the human genome sequence and annotation, and we
thank all contributing sequencing centers and scientists.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z.,

Miller, W., and Lipman, D.J. 1997. Gapped BLAST and
PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Res. 25: 3389–3402.

Batzoglou, S., Pachter, L., Mesirov, J.P., Berger, B., and Lander, E.S.
2000. Human and mouse gene structure: Comparative analysis
and application to exon prediction. Genome Res. 10: 950–958.

Birney, E. and Durbin, R. 2000. Using GeneWise in the Drosophila
annotation experiment. Genome Res. 10: 547–548.

Brenner, V., Nyakatura, G., Rosenthal, A., and Platzer, M. 1997.
Genomic organization of two novel genes on human Xq28:
Compact head to head arrangement of IDH gamma and TRAP
delta is conserved in rat and mouse. Genomics 44: 8–14.

Burge, C.B. 1997. “Identification of genes in human genomic DNA.”
Ph.D. thesis, Stanford University, California.

———. 2001. Chipping away at the transcriptome. Nat. Genet.
27: 232–234.

Burge, C.B. and Karlin, S. 1997. Prediction of complete gene
structures in human genomic DNA. J. Mol. Biol. 268: 78–94.

———. 1998. Finding the genes in genomic DNA. Curr. Opin. Struct.
Biol. 8: 346–354.

Claverie, J.-M. 1997. Computational methods for the identification
of genes in vertebrate genomic sequences. Hum. Mol. Genet.
6: 1735–1744.

Dunham, I., et al. 1999. The DNA sequence of human chromosome
22. Nature 402: 489–495.

Ewing, B. and Green, P. 2000. Analysis of expressed sequence tags
indicates 35,000 human genes. Nature Genet. 25: 232–234.

Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M., and Miller W. 1998.
A computer program for aligning a cDNA sequence with a
genomic DNA sequence. Genome Res. 8: 967–974.

Gelfand, M.S., Mironov, A.A., and Pevzner, P.A. 1996. Gene
recognition via spliced sequence alignment. Proc. Natl. Acad. Sci.
93: 9061–9066.

Gish, W. and States, D.J. 1993. Identification of protein coding
regions by database similarity search. Nat. Genet. 3: 266–272.

Guigó, R., Agarwal, P., Abril, J.F., Burset, M., and Fickett, J.W. 2000.
An assessment of gene prediction accuracy in large DNA
sequences. Genome Res. 10: 1631–1642.

Hubbard, T. and Birney, E. 2000. Open annotation offers a
democratic solution to genome sequencing. Nature 403: 825.

International Human Genome Sequencing Consortium, 2001. Initial
sequencing and analysis of the human genome. Nature
409: 860–921.

Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C.F.,
Trent, J.M., Staudt, L.M., Hudson Jr., J., Boguski, M.S., et al.
1999. The transcriptional program in the response of human
fibroblasts to serum. Science 283: 83–87.

Kawai, J., et al. 2001. Functional annotation of a full-length mouse
cDNA collection. Nature 409: 685–690.

Krogh, A. 2000. Using database matches with HMMGene for
automated gene detection in Drosophila. Genome Res.
10: 523–528.

Kulp, D., Haussler, D., Reese, M.G., and Eeckman, F.H. 1996. A
generalized hidden Markov model for the recognition of human
genes in DNA. Proc. ISMB 4: 134–142.

Computational Inference of Homologous Gene Structures

Genome Research 815
www.genome.org



Lahn, B.T. and Page, D.C. 1999. Four evolutionary strata on the
human X chromosome. Science 286: 964–967.

Liang, F., et al. 2000. Gene Index analysis of the human genome
estimates approximately 120,000 genes. Nat. Genet. 25: 239–240.

Maglott, D.R., Katz, K.S., Sicotte, H., and Pruitt, K.D. 2000. NCBI’s
LocusLink and RefSeq. Nucleic Acids Res. 28: 126–128.

Rabiner, L. 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. Proc. IEEE 77: 257–285.

Reese, MG., Kulp, D., Tammana, H., and Haussler, D. 2000.
Genie—Gene finding in Drosophila melanogaster. Genome Res.
10: 529–538.

Roest Crollius, H., Jaillon, O., Bernot, A., Dasilva, C., Bouneau, L.,
Fischer, C., Fizames, C., Winckes, P., Brottier, P., Queties, F., et
al. 2000. Estimate of human gene number provided by
genome-wide analysis using Tetraodon nigroviridis DNA sequence.
Nat. Genet. 25: 235–238.

Salamov, A.A. and Solovyev, V.V. 2000. Ab initio gene finding in
Drosophila genomic DNA. Genome Res. 10: 516–522.

Shoemaker, D.D., Schadt, E.E., Armous, C.D., He, Y.D.,

Garrett-Engele, P., McDonagh, P.D., Loerch, P.M., Leonardson,
A., Lum, P.Y., Cavet, G., et al. 2001. Experimental annotation of
the human genome using microarray technology. Nature 409:
922–927.

Smith, T.M., Lee, M.K., Szabo, C.I., Jerome, N., McEwen, M., Taylor,
M., Hood, L., and King, M.C. 1996. Complete genomic sequence
and analysis of 117 kb of human DNA containing the gene
BRCA1. Genome Res. 6: 1029–1049.

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton,
G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al.
2001. The sequence of the human genome. Science
291: 1304–1351.

Xu, Y. and Uberbacher, E.C. 1997. Automated gene identification in
large-scale genomic sequences. J. Comp. Biol. 4: 325–338.

Wolfsberg, T.G. and Landsman, D.A. 1997. Comparison of expressed
sequence tags (ESTs) to human genomic sequences. Nucleic Acids
Res. 25: 1626–1632.

Received December 14, 2000; accepted in revised form February 27, 2001.

Yeh et al.

816 Genome Research
www.genome.org


