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Laser tweezers and atomic force microscopes are increasingly used
to probe the interactions and mechanical properties of individual
molecules. Unfortunately, using such time-dependent perturba-
tions to force rare molecular events also drives the system away
from equilibrium. Nevertheless, we show how equilibrium free
energy profiles can be extracted rigorously from repeated non-
equilibrium force measurements on the basis of an extension of
Jarzynski’s remarkable identity between free energies and the
irreversible work.

Recent advances in the micromanipulation of single molecules
have led to new insights into the dynamics, interactions, struc-

ture, and mechanical properties of individual molecules (1–4).
Single-molecule manipulation with an atomic force microscope
(AFM) (5–9), laser tweezer stretching (10), and analogous com-
puter experiments pioneered by Schulten and coworkers (11–13)
have revealed details about unfolding and unbinding events of
individual proteins and their complexes. In an AFM experiment, a
molecule is subjected to a time-varying external force, for instance
by pulling on the end of a linear polymer (Fig. 1). The applied force
is determined from the time-dependent position of the cantilever
tip with respect to the sample. Thus, one can drive rare molecular
events (14), determine their force characteristics, and simulta-
neously monitor them with atomic resolution. However, both
experiments and simulations actively perturb the system, leading to
hysteresis and nonequilibrium effects.

How can one extract equilibrium properties from such measure-
ments that drive the system away from equilibrium (15, 16)? From
the second law of thermodynamics, we know that on average, the
mechanical work of pulling will be larger than the free energy. Only
if the experiment is performed reversibly, i.e., infinitely slowly, will
the work equal the free energy. Thus, making rigorous thermody-
namic measurements by pulling appears to require an extrapolation
to zero pulling speed. However, Jarzynski (17, 18) recently discov-
ered a remarkable identity between thermodynamic free energy
differences and the irreversible work, thus extending the inequality
of the second law of thermodynamics. This identity, although not
directly applicable to atomic force measurements, suggests that in
principle one should be able to extract free energy surfaces from
repeated pulling experiments. In this paper, we show how this can
be done in practice.

Theory. We begin by showing that Jarzynski’s identity follows
almost immediately from the Feynman–Kac theorem for path
integrals (19). This derivation leads directly to the appropriate
extension, which forms the basis for the solution of the free
energy reconstruction problem. This extension has been ob-
tained by Crooks (20) as a special case of an even more general
relation between forward and backward path averages. Consider
a system whose phase–space density evolves according to a
Liouville-type equation:

f~x, t!
t

5 +t f~x, t!. [1]

+t is an explicitly time-dependent evolution operator that has the
Boltzmann distribution as a stationary solution, +te2b*(x,t) 5 0,

where *(x, t) is a time-dependent Hamiltonian, and b21 5 kBT,
with T the temperature and kB Boltzmann’s constant. For
example, for diffusive dynamics on a potential V(x, t), the time
evolution is governed by +t 5 D¹e2bV(x,t)¹ebV(x,t), where D is the
diffusion coefficient and ¹ 5 yx. Other examples include
systems that undergo Newtonian, Langevin, Nosé–Hoover ther-
mostat, or Metropolis Monte Carlo dynamics. Now consider the
unnormalized Boltzmann distribution at time t,

p~x, t! 5
e 2 b*~x,t!

Ee 2 b*~x*,0!dx*

. [2]

Because this distribution is stationary (+tp 5 0), and because
pyt 5 2b(*yt)p, it follows that the above p(x, t) is a solution
of the sink equation,

p
t

5 +tp 2 b
H
t

p, [3]

as can be verified by direct substitution. However, the solution
of this sink equation, starting from an equilibrium distribution at
time t 5 0, can also be expressed as a path integral by using the
Feynman–Kac theorem (19). Equating these two different so-
lutions immediately gives:

e 2 b*~x,t!

Ee 2 b*~x*,0!dx*

5 Kd~x 2 xt!expF2bE
0

t *

t9
~xt9, t9!dt9GL

[4]

where d(x) is Dirac’s d distribution. This identity between a
weighted average of nonequilibrium trajectories (right) and the
equilibrium Boltzmann distribution (left) is implicit in the work
of Jarzynski (18), and is given explicitly by Crooks (equation 24,
ref. 20). The average ^. . .& is over an ensemble of trajectories
starting from the equilibrium distribution at t 5 0 and evolving
according to Eq. 1. Each trajectory is weighted with the Boltz-
mann factor of the external work wt done on the system,

wt 5 E
0

t *

t9
~xt9, t9!dt9. [5]

Integrating both sides of Eq. 4 with respect to x, we obtain
Jarzynski’s identity (17, 18)
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e 2 bDG~t! ;
E e 2 b*~x,t!dx

Ee 2 b*~x,0!dx

5 ^e 2 bwt&, [6]

between the Boltzmann-averaged work wt and the equilibrium
free energy difference DG(t) between times t and 0.

Free Energy Surfaces from Cantilever Positions. Eq. 4 allows us to
reconstruct the underlying free energy surface from repeated
single-molecule AFM experiments. The setup in Fig. 1a can be
described by a Hamiltonian *(x, t) 5 *0(x) 1 k(z 2 vt)2y2,
where *0(x) is the Hamiltonian of the resting, unperturbed
system, and z 5 z(x). Here, we have assumed for simplicity that
the cantilever is vibrating in a harmonic potential with spring
constant k. Substituting this Hamiltonian into Eq. 4, multiplying
both sides by d[z 2 z(x)], integrating over all x, and finally taking
the logarithm, we have:

G0~z! ; 2b 2 1ln

Ed@z 2 z~x!#e 2 b*0~x!dx

Ee 2 b*~x,0!dx

5 2b 2 1ln^d~z 2 zt!e 2 bDwt&, [7]

where G0(z) is (to within an additive constant) the unperturbed
free energy profile along the pulling coordinate z; and Dwt is the
external work minus the instantaneous biasing potential, Dwt 5
wt 2 k(zt 2 vt)2y2 5 kv(vt2y2 2 *0

t zt9 dt9) 2 k(zt 2 vt)2y2. At time
t 5 0, the trajectories are started from points z0 drawn from a
Boltzmann distribution corresponding to Hamiltonian *(x, 0) 5
*0(x) 1 kz2y2.

Given the positions zt of the cantilever at time t obtained from
repeated pulling experiments, we can reconstruct the unper-
turbed free energy profile G0(z) along z by using Eq. 7. At each
time slice t, one can in principle obtain an estimate of the whole
free energy surface. In practice, at any given time t, only a small
window around the equilibrium position z 5 vt will be sampled
adequately. Thus, an average over several time slices and re-
peated trajectories is required to obtain an optimal estimate of
the free energy surface. At every time slice t, one obtains an
ensemble of positions zt and corresponding wts. The positions zt
are binned, and the corresponding histogram values are incre-
mented by e2bwt. The complete free energy surface G0(z) can

then be reconstructed by adapting the weighted histogram
method (21):

G0~z! 5 2b 2 1ln
Ot

^d~z 2 zt!exp~2bwt!&

^exp~2bwt!&

Ot

exp@2bu~z, t!#
^exp~2bwt!&

, [8]

where the sum is over time slices t and u(z, t) is the time-
dependent biasing potential [here: u(z, t) 5 k(z 2 vt)2y2]. As in
the weighted histogram method (21), this procedure can be
refined by making Eq. 8 self-consistent through replacement of
^exp(2bwt)& with exp[2bDG(t)] 5 *exp {2b[u(z, t) 1
G0(z)]}dzy*exp{2b[u(z, 0) 1 G0(z)]}dz, thus requiring an
iterative solution for DG(t).

To illustrate in detail how this formalism is implemented, we
simulate a pulling experiment by conducting Brownian-dynamics
simulations on a double-well free energy surface. Ten trajecto-
ries were generated on the time-dependent surface V(z) 1 k(z 2
vt)2y2 with a pulling velocity v 5 1 mm s21, a diffusion coefficient
D 5 1027 cm2 s21, and a cantilever spring constant k 5 20.6 pN
nm21 (50.0206 mN m21). The pulling velocities and cantilever
spring constants are typical of AFM experiments (2, 6). For this
diffusion coefficient, the escape rate from the stable minimum
is about 1026 s21 on the basis of Kramers’ theory, in the range
of unfolding rates for fairly large proteins under native condi-
tions. The free energy difference between the two states sepa-
rated by a barrier is '14 kcalymol (at 298 K), again typical of
protein unfolding. Nevertheless, this simple one-dimensional
model is only a crude approximation to real experiments where
several other factors intrude, such as viscous damping of the
cantilever motion or slow conformational relaxation orthogonal
to the pulling direction (14).

In the pulling simulations, the ‘‘cantilever’’ is moved relative
to the ‘‘sample’’ by 20 nm within a time of 20 ms. The position
zt and accumulated work wt 5 kv(vt2y2 2 *0

t zt9 dt9) are recorded
for 10 runs and analyzed by using Eq. 7. For every pulling
trajectory k (k 5 1,. . . ,K; here: K 5 10), we determine at discrete
times ti (i 5 0,. . . ,N; here: N 5 100 time points separated by 0.2
ms) the position of the cantilever zik with respect to the sample,
and the corresponding deflection dzik 5 zik 2 vti. From the
deflection, we obtain the instantaneous deflection energy uik 5
kdzik

2 y2. The external work is determined by numerical integra-
tion: wik 5 kv[vti

2y2 2 ¥j51
i (tj 2 tj21)(zjk 1 zj21,k)y2] with wik 5

0 for i 5 0. The results of repeated trajectories are then
combined. At every time slice ti, we average ^exp(2bwt)& ' hi [
K21¥k51

K exp(2bwik). To approximate the average in the top
numerator of Eq. 8, we also collect histograms hi(l) at times ti
with z-position intervals of Dz:

hi~l! 5 K 2 1 O
k 5 1

K

e 2 bwikul~zik!, [9]

where ul(z) is one if z is in the lth interval [(l 2 1)Dz # z , lDz]
and zero otherwise. We then estimate the free energy profile by
averaging over all time slices ti:

G0@~l 2 1⁄2!Dz# 5 2b 2 1ln
O

i 5 0

N hi~l!yhi

O
i 5 0

N exp~2buik!yhi

. [10]

Fig. 2 compares the reconstructed and exact free energy sur-
faces. With the exception of the poorly sampled barrier region
because of snapping motion (Fig. 2 Inset), the surface is accu-
rately reproduced. We note that at high pulling speeds, the

Fig. 1. Single-molecule force measuring experiments by using AFM (a) and
laser tweezers (b). In the AFM experiment (a), the sample is moved at a
constant speed v relative to the cantilever with spring constant k. The position
zt 5 vt 1 dzt of the cantilever tip with respect to the sample is recorded, where
dzt is the displacement of the cantilever tip. From repeated measurements of
zt, the free energy profile G0(z) of the unperturbed system can be determined
exactly (c).
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increasing variance of wt will lead to a systematic bias of the
estimator for 2b21ln^d(z 2 zt)exp(2bwt)&, which can be approx-
imately corrected for by using a cumulant expansion.

Free Energy Surfaces from Pulling Forces. So far, we made use of
position-versus-time curves. However, it is force-versus-position
curves that are commonly reported from pulling experiments. As
above, we assume a Hamiltonian *(x, t) 5 *0(x) 1 u[z(x), t]. The
unperturbed system described by *0 is coupled to the measure-
ment apparatus through u[z(x), t], which will typically be a
harmonic potential, u[z(x), t] 5 k(z 2 vt)2y2. The work entering
the free energy expression Eq. 9 can be rewritten as

Dwt ; wt 2 u~zt, t! 5 E
C

F~z, t!dz 2 u~z0, 0!, [11]

where the restoring force is F(z, t) 5 2u(z, t)yz, and the
integral is along the position-versus-time contour connecting z0
and zt. This identity follows from du 5 (uyz)dz 1 (uyt)dt.
Combining Eqs. 7 and 11 leads to the surprising result that the
work entering into the free energy profile G0(z) is not given
simply by the force-versus-distance integral, but by an additional
factor reflecting the biased choice of the initial state,

G0~z! 5 2b 2 1ln^d~z 2 zt!e 2 b@*CF~z,t!dz 2 u~z0,0!#&, [12]

where the initial points are drawn from a Boltzmann distribution
according to *(x, 0) (i.e., for the system interacting with the
cantilever, as above). Therefore, if force integrals of two or more
trajectories are combined, individual trajectories should be
weighted by the reciprocal Boltzmann factor exp[bu(z0, 0)]; i.e.,
one should subtract from the integrated work the energy stored
in the deflected cantilever at time t 5 0.

In an AFM experiment, it is thus important to record the
zero-force position (dz 5 0 in Fig. 1) with the cantilever
sufficiently far from the sample. As the cantilever tip is brought
into contact with the sample, a sufficiently long relaxation is
important to draw initial states from an equilibrium Boltzmann
distribution. We note that this new equilibrium will normally not
be centered around dz 5 0, but according to the combined
Hamiltonian *(x, 0) of the sample coupled to the cantilever
spring. Nevertheless, the center of this initial distribution can be
used to align the z positions of repeated pulling traces. As the
cantilever is retracted, both zt and dzt are recorded. With known
cantilever spring constant k and pulling speed v, the work can
then be obtained from time or position integration.

As a final illustration, we analyze force spectra for extracting
individual bacteriorhodopsin molecules from purple membrane
patches of Halobacterium salinarum as measured by Oesterhelt
et al. (8). In these experiments, a cantilever tip was attached to
bacteriorhodopsin, and the protein was slowly pulled out of the
membrane. This led to sequential unraveling of the transmem-
brane helices, resulting in unfolding of the protein. Specifically,
we analyze the force-versus-distance curves for one of the
experiments (G241C mutant) and estimate a free energy profile
for extraction and unfolding of helices D and E, corresponding
to the second peak at pulling distances of 20–30 nm in figure 5
of ref. 8. Because the force is f luctuating around the baseline
before and after this force peak, we assume (i) that the additional
bias u(z0, 0) in Eq. 12 is of the order of kBT and thus negligible
on the scale of the integrated work; and that (ii) a quasiequi-
librium was established before the force peak. We also assume
(iii) that the force curves are aligned. We can then integrate the
forces and use Eq. 12 to estimate the underlying free energy
profile G0(z), as shown in Fig. 3. Also shown is the mean
restoring force, F(z) 5 dG0(z)ydz, corresponding to reversible
pulling. The noise in the force F(z) reflects uncertainties in the
z-position alignment and the finite number of measurements.
For extraction and stretching of the 57-amino acid stretch with
56 amino acids contained in helices D and E, we estimate a free
energy of about 64 kcalymol, or about 1.1 kcalymol per residue,
and a mean-force peak of about 89 pN. Although these values
seem overall reasonable, they should not be considered to be
accurate before the above assumptions are removed by appro-
priate experimental design. In addition, one must account for
instrument resolution, which leads to increased variation of the
integrated work. Finally, the influence of the pulling speed needs
to be investigated. In general, to extract accurate thermodynamic
information from a small number of pulling experiments, it will
be important to achieve small standard deviations of the work,
possibly of a few kBT, by pulling sufficiently slowly.

Conclusions
We have shown how free energy surfaces can be reconstructed
rigorously from repeated molecular pulling experiments. With
this formalism, thermodynamic properties such as binding equi-
libria can be extracted from repeated measurements by using
AFM (2, 5–9, 12), laser tweezers (1, 4), or magnetic beads (3).
In addition, this work has implications in the area of computer
simulations. For example, when a time-dependent harmonic

Fig. 2. Simulated pulling experiment over a 30 kBT barrier. The solid line and
symbols show the reference free energy V(z) and the reconstruction from 10
pulling simulations, respectively. Inset shows the force-versus-extension curve
for one of the pulling simulations.

Fig. 3. Free energy G0(z) (solid line, right-hand scale) and mean restoring
force F(z) 5 dG0(z)ydz (dashed line, left-hand scale) of extracting and unfold-
ing the D and E helix of the G241C mutant of bacteriorhodopsin. Eq. 12 was
used to estimate G0(z) from linear approximations (Inset) to the second peak
of eight force-versus-distance curves reported in figure 5, Oesterhelt et al. (8).
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potential is added to the Hamiltonian as above, our procedure
is a dynamic generalization of umbrella sampling (22). The
weighted-histogram method permits the combination of dy-
namic umbrella sampling runs with different pulling speeds or

directions. Moreover, this generalization has the immediate
advantage that no equilibration is required in different windows,
and thus the entire trajectory can be used to reconstruct the
underlying free energy surface.
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