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Alternative splicing of premessenger RNA is an important layer of regulation in eukaryotic gene expression.
Splice variation of a large number of genes has been implicated in various cell growth and differentiation
processes. To measure tissue-specific splicing of genes on a large scale, we collected gene expression data from 11
rat tissues using a high-density oligonucleotide array representing 1600 rat genes. Expression of each gene on
the chip is measured by 20 pairs of independent oligonucleotide probes. Two algorithms have been developed
to normalize and compare the chip hybridization signals among different tissues at individual oligonucleotide
probe level. Oligonucleotide probes (the perfect match [PM] probe of each probe pair), detecting potential
tissue-specific splice variants, were identified by the algorithms. The identified candidate splice variants have
been compared to the alternatively spliced transcripts predicted by an EST clustering program. In addition,
50% of the top candidates predicted by the algorithms were confirmed by RT-PCR experiment. The study
indicates that oligonucleotide probe-based DNA chip assays provide a powerful approach to detect splice
variants at genome scale.

Alternative splicing is an essential biological process that gen-
erates multiple different transcripts from the same precursor
mRNA. It is an important regulatory mechanism for high eu-
karyotic gene expression ( Smith et al. 1989; Lopez 1998; El-
liott 2000). It is estimated that at least 35% of human genes
undergo alternative splicing during development, cellular dif-
ferentiation, and other cellular processes (Wolfsberg and
Landsman 1997; Mironov et al. 1999; Brett et al. 2000; Inter-
national Human Genome Sequencing Consortium 2001). Al-
ternative splicing is tightly regulated with temporal and tis-
sue-specific pattern. Some aberrant splicing of precursor tran-
scripts has been associated with various human diseases
(Mottes and Iverson 1995; Wilson et al. 1997; Crook et al.
1998; Weissensteiner 1998; Jiang and Wu 1999). Analysis of
tissue- and disease-specific splice variations will provide im-
portant insights into the molecular mechanism of normal cel-
lular physiology as well as these disease processes.

It has been a daunting task to elucidate the tissue-specific
pattern of alternative splicing of tens of thousands of genes
using traditional molecular biology approaches. The current
knowledge of splice variants in the public database is frag-
mented. Recent efforts have been made to collect this infor-
mation from annotated databases (such as SWISSPROT) and
expressed sequence tag (EST) databases (Wolfsberg and Lands-
man 1997; Gelfand et al. 1999). It has been shown that by
using a clustering procedure, a rich source of splice variants
can be identified from EST sequences (Mironov et al. 1999).

Recent technological advances such as the high-density
oligonucleotide arrays allow biologists to study gene expres-

sion at genome scale (Chee et al. 1996; Lipshutz et al. 1999).
The Affymetrix DNA chip technology is based on hybridiza-
tion of labeled RNA probes with gene-specific oligonucleotide
arrays on the surface of a glass chip. By detecting the intensity
of hybridizing probes on the chip, one can analyze the ex-
pression level of thousands of genes simultaneously. Because
each gene is measured by a number of pairs of oligonucleotide
probes spanning the 3� region of each mRNA, DNA chips offer
a unique opportunity to assess 3� splice variants.

Here we present an exploratory study of predicting alter-
natively spliced transcripts using primary DNA chip expres-
sion data generated from a custom oligonucleotide array of
1600 rat genes in which expression of each gene on the chip
is measured by 20 pairs of perfect match andmismatch probes
(Chee et al. 1996; Lipshutz et al. 1999). Chip hybridization
data were collected from 10 normal rat tissues, including blad-
der, eye, heart, kidney, large intestine, small intestine, liver,
pancreas, placenta, testis, and skeletal muscle. To predict po-
tential tissue-specific splice variants, we have developed algo-
rithms to normalize and then compare the chip hybridization
signals at the oligonucleotide probe level. The first algorithm,
termed SPLICE, is used to transform raw hybridization signals
to normalized values across all the tissues. The algorithm ex-
amines tissue-specific expression signals for each probe pair
and selects candidate probes (the perfect match [PM] probe of
each probe pair). These selected probes represent the initial
prediction of probes hitting potential alternative splicing re-
gions. To improve the accuracy of the initial call, we devel-
oped a second algorithm called NEIGHBORHOOD to evaluate
probes whose sequences are adjacent. The process of the
analysis can then be visualized using Spotfire Pro 4.0 soft-
ware. For validation purposes, we compared the candidate
splice variants to the alternatively spliced transcripts pre-
dicted by the Compugen LEADS EST clustering program.
Some of the top candidates have also been confirmed by RT-
PCR experiment.
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RESULTS

Workflow of Splice Variant Prediction from DNA
Chip Expression Data
As described previously, each probe set on a high-density oli-
gonucleotide array consists of a number of oligonucleotide
probes complementary to the 3� sequences within a target
mRNA (Lockhart et al. 1996). A schematic representation of
20 probe pairs aligned to the 3� sequence of gene X is shown
in Figure 1. The average hybridization signal of a probe set
reflects the overall abundance of the target mRNA. In addi-
tion, the hybridization signal from an individual probe pair
correlates with the expression level of the transcript region
complementary to that particular probe. This establishes the
basis for using an array of multiple oligonucleotide probes to
differentiate alternatively spliced transcripts.

To predict tissue-specific splice variants from DNA chip
expression data, we developed algorithms to normalize chip
hybridization data at the single oligonucleotide probe level.
Raw intensities of each perfect match (PM) or mismatch (MM)
probe were first extracted from the .cel files generated by the
Affymetrix system. After subtracting background intensity, a
global scaling method was used to normalize the values to
each chip experiment. Normalized difference values (PM �

MM) and ratio values (PM/MM) can be generated and stored
in a combined signal strength (CSS) table. To compare tissue-
specific expression of transcripts at the individual probe level,
relative signal strength (RSS) of each probe pair was calculated
for each tissue by normalizing the PM � MM difference value
to the probe itself across all the tissues. RSS value was then
converted to a final log ratio (FR) to facilitate comparison of
RSS values across different tissues. Based on the FR value, can-
didate probes hitting potential splice variants in a particular
tissue can be predicted using the SPLICE algorithm. To further
improve the accuracy of the call and minimize artifacts
caused by any single probe pair, we used the NEIGHBOR-
HOOD algorithm to enrich the neighboring probes corre-
sponding to an extended alternative-splicing region. Figure 2
shows a schematic representation of the workflow of data
normalization and splice-variant prediction process.

Splice Variant Detection from DNA Chip Data
of Three Rat Tissues
To test our algorithm and improve the heuristics used in the
prediction, we first collected expression data from RNA of
three rat tissues using a custom-designed Affymetrix rat chip,
on which each gene is monitored by 20 pairs of 25-mer oli-
gonucleotide probes (Fig. 1). The probes were selected from
the 3� sequence of each gene. RNA samples were extracted

from three normal rat heart, liver, and skeletal muscle. From
each tissue, three independent probe labeling and chip hy-
bridization experiments were performed. To optimize the pre-
diction algorithms, SPLICE and NEIGHBORHOOD methods
were applied to the data set at different selection strengths.
Table 1a shows the results of the prediction on the repeated
data set of the same tissue. Table 1b shows the results of pre-
diction on the data set of the three different tissues. The trip-
licate data set (Table 1a) on a single tissue was used as a nega-
tive control to tune the parameters in the SPLICE algorithm.
By increasing the selection ratio value (R) from 5- to 10-fold,
the number of total genes selected from all three tissues using
both algorithms (SP + NB) decreases from 20 to nine (Table
1a). However, further increasing of the R-value does not ef-
fectively decrease the number of prediction, suggesting that a
10-fold threshold may represent the residual background
noise in the data set (see below). In contrast to the predictions
from the triplicate samples, the algorithms generated a much
greater number of candidates from the data set of different
tissues (Table 1b). For example, 69 candidate genes were pre-
dicted as compared to nine genes at an R-value of 10 cutoff.
The observed difference may represent tissue-specific expres-

Figure 1 Expression probe layout and alignment with gene se-
quence. Twenty probe pairs (a probe set) were designed against the
3� region of each gene. Each probe pair contains a perfect match
(PM) and a mismatch (MM) probe. The mutation in the mismatch
probe is shown as �. Representative full-length and alternatively
spliced forms of a transcript are indicated.

Figure 2 Schematic representation of the work flow chart of splice
variant prediction algorithms. Raw chip hybridization intensities are
extracted from Affymetrix. Cel files followed by chip background sub-
traction and chip intensity normalization. Normalized difference and
ratio tables are generated by subtracting mismatch (MM) probe sig-
nals from perfect match (PM) probe signals and dividing PM by MM,
respectively. Combined signal strength (CSS) table is created by as-
signing default difference value of zero to probe pairs with corre-
sponding ratio values � 1.2. To normalize expression level across
tissues, relative signal strength (RSS) table is generated and followed
by converting to final log ratio (FR) to further amplify the difference of
relative probe signals across tissues. Candidate probes recognizing
potential tissue-specific splice variants are predicted by the SPLICE
algorithm. To improve the accuracy of the initial prediction, the
NEIGHBORHOOD algorithm is used to assess the relative position of
probes on the transcript and to generate a final prediction.
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sion of alternative transcripts. To eliminate background noise
and retain prediction sensitivity, R = 10 was used as the de-
fault selection strength value for the following predictions in
the paper. Other heuristics in the algorithms may also affect
the prediction result but in a minor way as compared to the
selection ratio (data not shown). The default values we de-
scribed in Methods have generated consistent prediction re-
sults.

Example of Predicted Splice Variant—Visualization
and Validation
For the candidate transcripts, we searched the rat EST data-
base using the Compugen LEADSprogram. Figure 3b shows an
example of a rat EST cluster. The expression data set of the
above three different rat tissues was pivoted and imported
into Spotfire Pro 4.0, a visualization software tool that
greatly facilitates the analysis and validation of the predic-
tions. To confirm the predicted splice variants, we searched
public rat EST database (NCBI release rat113–rat115) using
Compugen LEADS2.0. By mapping the oligonucleotide probe
sequences onto the corresponding clusters, some of the splice
variant predictions were confirmed. However, it is noted that
only a small percentage (7%) of the predictions matches the
information in the EST database. This result could be partly
attributed to the limited number of rat ESTs in the public
databases, and especially the limited tissue-specific EST infor-
mation. To show the process of data visualization and valida-
tion, Figure 3 shows an example of a predicted splice variant
and its validation in Compugen LEADSprogram. Figure 3a
shows the visualization of CSS, RSS, and FR values for the
transcript of rat phospholipid hydroperoxide glutathione per-
oxidase (PHGP, L24896). In all three panels, similar patterns
of expression across all probes are shown between heart and

skeletal muscle, suggesting the same transcript is present in
these two tissues. However, the expression pattern in liver is
quite different for several probes from that of heart and skel-
etal muscle. The gap shown in the FR graph indicates a po-
tential alternatively spliced transcript present in liver. To vali-
date the prediction, we examined the EST cluster correspond-
ing to rat phospholipid hydroperoxide glutathione
peroxidase (PHGP) gene (Figure 3b). The gap was found in one
of the transcripts, suggesting the presence of an alternative
spliced form of the gene. Interestingly, the probes found by
the algorithms (L24896_55_251 and L24896_55_252) are lo-
cated in the middle of the alternatively spliced region of the
transcript.

Splice Variant Prediction from 10 Different Normal
Rat Tissues
The splice variant prediction method described above is based
on the relative gene expression levels among different tissues
at the single oligonucleotide probe level. It is reasonable to
assume that the more tissue types included in the data set, the
more potential splice variants can be detected. To confirm
this hypothesis and further test our prediction algorithms, we
have collected chip (Rat1600 chip) expression data from 10
different rat tissues, including bladder, eye, heart, kidney,
large intestine, small intestine, liver, pancreas, placenta, and
testis. By using a selection ratio (R) of 10, the SPLICE plus
NEIGHBORHOOD algorithms predicted that a total of 268
out of 1600 genes might have alternatively spliced transcripts
with alternative splicing affecting 1218 probes (Table 2). As
expected, the numbers are significantly higher than those ob-
tained from three tissues. It shows that potential splice vari-
ants can be detected across all tissues analyzed. Moreover,

Table 1. Splice Variant Prediction from Three Rat Tissues

A.
Selection ratio (R) 5-fold 7-fold 10-fold 15-fold 20-fold

Tissue type Algorithm gene probe gene probe gene probe gene probe gene probe

Heart SP 183 216 138 165 100 117 60 73 46 58
Heart SP+NB 10 29 8 21 5 13 5 12 5 12
Liver SP 55 67 43 54 22 32 13 21 9 17
Liver SP+NB 3 9 3 9 3 9 3 9 3 9
Skeletal muscle SP 126 144 85 92 48 52 26 28 19 21
Skeletal muscle SP+NB 8 18 2 4 2 4 1 2 1 2

Total SP 328 414 243 303 158 197 93 120 68 94
Total SP+NB 20 54 12 32 9 24 8 21 8 21

B.
Selection ratio (R) 5-fold 7-fold 10-fold 15-fold 20-fold

Tissue type Algorithm gene probe gene probe gene probe gene probe gene probe

3 tissues (HLS) SP 864 2216 680 1411 469 819 283 419 208 269
3 tissues (HLS) SP+NB 227 1192 133 624 69 281 35 114 17 58

(A) Splice variant prediction from triplicate control experiment. Total RNA was extracted from rat heart, liver, and skeletal muscle tissues.
Independent RNA labeling and chip hybridization experiments were performed as triplicate for each tissue sample. Potential splice variants were
predicted from each set of triplicate data using SPLICE (SP) algorithm alone or in combination with NEIGHBORHOOD (NB) algorithm. Total
number of predictions from each tissue set was calculated. (B) Splice variant prediction from three different rat tissues. To generate the data
set of three different tissues, the mean CSS value of each tissue triplicate was calculated and appended into the same table. Splice variant
predictions were performed using the combined data set from the three tissues.
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there is a higher chance of detecting potential splice variants
in pancreas, testis, placenta, and liver tissues.

Table 3 lists the top candidate splice variants predicted
from the 10 normal rat tissues. They were selected by both
algorithms and ranked by a scoring matrix used in the
NEIGHBORHOOD method. The final log ratios of probes of
each listed transcript are graphed and visualized in Spotfire
Pro 4.0 as shown in Figure 4.

Confirmation of Splice Variant Prediction Using
RT-PCR Experiment
To further confirm the above predicted splice variants, we

performed RT-PCR experiments.
Primers were designed based on the
sequence of the top candidates
containing predicted splice vari-
ants (Table 4A). Two pairs of prim-
ers (three primers total with one
primer shared between the two)
were designed for each candidate
gene, one pair of primers spanning
the potential alternative splicing
region, and the other spanning a
neighboring nonspliced region.
RNA samples from two different rat
tissue types were prepared and used
for the RT-PCR experiment. A total
of four RT-PCR reactions were per-
formed for each candidate. Table
4B shows the comparison of the
size of the predicted PCR fragments
versus the actual PCR products.
Three genes, M32801, M34007,
and X07467, showed very good
correlation between the predicted
and the actual PCR products. The
other three genes tested (D13906,
J03588, and D30035) showed no
correlation (Table 4B). Overall,
50% of the tested candidates con-
firmed the prediction by the algo-
rithms.

DISCUSSION
Alternative mRNA splicing plays an
important role in regulating eu-
karyotic qualitative gene expres-
sion, although few approaches are
available to analyze alternative
splicing of genes on a genome-wide
scale. In this paper, we described a
novel method to predict tissue-
specific splice variants using large
data sets generated by Affymetrix
Genechips.

Recent advances in DNA chip
technology provide great opportu-
nities to study global gene expres-
sion in depth. Because each gene is
represented by multiple oligo-
nucleotide probes on a chip, a
probe-by-probe mapping of the ex-
pression of a transcript can be con-
ducted so that tissue-specific differ-

ential expression of splice variants can be detected. Based on
the hypothesis, we developed algorithms to predict potential
splice variants from the chip data. From the expression data of
three different rat tissues, we have predicted that ∼ 4.5% (69
out of 1600) of the genes on the chip contain potential splice
variants. Because this is a prediction from expression data of
only three tissues, it is likely an underestimate of the actual
number of genome-wide splice variants. For example, expres-
sion data from 10 rat tissues predicted a significantly greater
number of potential splice variants (17%). Some recent stud-
ies based on EST clustering data suggest that 35%–40% of
mammalian genes contain alternative splicing (Wolfsberg

Figure 3 Example of data visualization and validation. (A) Data visualization in Spotfire . Data
tables (CSS, RSS, FR) generated from the analysis was pivoted, imported into Spotfire Pro and
visualized by 2-D line graphs. The X-axis represent the sequential order of probe pairs on a transcript
and the Y-axis represent CSS, RSS, and FR values in each separate panel, respectively. As an example,
L24896 is the probe set shown in the figure. Line connections in the graphs are based on tissue types
and separately colored. Candidate probes detecting potential tissue-specific splice variants are repre-
sented by the gap region in FR panel. (B) Data validation of Compugen LEADSsearch result. Candidate
probe sequences from probe set L24896 were mapped to the rat EST cluster (NCBI release 115). EST
clusters were generated by LEADS. Two major alternative transcripts are shown at the top of the cluster
RATPHGP. The alternative splicing region is indicated in the second transcript by the gap.
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and Landsman 1997; Mironov et al. 1999; Brett et al. 2000).
However, the number of human genes containing splice vari-
ants involving 3� exons is believed to be much lower (Miro-
nov et al. 1999). Because of limitations on the probe labeling
process, current probe selection for the DNA chips is biased
toward the 3� portion of a gene, and therefore, we can only
assess the status of alternative splicing in the 3� region (usu-
ally ∼ 600 bp upstream of poly-A signal). The methods de-
scribed in this paper can be applied easily to the expression
data generated by 5� probes when they become available. To
effectively analyze alternative splicing across the whole gene,
probes need to be selected that encompass a greater length of
the transcript. Similar algorithms can be applied to data ob-
tained from oligonucleotide-based microarray technology.

Here we have shown that 50% of the top predictions can
be confirmed by a RT-PCR experiment. Because RT-PCR ex-
periment is an extremely sensitive assay, one of the explana-
tions for the three failure cases is that the nucleic acid hybrid-
ization-based chip assay is not sensitive enough to detect low
abundance, minor splice variants. Alternatively, some of the
nonconfirmed cases can be attributed to complicated splicing
patterns in the tissues investigated.

The accuracy of the results predicted by the algorithms
depends on several factors, the most important being data
consistency and reproducibility. Sample variation is a major

contributor to error rate (data not shown) and is usually
caused by differences in tissue handling and RNA extraction
protocols. To ensure consistency in sample preparation, a
highly repeatable tissue preparation and RNA extraction pro-
cedure needs to be used. RNA labeling and chip hybridization
processes can also introduce variations, although the data
generated from the triplicate experiments suggest that the
variations from independent labeling and hybridization pro-
cesses can be minimized by following strict protocols. To fur-
ther reduce data inconsistency, dual color experiments may
prove to be a powerful approach to assess subtle transcript
differences in DNA chip experiment (Chee et al. 1996; Hacia
et al. 1996). The size of the data set also contributes to the
effectiveness of splice variant prediction. Theoretically, the
more tissue types (or samples from different developmental
stages) included in the study, the more splice variants that can
be detected. This is shown by the significant increase of pre-
dicted potential splice variants in 10 rat tissues as compared to
those from three tissues.

Better chip design will dramatically improve the accu-
racy of splice variant prediction and increase the usefulness of
the technique. The background noise encountered during the
current prediction can be attributed partly to the physical
defects on the chip, such as scratches or debris from manu-
facturing. By introducing duplicate or triplicate probes on the

Table 2. Splice Variant Prediction from 10 Normal Rat Tissues

Bladder Eye Heart Kidney
Large

intestine
Small

intestine Liver Pancreas Placenta Testis Total

Gene 113 85 96 123 102 69 143 186 141 168 268
Probe 185 129 190 189 134 101 254 433 214 314 1218

Total RNA of 10 different rat tissues (bladder, eye, heart, kidney, large intestine, small intestine, liver, pancreas,
placenta, and testis) were extracted, labeled, and hybridized to the Rat1600 chip using standard and identical
procedures. Individual feature hybridization data were collected and normalized as described in Methods. Potential
splice variants were predicted by SPLICE and NEIGHBORHOOD algorithm. The number of predictions for each tissue
type was calculated separately. The selection ratio (R) was set at 10 and other default cutoff values were applied.

Table 3. Candidate Probes in Splice Variants Predicted from 10 Normal Rat Tissues

Probe set Tissue FR Y X Probes/cluster Probes/gene

M26052 Bladder �3.754 77 52–61 10 10
D13906 Kidney 2.398 15 112–114 3 3
J03588 Kidney �3.106 37 131–133 3 3
M32801 Kidney �2.941 85 24–26 3 3
M32801 Liver 2.543 85 24–26 3 3
M34007 Testis �2.642 209 213–215 3 3
X07467 Liver �2.9 165 152–154 3 3
X62908 Heart �2.6 179 133–135 3 3
D16478 Placenta �3.634 17 194–195 2 2
D30035 Heart �3.717 21 225–226 2 2
K03245 Kidney �3.808 241 96–97 2 2
K03245 Liver 3.842 241 96–97 2 2
V01218 Bladder �4.33 257 103–104 2 2
Z32519 Testis �3.334 199 36–37 2 2

The list contains the top 12 candidates selected from the pool of predicted splice variants in Table 2 based on a
decision matrix: i, probes/cluster (from high to low); ii, probes/gene (set equal to probes/cluster); iii, log final ratio
FR (>ln10). The identity of each probe set is represented in the first column as Gen Bank accession no.; (Tissue) the
tissue type from where the splice variant was predicted; (FR) log final ratio; + and � values represent presence and
absence of expression, respectively. X and Y represent coordinates of individual probes on the chip detecting a splice
region. Probes/cluster and Probes/gene indicate the number of adjacent probes and the total number of predicted
probes for the gene, respectively.
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Figure 4 Visualization of predicted splice variants from 10 normal rat tissues. FR values for predicted probe sets in Table 3 were visualized as 2-D
line graphs. In each graph, The X-axis represents the order of the probe set and the Y-axis represents FR value. The tissue types are represented
by different shapes as indicated. The type of tissue containing the predicted splice variant is highlighted and the probes are indicated by filled dark
rectangles.
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chip and using a probe scrambling technique, the data varia-
tions from those defects can be nearly eliminated. Better
probe selection based on improving EST cluster information
may greatly improve the efficiency of splice variant detection.
Ideally, the selected oligonucleotide probes should be derived
from as many different alternative transcripts as possible and
evenly distributed across the overall length of the transcript.
The ability to design such probes depends heavily on a com-
prehensive EST cluster database with a large collection of tis-
sue-specific transcript information. Expansion of current pub-
lic and private EST projects should eventually help reach this
goal. At last, a robust probe selection algorithm will help de-
sign the next generation of DNA chips, including tissue-
specific splice variant detection chips.

Conclusions
Alternative splicing has proved to be a critical part of gene
regulation. Different splice variants provide a fresh source of

target identification in future drug discovery and clinical di-
agnosis. Here we described a novel approach for studying al-
ternative splicing of genes at a global scale by using DNA chip
technology. We have developed algorithms to effectively pre-
dict potential splice variants from chip expression data. Fu-
ture efforts to collect highly consistent data from a large num-
ber of tissue samples will help refine the algorithms. The work
will also provide guidance for future tissue and/or transcript-
specific DNA chip design.

METHODS

Sample Preparation and Hybridization
on Affymetrix GeneChips
Total RNA from normal rat bladder, eye, heart, kidney, large
intestine, small intestine, liver, pancreas, placenta, testis, and
skeletal muscle was extracted using TRIZOL reagent (Life
Technologies). Transcript integrity was monitored using de-

Table 4. Confirmation of Predicted Splice Variants Using RT-PCR

A
Accession Primer name Primer sequence

D13906 D13906_1S TCGGTGGAGCTCCACTCTCCT
D13906 D13906_2A GAAGGAGTCTATGCACTTCTCC
D13906 D13906_3A* GCTCAGGATCATGCAAACTCTG
J03588 J03588_1S TCTGAAGAGACCTGGCACACTC
J03588 J03588_2A* GTGTGATCATCTGAGGGAAGGC
J03588 J03588_3A AGCCACACTCCAGCTACAAAGG
M32801 M32801_1S* CATCGGACCTGCCTATGCCATC
M32801 M32801_2S GTGTGGAGAAGCTGGGAATTCC
M32801 M32801_3A TCCCACGAAGATGGCTCCTGTA
M34007 M34007_1S TGATCAGATGGACAACGCCAAG
M34007 M34007_2A* CACTTCTCAGTGGGTCTTGGAT
M34007 M34007_3A TTCTGGGTGTATAGTGTATGGTG
X07467 X07467_1S CTTTGGGACCATAGGCCTTAGC
X07467 X07467_2A CTCAGGGAAGTGTGGTTTGGTC
X07467 X07467_3A* TAAGGCTAGTGTGGCTATGGGC
D30035 D30035_1S GGATTCTCACTTCTGTCATCTGGC
D30035 D30035_2S* CAAGCGCACCATTGCTCAGGAT
D30035 D30035_3A TTTCTTCTGGCTGCTCAAAGCTG

B

Accession Primer pair

Tissue 1 Tissue 2

name predicted (bp) PCR (bp) name predicted (bp) PCR (bp)

D13906 D13906_1S, D13906_2A Kidney 350 ∼ 350 Placenta 350 ∼ 350
D13906 D13906_1S, D13906_3A Kidney 450 ∼ 450 Placenta no signal ∼ 450
J03588 J03588_1S, J03588_2A Liver 274 ∼ 270 Kidney no signal ∼ 270
J03588 J03588_1S, J03588_3A Liver 360 ∼ 380 Kidney <380 ∼ 380
M32801 M32801_1S, M32801_3A Liver 401 ∼ 400 Kidney no signal no signal
M32801 M32801_2S, M32801_3A Liver 291 ∼ 290 Kidney 291 ∼ 290
M34007 M34007_1S, M34007_2A Testis no signal no signal Bladder 424 ∼ 425
M34007 M34007_1S, M34007_3A Testis <542 ∼ 420 Bladder 542 ∼ 550
X07467 X07467_1S, X07467_2A Sm Intestine 330 ∼ 330 Liver 330 ∼ 330
X07467 X07467_1S, X07467_3A Sm Intestine 410 ∼ 400 Liver no signal no signal
D30035 D30035_1S, D30335_3A Kidney 410 ∼ 400 Heart <410 ∼ 400
D30035 D30035_2S, D30035_3A Kidney 324 no signal Heart no signal weak signal

(A) The list of PCR primers and their corresponding gene (Accession). An asterisk indicates that the primer is located within the predicted
alternative splicing region. All primer sequences are from 5� to 3�. (B) Comparison of predicted and actual RT-PCR results. Two pairs of primers
were used for each gene. For each gene, a pair of different tissue samples was chosen to perform the RT-PCR experiment. The Predicted column
indicates the predicted size of PCR product (or no signal) based on the Splice Variant Prediction Algorithms. The PCR column shows the size
of the actual RT-PCR product (or no signal) revealed by the experiment. The genes with correlated result between predicted and actual PCR
are highlighted in bold.
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naturing agarose gel electrophoresis in 1X MOPS. Double-
stranded cDNA was prepared from 15 µg of total RNA using a
modified oligo-dT primer with a 5� T7 RNA polymerase pro-
moter sequence and the Superscript Choice System for cDNA
Synthesis (Life Technologies). Following phenol-chloroform
extraction and ethanol precipitation, one-half of the cDNA
reaction (0.5–1.0 µg) was used as template in an in vitro tran-
scription reaction (BioArray High Yield Kit, ENZO) containing
T7 RNA polymerase, a mixture of unlabeled ATP, CTP, GTP,
and UTP, and biotin-11-CTP and biotin-16-UTP. The resulting
cRNA was purified on an affinity resin (RNeasy, QIAGEN) and
quantified using the convention that 1 O.D. 260 corresponds
to 40 µg/mL of RNA. Randomly fragmented were 15 µg of
biotinylated cRNA to an average size of 50 nt by incubating
for 35 min at 94°C in 40 mM TRIS-acetate at pH 8.1, 100 mM
potassium acetate, and 30 mM magnesium acetate. The frag-
mented cRNA was hybridized for 16 h at 45°C on a custom
Affymetrix GeneChip containing probes for 1600 individual
rat genes in a solution containing 100 mMMES, 1 M [Na+], 20
mM EDTA, 0.01% TWEEN 20, 50 pM of Control Oligonucleo-
tide B2 (Affymetrix), 0.1 mg/mL of sonicated herring sperm
DNA, and 0.5 mg/mL BSA. Each hybridization included a
mixture of four bacterial biotinylated-RNA transcripts (BioB,
BioC, BioD, and cre) spiked at 1.5, 5, 25, and 100 pM, respec-
tively. The hybridization reactions were processed and
scanned according to standard Affymetrix protocols.

Individually repeated RNA preparation and chip hybrid-
ization experiments were performed for three normal rat tis-
sue samples: heart, liver, and skeletal muscle.

Preprocessing of Data
The detailed workflow is shown in Figure 2. After chip scan-
ning, raw intensity of each PM or MM probe on the chip is
extracted from the .cel file generated by the Affymetrix soft-
ware. To eliminate noise from background hybridization, the
average intensity of the lowest 2% of the probe signals of each
experiment is used as background noise and subtracted from
each probe signal on that chip. To further normalize signals
across different chips, global scaling is performed for each
chip. A normalized difference table is then created by sub-
tracting each MM signal from its corresponding PM signal.
Similarly, a normalized ratio table can be generated by divid-
ing the PM and MM signals of each probe pair. To combine
the two tables, a default PM � MM difference value of zero is
assigned for probe pairs with a PM/MM ratio � 1.2. The re-
sulting difference table is called combined signal strength
(CSS) table.

SPLICE Algorithm
To compare tissue-specific expression of each gene at probe
level, the signal of each probe pair needs to be normalized
across tissues. A tissue-specific relative signal strength (RSS)
table is calculated from the CSS table. The formula of the
conversion is:

RSS(i, x) = D(i, x) / AvgD(I, x),

in which RSS(i, x) represents the relative signal strength value
of probe pair i within probe set I in tissue X. D(i, x) is the
PM � MMdifference value of probe pair i in tissue X from the
CSS table. AvgD(I, x) is the trimmed mean PM � MM differ-
ence value of all probe pairs of probe set I in tissue X.

To simplify the calculation and reduce outlier effects,
several cutoff thresholds are used in the normalization. Min
Diff and Max Diff are the minimum difference and maximum
difference cutoff; the default is 20 and 5000, respectively. Sig-
nals that are above or below the cutoffs are replaced by the
cutoff values. After applying the Min and Max cutoffs on the
CSS table, the average difference of each probe set in each
tissue [AvgD(I, x)] can be calculated, as well as the average

difference of each probe pair across different tissues [AvgDi].
For noninformative probe threshold (NIPT) functions to take
away the probe pairs with no or very low expression in all the
tissues collected, the default is set at AvgDi > 30. To consider
the situations in which there is no or extremely low expres-
sion of a gene in a particular tissue, a noninformative tissue
type threshold (NITT) is used to eliminate those tissues from
the prediction. The default value is AvgD(I, x) > 30. For cases in
which a few probes give strong hybridization signals in com-
parison with the rest of the probe set, a single probe threshold
(SPT) is used to differentiate the signals from otherwise non-
informative probe set. The default value for SPT is set at 200.

After obtaining tissue-specific relative signal strength for
each probe pair, the expression signal of each probe pair of
the gene can be compared among different tissues. To capture
and amplify the difference across tissues, we further convert
the RSS value of each probe pair to a log final ratio that reflects
the relative strength of the probe pair among those tissues.
The formula for the conversion is:

FR(i, x) = Ln (RSS(i, x) / Avg_RSS(i, (n-x)))

in which FR(i, x) is the final log ratio of probe i in tissue X.
RSS(i, x) represents the relative signal strength value of probe
pair i in tissue X. Avg_RSS(i, (n-x)) is the average RSS value of
probe pair i in all tissues except tissue X.

The FR value is used for splice variant prediction. Probes#

with absolute FR value greater than a defined ln(R) in a par-
ticular tissue are selected as candidate probes from that tissue.
R is the selection ratio, the default is set at 10.

NEIGHBORHOOD Algorithm
To improve the accuracy of splice variant prediction by the
SPLICE algorithm, we considered relative location of the se-
lected probes on a gene. The assumption is that an alterna-
tively spliced region on a gene is large enough to contain two
or more adjacent probes#. The 20 oligonucleotide probe pairs
for each gene were aligned so that they correlate to the physi-
cal locations of those probes matching 5� to 3� orientation of
the gene. For the probes selected by the SPLICE algorithm,
their relative locations on the gene are assessed so that single-
ton probes or nonadjacent probes can be filtered out. Two of
the parameters used in the algorithm are probes/gene (num-
ber of identified candidate probes per gene or per probe set; 3
is default) and probes/cluster (number of identified adjacent
probes, 2 is default). The adjacent probes survived the selec-
tion by the Neighborhood algorithm represent potential ex-
tended regions of alternative splicing.

RT-PCR Experiment
PCR primers were designed from the sequence of the gene
fragments containing predicted splice variants. The oligo-
nucleotide primers were synthesized by Operon Technolo-
gies. Total RNAs were extracted from normal rat tissues using
TRIZOL reagent (Life Technologies). Standard RT-PCR experi-
ments were performed using SuperScript One-Step RT-PCR
System (Life Technologies) as described by the manufacturer.
PCR products were separated by standard agarose gel electro-
phoresis and visualized under ultraviolet (UV) light after
staining with ethidium bromide.

The data and the algorithms in this work are available
from the authors on request.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.
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