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Abstract
A growing body of evidence has demonstrated a role for group II metabotropic glutamate
receptors (mGluRs) in the reinforcing effects of cocaine. These receptors are important given their
location in limbic-related areas, and their ability to control the release of glutamate and other
neurotransmitters. They are also potential targets for novel pharmacotherapies for cocaine
addiction. The present study investigated the impact of chronic cocaine self-administration (9.0
mg/kg/session for 100 sessions, 900 mg/kg total intake) on the densities of group II mGluRs, as
assessed with in vitro receptor autoradiography, in the striatum of adult male rhesus monkeys.
Binding of [3H]LY341495 to group II mGluRs in control animals was heterogeneous, with a
medial to lateral gradient in binding density. Significant elevations in the density of group II
mGluRs following chronic cocaine self-administration were measured in the dorsal, central and
ventral portions of the caudate nucleus (P<0.05), compared to controls. No differences in receptor
density were observed between the groups in either the putamen or nucleus accumbens. These data
demonstrate that group II mGluRs in the dorsal striatum are more sensitive to the effects of
chronic cocaine exposure than those in the ventral striatum. Cocaine-induced dysregulation of the
glutamate system, and its consequent impact on plasticity and synaptic remodeling, will likely be
an important consideration in the development of novel pharmacotherapies for cocaine addiction.
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Introduction
Cocaine abuse remains a significant problem worldwide with close to 40 million Americans
age 12 and older reported to have tried cocaine or crack at least once, according to the
National Survey on Drug Use and Health [1]. Of these individuals, nearly 4 million are
considered regular users. Despite significant efforts effective treatment strategies for cocaine
addiction have remained elusive. Thus, the identification of new therapeutic targets is of
great importance. While research investigating the neurochemical effects of cocaine has
traditionally focused on monoamine systems, recent studies have shown that there are also
significant adaptations in glutamate systems [2], particularly following chronic cocaine
exposure [3].

Group II metabotropic glutamate receptors (mGluRs), comprised of mGluR2 and mGluR3,
are inhibitory Gi/Go-coupled G-protein receptors that are located both pre- and post-
synaptically [4, 5]. When located pre-synaptically they function as autoreceptors, reducing
glutamatergic transmission via negative feedback [6, 7]. Acting as heteroceptors, they can
also influence the release of other neurotransmitters [8–10]. Group II mGluRs are
heterogeneously distributed throughout the brain, and are particularly dense in areas such as
the hippocampus, thalamus, striatum, amygdala and cortex [5, 11–14]. Given their location
in limbic-related regions and their ability to modulate neurotransmission, it is not surprising
that these receptors have been implicated in a variety of psychiatric disorders, such as
schizophrenia and depression [15–17].

Recent data suggests that group II mGluRs are also involved in the reinforcing effects of
cocaine [18–20]. For example, selective agonists of group II mGluRs, such as LY379268,
block cocaine- and cue-induced reinstatement of cocaine-seeking in rats [21] when
administered either systemically or directly into the nucleus accumbens [22]. In a similar
fashion, LY379268 reduces cocaine self-administration and attenuates both cue- and
cocaine-induced reinstatement of cocaine-seeking in non-human primates [23]. Few studies
to date, however, have assessed how chronic cocaine exposure affects the regulation of
group II mGluRs, an important consideration given the current interest in these receptors as
targets for cocaine medications [24]. Thus, the present study investigated the impact of
chronic cocaine self-administration on the densities of group II mGluRs, as assessed by in
vitro receptor autoradiography, in the striatum of non-human primates. The cocaine self-
administration paradigm involved 100 sessions of high-dose (0.3 mg/kg/injection) cocaine
injections that resulted in a cumulative intake of 900 mg/kg; this regimen and total cocaine
intake has been shown to significantly impact monoamine neurotransmission [25–28]. A
non-human primate model was chosen because of the close homology of non-human
primates to humans both in terms of striatal neuroanatomy and the glutamate system.

Materials and Methods
Subjects

Ten experimentally-naïve adult male rhesus monkeys (Macaca mulatta) weighing between
8.1–12.0 kg (mean ± SD; 10.1 ± 0.4 kg) at the start of the study served as subjects. All
monkeys were individually housed with water available ad libitum in the home cage.
Monkeys were weighed weekly and fed enough food daily (Lab Diet Monkey Chow and
fruit supplementation) to maintain body weights at approximately 95% of free-feeding
weights. Experimental procedures were approved by the Wake Forest University
Institutional Animal Care and Use Committee.
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Self-administration
Details of surgical and self-administration procedures for this group of monkeys have been
previously described [28, 29]. Briefly, monkeys were initially trained in operant chambers to
respond on one of two levers under a fixed-interval (FI) 3-min schedule for 1g banana-
flavored pellets. Daily training sessions terminated after 30 reinforcers were obtained and a
minimum of 20 sessions with stable performance (± 20% of the mean for 3 consecutive
sessions) satisfied training requirements. Upon achieving response stability, the feeder was
unplugged and the effects of extinction on responding were examined for 5 consecutive
sessions. Following extinction, food-maintained responding was reinstated for all monkeys.
These extinction rates were used later to determine whether cocaine acted as a reinforcer in
each monkey. Indwelling intravenous catheters were implanted into the femoral vein and
subcutaneous ports were positioned in the lower back in all monkeys. After surgery, food-
reinforced responding was re-established after which monkeys were divided into two
groups. Control monkeys (n = 6) continued responding under the food-reinforced FI 3-min
schedule for the duration of the study. Experimental monkeys (n = 4) began self-
administration of cocaine (FI 3-min; 0.3 mg/kg per injection) for a period of 100 sessions.
Daily sessions ended after 30 reinforcers were obtained. Animals obtained all of the
reinforcers available each session. Detailed analyses of the behavioral data have been
reported previously [28].

Tissue Processing
Monkeys utilized in this study were also used for 2-deoxy-d-[14C] glucose (2-DG) analysis.
This technique enables us to visualize how patterns of functional brain activity shift as a
consequence of chronic cocaine self-administration. The 2DG data from these animals has
been reported previously [29–32]. The 2-DG experiment was initiated within 2 min of the
final reinforcer on the last self-administration session (either food or cocaine reinforcement)
and involved timed sampling of arterial blood for ~ 45 min. Immediately after the 2-DG
procedure, animals were euthanized with sodium pentobarbital (100 mg/kg, i.v.). Brains
were immediately removed, blocked, frozen in isopentane (−35 ºC to −50 ºC) and then
stored at −80 ºC. Coronal sections (20 μm) were cut on a cryostat, thaw-mounted onto
electrostatically charged slides, desiccated and stored at −80 ºC until autoradiography
processing.

[3H]LY341495 Autoradiography
Autoradiography procedures for labeling group II mGluRs with the selective antagonist
[3H]LY341495 were adapted for use in nonhuman primate tissue from those of Wright et al.
[33]. Tissue sections were pre-incubated at room temperature in buffer (10 mM potassium
phosphate buffer with 100 mM potassium bromide, pH 7.6) for 30 min. Pre-incubation
removed any endogenous ligand, residual cocaine, and 2-DG. Sections were then incubated
for 2 hours in buffer containing 4 nM [3H]LY341495 (40 Ci/mmol; Perkin-Elmer Life
Sciences, Boston, MA) in the presence (non-specific binding) or absence (total binding) of 1
mM glutamate. Sections were rinsed 2 times (30 sec each) in ice-cold buffer, with a final 10
sec rinse in ice-cold water. Sections were immediately dried under a stream of cold air,
dessicated overnight and apposed, along with calibrated [3H] autoradiographic standards
(Amersham, Piscataway, NJ), to Kodak Biomax MR film (Perkin Elmer, Waltham, MA) for
9 weeks.

Densitometry and Data Analysis
Binding of [3H]LY341495 to group II mGluRs in the striatum was measured via
densitometric quantification of autoradiograms. The level of striatum chosen for analysis
was that at which the nucleus accumbens could most clearly be differentiated into core and
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shell divisions (Bregma 0.45 to – 0.45 mm; [34]). The striatum was then further divided into
dorsal, central and ventral caudate nucleus and dorsal, central and ventral putamen,
according to the atlas of Paxinos and colleagues (Panel A, Figure 1; [34]). Analyses of
autoradiograms were conducted by quantitative densitometry with a computerized image
processing system (MCID, InterFocus Imaging Ltd., Linton, United Kingdom). Tissue / mg
wet weight tissue) were determined from optical densities using a calibration curve obtained
by densitometric analysis of [3H] standards on each autoradiogram. Specific binding was
determined by subtracting non-specific binding values from the total binding values,
measured in adjacent sections. Statistical analysis was performed for each brain structure by
means of a two-way independent Student’s t-test.

Results
[3H]LY341495 binding in control animals

Binding of [3H]LY341495 to group II mGluRs was seen throughout the striatum of non-
human primates (Table 1). Specific binding of [3H]LY341495 accounted for greater than
85% of total binding (see Figure 1 supplementary data). In agreement with previous reports,
group II mGluRs were observed throughout the caudate, putamen and nucleus accumbens
[14, 35–38]. The topography of group II mGluR binding sites in non-drug exposed control
animals was heterogeneous with a gradual medial to lateral gradient (highest to lowest) in
binding density. Higher densities of binding were observed in the medial aspects of the
central and ventral caudate, while more moderate levels of binding were observed in the
medial aspects of the putamen. The lowest levels of binding were measured in the lateral
portions of the caudate nucleus, putamen and nucleus accumbens core and shell (Panel A
Figure 2).

Effect of chronic cocaine self-administration on [3H]LY341495 binding sites
In those animals that chronically self-administered cocaine, densities of [3H]LY341495
binding sites were significantly higher in all portions of the caudate nucleus (dorsal, +19 %,
central, +13 % and ventral, +14 %; Table 1, Panel B Figure 2), compared to control animals.
In contrast, there were no differences between control and cocaine-exposed animals in
[3H]LY341495 binding sites in either the putamen or the nucleus accumbens core or shell
(Table 1).

Discussion
The present study demonstrates that there are significant adaptations in the striatal
glutamatergic system in response to chronic cocaine self-administration, though these appear
to be restricted to the more dorsal territories of the striatum. We chose to focus on the
striatum in this study based on three facts: 1) the striatum plays an essential role in the
reinforcing effects of cocaine [39, 40], 2) group II mGluRs attenuate the reinforcing effects
of cocaine [18–20] and 3) group II mGluRs are localized in the striatum [14, 35]. The
finding of significantly higher densities of group II mGluRs in the caudate nucleus as a
result of chronic cocaine self-administration indicates the presence of considerable plasticity
within the dorsal striatum. In contrast, no differences in receptor density were observed
between the groups in either the putamen or nucleus accumbens. These data suggest,
therefore, that elements of the glutamate system within the dorsal striatum may be more
sensitive, compared with the ventral striatum, to the effects of chronic cocaine exposure in
the non-human primate.

The localization of [3H]LY341495 binding sites within the non-human primate striatum
agrees with previous autoradiographic and immunohistochemical labeling studies [14, 35,
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37]. A novel finding of the present study was the identification of a medial-lateral gradient
(high to low) in the binding density of group II mGluRs. The highest levels were found in
the medial caudate nucleus and lowest in the lateral portions of the caudate, putamen and
nucleus accumbens core and shell. Given the topographical organization of glutamatergic
projections to different regions of the striatum [41–43], the differential distribution of group
II mGluRs within the medial and lateral portions of the striatum may have functional
implications for how glutamate regulates the striatum.

Group II mGluRs in the striatum are thought to be localized primarily pre-synaptically [5,
11], where they can modulate the release of neurotransmitters [44–46]. As exposure to
cocaine increases, there is hypothesized to be a gradual and escalating involvement of the
glutamatergic system [2, 47]. Indeed, previous data in rodents have shown that acute
administration of cocaine does not induce the release of glutamate [3, 48], whereas
following chronic self-administration, levels of extracellular glutamate are progressively
increased with each dose of cocaine [3]. One mechanism explaining our results, then, may
be a compensatory increase in the levels of group II mGluRs autoreceptors in response to
these sustained elevations in extracellular glutamate concentration. One of the predicted
consequences of these up-regulated group II mGluR autoreceptors may be lower basal levels
of glutamate, which have been reported to occur in cocaine-exposed rodents [3, 49, 50] and
humans [51]. In agreement with our data, Weiss and colleagues reported functional
increases in group II mGluRs in a number of brain areas such as the prefrontal cortex,
central nucleus of the amygdala, and hippocampus following escalation of cocaine self-
administration in rats [52]. Thus, future studies will be aimed at investigating how group II
mGluRs are dysregulated in response to cocaine self-administration in these and other brain
areas.

One of the interesting outcomes from the present study was the lack of effects in the ventral
striatum (incorporating both ventral putamen and nucleus accumbens). A recent
investigation in rodents also failed to observe any impact on the function of group II
mGluRs in the nucleus accumbens following chronic cocaine self-administration [52].
Although the initial effects of cocaine have been shown to be primarily located in limbic-
related areas, such as the ventral striatum [31], with longer exposure the effects of cocaine
expand to incorporate more dorsal regions [53, 54]. Given the extended duration of cocaine
self-administration in the present study, therefore, it is possible that group II mGluRs may
have been transiently affected in the ventral striatum earlier in the course of exposure. Thus,
the compartmentalization of effects and relative sensitivity of the glutamate system in the
dorsal striatum following chronic exposure to cocaine self-administration is in accordance
with these studies.

In contrast to the data reported here, data from rodent studies have reported decreased
function, or lower levels, of group II mGluRs following repeated cocaine exposure [55, 56].
There are, however, important differences between these studies. First, there are
considerable species differences in the glutamate system [57–59], as well as in the response
of the brain to cocaine [60, 61]. Second, the monkeys in our study self-administered cocaine,
while the rodents in the other studies received cocaine non-contingently. There is evidence
of behavioral and neurochemical differences in the effects of cocaine delivered contingently
versus non-contingently [62–65]. Third, the total intake of cocaine received by the animals
between the studies was very different (180–200 mg/kg in the rodent studies, 900 mg/kg in
the present study) and fourth, these previous studies involved a period of abstinence (up to 3
weeks) before measuring either the density or functionality of group II mGluRs. As it relates
to the latter point, future studies are needed to investigate the role of cocaine abstinence
following chronic cocaine self-administration to determine how malleable group II mGluR
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densities are in response to long-term cocaine exposure and abstinence in non-human
primate brains.

Conclusions
Thus, our data suggests that group II mGluRs are altered as a direct consequence of chronic
cocaine exposure, potentially leading to impaired regulation of glutamate transmission. As
reviewed recently by Kalivas and O’Brien [47], the transition to addiction likely involves a
shift in the pattern of neural circuits that control cocaine-related behavior. Correspondingly,
there may also be a change to a more dominant role for glutamate versus dopamine in
mediating the effects of chronic cocaine. Since there is a critical role for glutamate in the
control of plasticity and synaptic remodeling, it is essential to understand how this system is
impacted by long-term cocaine exposure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Group II metabotropic glutamate (mGluRs) are involved in the effects of
cocaine

• We studied the density of group II mGluRs following chronic cocaine in
monkeys

• We found higher levels of binding in the dorsal striatum, not the ventral striatum

• Therefore the dorsal striatum may be more sensitive to the effects of cocaine

• Treatments for cocaine that target these receptors may be efficacious
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Figure 2.
Pseudocolor-enhanced autoradiogram of [3H]LY341495 binding in the striatum of a control
(Panel A) and cocaine self-administering (Panel B) monkey.
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Table 1

Effect of chronic cocaine self-administration on the distribution of [3H]LY341495 binding to group II mGluRs
in non-human primate striatum.

Brain Region Food Controls (N=6) Chronic cocaine self-administration (N=4)

Dorsal caudate (1) 440 ± 19.8 524 ± 29.8*

Central caudate (2) 534 ± 16.8 606 ± 24.4*

Ventral caudate (3) 508 ± 16.2 581 ± 22.7*

Dorsal putamen (4) 406 ± 14.8 470 ± 39.4

Central putamen (5) 423 ± 16.5 481 ± 30.7

Ventral putamen (6) 457 ± 18.9 522 ± 29.2

Nucleus accumbens core (7) 387 ± 13.5 388 ± 39.2

Nucleus accumbens shell (8) 402 ± 14.7 422 ± 16.2

Mean ± S.E.M. data are presented as specific binding in fmols/mg of wet weight tissue.

Numbers in parentheses next to brain regions indicate their location in Figure 1, supplementary data.

*
P<0.05 compared to food controls, two-way unpaired Student’s t-test.
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