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Abstract

Background: Maize is a major cereal crop widely consumed in developing countries, which have a high prevalence of iron
(Fe) deficiency anemia. The major cause of Fe deficiency in these countries is inadequate intake of bioavailable Fe, where
poverty is a major factor. Therefore, biofortification of maize by increasing Fe concentration and or bioavailability has great
potential to alleviate this deficiency. Maize is also a model system for genomic research and thus allows the opportunity for
gene discovery. Here we describe an integrated genetic and physiological analysis of Fe nutrition in maize kernels, to
identify loci that influence grain Fe concentration and bioavailability.

Methodology: Quantitative trait locus (QTL) analysis was used to dissect grain Fe concentration (FeGC) and Fe
bioavailability (FeGB) from the Intermated B73 6Mo17 (IBM) recombinant inbred (RI) population. FeGC was determined by
ion coupled argon plasma emission spectroscopy (ICP). FeGB was determined by an in vitro digestion/Caco-2 cell line
bioassay.

Conclusions: Three modest QTL for FeGC were detected, in spite of high heritability. This suggests that FeGC is controlled
by many small QTL, which may make it a challenging trait to improve by marker assisted breeding. Ten QTL for FeGB were
identified and explained 54% of the variance observed in samples from a single year/location. Three of the largest FeGB QTL
were isolated in sister derived lines and their effect was observed in three subsequent seasons in New York. Single season
evaluations were also made at six other sites around North America, suggesting the enhancement of FeGB was not specific
to our farm site. FeGB was not correlated with FeGC or phytic acid, suggesting that novel regulators of Fe nutrition are
responsible for the differences observed. Our results indicate that iron biofortification of maize grain is achievable using
specialized phenotyping tools and conventional plant breeding techniques.
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Introduction

Iron (Fe) deficiency is a worldwide problem that is directly

correlated with poverty and food insecurity. Approximately 1/3 of

the world’s population suffers from Fe deficiency-induced anemia,

80 percent of which are in developing countries [1]. The

consequences of Fe deficiency include increased mortality and

morbidity rates, diminished cognitive abilities of children, and

reduced labor productivity that in turn stagnates national

development [2]. The developed world has made tremendous

success in alleviating micronutrient deficiencies through dietary

diversification, processed food fortification, improved public health

care and supplementation. In developing countries, these strategies

are often too expensive and difficult to sustain. The major causes

of Fe deficiency are inadequate Fe intake/availability from foods

and blood loss or increased demand due to disease (e.g. malaria,

HIV/AIDS) [3–5]. Inadequate nutrition is the more common

cause for Fe deficiency and is largely due to poverty, which limits

the consumer’s dietary choices and thus the quality and quantity of

foods consumed [6]. About 75 percent of the world’s poor

households live in rural areas and the majority are small-scale

farmers [7]. The resource-poor typically consume what they grow

and are dependent upon a small number of staple crops for the

vast majority of their nutrition [8,9]. This limits the feasibility of

processed food fortification as a micronutrient deficiency-alleviat-

ing tool for this group and emphasizes the importance of plant-

based agricultural solutions for human nutrition problems.

Fe is less available for absorption into the human body from

vegetarian as opposed to non-vegetarian diets [10]. The influence

of biochemical factors on Fe availability depends on the form of
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Fe. Iron in plants exists primarily as non-heme Fe. Compounds in

food influence non-heme Fe bioavailability by either limiting

solubility, or by inhibiting Fe accessibility to the Fe transporter on

the intestinal surface; therefore an increase in Fe concentration

alone may not solve dietary Fe deficiency problems [11]. Ascorbic

acid, cysteine, and the ‘‘meat factor’’ are all compounds that are

known to enhance non-heme Fe absorption in the human gut [12].

The primary characterized inhibitors of Fe bioavailability in plant

foods are phytate and polyphenolic compounds, although other

compounds may also exist [12].

Given the high cost of quantifying Fe bioavailability via human

and animal studies, in vitro screening of food samples represents the

most feasible system for screening large numbers of samples to

identify factors and interactions that affect Fe bioavailability [13].

The current state of the art for in vitro screening involves a

simulated gastric and intestinal digestion of food coupled with

measurement of Fe uptake by human intestinal epithelial cells,

specifically the Caco-2 cell line [14]. This cell line exhibits the

characteristics of small intestine epithelial cells, which is believed to

be the primary site for Fe absorption in the human gastrointestinal

tract. Caco-2 cells have been shown to exhibit a broad range of

morphological and functional characteristics of intestinal epithelia

in regards to the uptake of Fe and other nutrients, which make

Caco-2 cells an excellent model system [14,15]. These character-

istics include: 1) Caco-2 cells reduce Fe3+ to Fe2+ via the apical Fe

uptake pathway and tightly regulate ferritin synthesis and

transepithelial Fe transport within a narrow margin of intracellular

Fe concentrations [16]. 2) Transport of Fe in the Caco-2 cell line

responds to the Fe status of the cell, as Fe-deficient cells exhibit

increased and Fe-loaded cells exhibit decreased transport into the

basolateral side of the cells [17]. 3) Factors that inhibit Fe

availability (e.g. phytate, polyphenols) and promote Fe availability

(e.g. cysteine, b-carotene) have similar effects on Fe uptake into

Caco-2 cells as they do in human or animal subjects [18–20]. In

addition, a comparison study using both human subjects and the

Caco-2 cell system concluded that Caco-2 cells predict Fe

bioavailability quite well [21].

Cereals make the bulk of the household diets in developing

countries and hence are an ideal tool for Fe biofortification. The

conventional approach to cereal mineral biofortification has been

to work at three levels. These are to increase the density of the

mineral nutrient of interest, to decrease the density of anti-

nutritive compounds (nutrient inhibitors), and to increase the

density of compounds that enhance bioavailability of the specific

nutrient. The best example from conventional breeding is a study

from the International Rice Research Institute (IRRI), where a

new rice variety was developed with substantially more Fe

concentration than varieties typically consumed in Asia. A high

Fe variety chosen for a feeding study contained 2.6 mg g21 DW

more Fe than a standard commercially available rice variety. A

nine month, double-blind human study carried out on 192 subjects

showed that eating this high Fe rice led to a 17% increase in total

body Fe, as measured by serum ferritin and total Fe stores [22].

Rice has also been altered using transgenes to increase Fe

bioavailability. One effort used an endosperm-specific promoter to

drive the expression of a ferritin gene from Phaseolus vulgaris, as well

as expression of a thermo-tolerant phytase from Aspergillus fumigatus

and an endogenous Cys-rich metallothionein-like protein [23].

This triple transgene combination increased the rice grain Fe

concentration by up to two fold, while also increasing phytase

activity and Cys concentration in the rice grain. However, no test

of Fe bioavailability was made, such that the efficacy of this

approach for biofortification cannot be evaluated. In a third study,

Drakakaki and co-workers (2005) generated transgenic maize

expressing both an Aspergillus phytase and soybean ferritin in the

kernel. In the most active transgenic line, up to 95 percent of the

phytate was degraded and a 50% increase in the Fe concentration

of the grain was observed. Fe bioavailability was evaluated using

the in vitro digestion/Caco-2 cell model and demonstrated that

phytase expression was directly correlated with Fe bioavailability

and uptake [24]. Thus, it is possible to positively impact human

nutrition by reducing Fe malnutrition via crop biofortification.

In the current study we used an integrated genetic, physiological

and biochemical strategy to begin to understand the determinants

of Fe nutrition for humans in maize kernels. The Intermated B73

6Mo17 (IBM) recombinant inbred (RI) population of maize was

employed as our study system [25]. The IBM population is a

powerful resource for the analysis of quantitative traits and is the

community standard for genetic mapping in maize [26–27]. We

collected two datasets related to Fe nutrition – total Fe

concentration in the grain (FeGC) and the bioavailable fraction

of Fe in the grain (FeGB), which was measured indirectly via Fe

uptake and subsequent ferritin production in Caco-2 cell cultures.

These data were then analyzed to identify quantitative trait loci

(QTL) that contribute to these traits. Candidate QTL for FeGB

were isolated in new varieties to confirm the genetic analysis and

provide more convenient research tools. These new varieties have

been grown repeatedly in NY and have given significantly different

outcomes for FeGB, confirming the validity of the FeGB QTL

model. These stocks have also been evaluated outside of NY and

produced significant outcomes, indicating that the enhancement of

FeGB is not specific to field sites in NY.

Results

Analysis of grain iron concentration (FeGC)
Grain Fe concentration (FeGC) was the first parameter used to

estimate the nutritional quality of grains in the IBM RI

population. This mapping population was grown twice in two

different field seasons in NY and once in NC in replicated trials.

An analysis of variance indicated that the RI Line was the greatest

contributor to variance in the FeGC trait, suggesting that strong

genetic control for the trait exists (Table 1). In fact, heritability was

estimated at 0.745, confirming this observation. However,

significant variance was also found that was due to site and year,

such that environmental and random factors also influence the

FeGC trait. Examining the average values for each RI line, highly

similar values were observed for the FeGC trait from three year/

site replicates (Figure 1). Transgressive segregation was observed

consistently, as both B73 and Mo17 parents fell close to the

median value for the population. The range of variation from

minimum to maximum values was somewhat limited, only on the

order of 3-fold.

To account for the contribution of genetic and environmental

factors to the FeGC trait, we estimated the best linear unbiased

predictors (BLUPs) for each RI line to facilitate quantitative trait

locus (QTL) detection across the three data sets. Composite

interval mapping analysis on the BLUPs identified three modest

QTL for FeGC (Table 2). Two of the superior alleles were

donated by the Mo17 parent (FeGC-5.1 and FeGC-9.1), while the

third came from B73 (FeGC-2.1). This pattern of both parents

donating superior alleles is consistent with the observed transgres-

sive segregation. A multiple interval model for these QTL

indicated that approximately 26% of the phenotypic variation

was due to these three factors. Single marker analysis was also used

to identify QTL using more permissive rules. However, these QTL

failed to explain substantially more variance and thus are not

reported here.

Iron Biofortification of Maize Grain
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Analysis of grain iron bioavailability (FeGB)
Grain iron bioavailability (FeGB) was the second parameter

used to estimate the nutritional quality of grains in the IBM RI

population (Figure 2). Due to the complexity of the Caco-2

bioassay (i.e. that 145 RI lines required 6 person/months worth of

effort), the 2003 NY field season (hereafter, NY03) series of

samples were chosen used for FeGB phenotyping to generate the

data necessary for QTL mapping. Maize seed Fe bioavailability

had more than twice as wide a distribution as Fe concentration,

with a 7.2-fold range from the minimum (8.7 ng ferritin produced

by Caco-2 cells mg-1 total protein) to maximum values (63.0 ng

ferritin mg21 total protein; Figure 2). The population median was

27.3 ng ferritin mg21 total protein among the 145 RI lines

sampled from the NY03 field season. The B73 parent was again

close to the population median, while the Mo17 parent exhibited

greater grain Fe bioavailability. Transgressive segregation was

observed for FeGB, as was the case for FeGC, as the range of

phenotypes observed was larger than that in the parental varieties.

These results indicate that both B73 and Mo17 carry alleles of

possible utility for the improvement of grain Fe nutrition.

QTL analysis was first performed for the FeGB trait using

Composite Interval Mapping (Table 3). Three modest QTL were

detected, where much like FeGC the combination of donors was

consistent with the observed transgressive segregation. QTL

analysis was repeated using the GLM Select procedure in SAS.

While this is a single marker regression analysis, we considered the

marker density in the IBM population to be sufficiently dense to

counteract any loss of power. Ten significant markers were

identified that explained 54% of the variance observed in FeGB

(Table 4). This suggests that FeGB may be a more simply inherited

trait than FeGC, as a greater number of larger QTL were detected

for FeGB than FeGC. Of all the putative QTL detected, there was

only one case where FeGC and FeGB QTL were closely located

on the maize genome (FeGC-9.1 from Table 2 and FeGB-9.2

from Table 4).

In parallel to our work on grain Fe nutrition, we have also

collected elemental concentration data for other grain components

(Hoekenga, Rutzke and Kochian, unpublished data). It has been

reported that several other mineral elements may influence Fe

bioavailability in positive or negative ways, by competing with Fe

uptake into intestinal cells [28,29]. Pearson’s correlation analysis

was performed on FeGB and FeGC with grain mass and Ca, P

and Zn concentrations for the NY03 data (Table 5). There was a

significant, positive correlation between the levels of all of these

mineral elements, Ca, Fe, P and Zn, ranging from r = +0.206 to

+0.511. It is not obvious what factor would coordinately control

mineral nutrient densities for all four of these minerals. This

correlation between mineral nutrients did not appear to be a

function of grain mass; negative correlations exist between Ca, Fe,

P and Zn grain concentration and grain mass, while only Ca and P

were significant. Grain P concentration was the only parameter

that correlated with FeGB, although this effect is small (r2,0.04).

Grain Fe concentration and bioavailability were not signi-

ficantly correlated, which is not surprising given the general lack

of agreement between FeGB and FeGC QTL locations. This

suggests that FeGB and FeGC are under the regulation of different

major determinants.

We analyzed 23 RI lines selected from the extremes of grain Fe

bioavailability, along with several from near the population

median, to determine if a correlation existed between phytate

concentration and grain Fe bioavailability (Table 6). Phytate is

widely regarded in the literature as the major anti-nutrient

compound that limits Fe bioavailability in grain crops [12].

Pearson’s correlation analysis indicated there was a small, weak

negative correlation between FeGB and phytate concentration (r

= 20.19; N.S.). However, grain phytate concentration among the

high, medium and low FeGB RI samples were not different by

one-way ANOVA (Table 6). These data suggest that phytate was

not a significant determinant for differences in Fe bioavailability in

the IBM RI population, or at least in the sub-sample of the RI

population tested.

Figure 1. FeGC observed for a maize population. The Intermated
B736Mo17 recombinant inbred (RI) mapping population was grown in
Aurora NY and Clayton NC on research farms owned by Cornell
University and North Carolina State University, respectively. Grain Fe
concentrations were determined by ion coupled argon plasma emission
spectroscopy. The results for the RI lines are organized into bins of 2 mg
Fe g21 grain DW for the histogram. Median population values are
reported along with standard deviations for each of the three
contributing data sets.
doi:10.1371/journal.pone.0020429.g001

Table 1. Analysis of variance for grain iron concentration (FeGC).

Source DF Sum of Squares F-score (GLM) p-value (GLM) %Variance (REML)

Line 224 4810.25 2.79 ,0.0001 23.46

Year [Site] 1 232.96 30.28 ,0.0001 6.29

Site 1 121.50 15.79 ,0.0001 -2.67

Error 1034 7956.50

Total for Model 1260 13046.61 2.93 ,0.0001 100.00

General Linear Model (GLM) and Restricted Maximum Likelihood (REML) analyses of variance (ANOVA) were used to describe the variance in grain iron concentration
due to Line, Year (nested within Site), and Site terms from the NY05, NY03 and NC05 data. Heritability (h2

b) was estimated at 0.745.
doi:10.1371/journal.pone.0020429.t001
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To validate the FeGB QTL model, we conducted a co-segre-

gation analysis using backcross-derived families segregating for

three of the major QTL. Molecular markers were used to assess

which individuals would be worthwhile to phenotype from a

collection of derivatives of IBM RI lines that had been previously

initiated from 12 different RI lines backcrossed to both parents.

Nine families of BC2S2 or BC3S3 individuals from this collection

were genotyped with eight simple sequence repeat markers that

spanned three QTL containing intervals (FeGB-3.1, FeGB-6.1

and FeGB-9.1) that were detected by both the conservative (CIM)

and permissive (GLM Select) analyses. From the marker analysis,

we identified 37 individuals from the NY06 field season that were

self-pollinated and then analyzed using the Caco-2 bioassay. Most

of the backcross-derived individuals selected for phenotypic

analysis contained all three superior or inferior alleles, to maximize

the potential degree of difference between samples. Three of the

molecular markers tested gave highly significant associations with

FeGB, one for each of the three chromosomal regions (Table 7).

The superior alleles detected in the backcross-derived lines were

the same as those originally detected in the RI lines, supporting the

original QTL analysis. Thus, we were able to select individuals

based solely on molecular marker information out of segregating

populations and correctly predict the FeGB nutritional quality of

those individuals. These results not only affirm that three QTL for

FeGB exist on chromosome 3, 6 and 9 of the maize genome but

also that marker assisted selection can efficiently enhance FeGB.

Derivation of new inbred lines with altered FeGB quality
Based upon the molecular marker and phenotypic character-

izations, selections were made from the backcross derivatives of

IBM RI line #039 to generate new inbred lines with altered

nutritional qualities (Figure 3). While backcross derivatives from

nine different IBM RI lines were screened, the derivatives from

IBM RI line #039 gave especially reproducible results. Seeds were

chosen from single BC2S3 individuals to represent four new

genotypes: high FeGB B73, low FeGB B73, high FeGB Mo17 and

low FeGB Mo17. These four genotypes were sent to collaborators

for evaluation at six sites beyond our regular NY location. Self-

pollinated seeds were generated and analyzed by the Caco-2

bioassay (Table 8) and ICP (Table 9). We hypothesized that

significant differences would exist between high and low seed

bioavailable Fe sister derived lines at many or all locations where

they were grown. Beyond NY, high and low sister derived lines

were significantly different when grown in Ames IA, Urbana IL,

Puerto Vallarta MX, and Clayton NC. This comes with the

caveats that only the B73 sister lines were grown at Puerto Vallarta

and that the Mo17 sister lines did not produce a statistically

significant outcome at Clayton NC, although the trend was in the

expected direction. Likewise, while samples from State College PA

were not significantly different, the trends were in the expected

directions. No differences were observed from samples from

Columbia MO for FeGB (Table 8). While this experiment was

limited in scale, we conclude that the enhanced FeGB quality

identified in NY grown materials is effective at locations outside of

NY. Based on our prior experience, we did not expect to see

significant differences in FeGC between the sister lines. This

hypothesis was supported by results from MO, MX, and NC

(Table 9). However, significant differences in FeGC did exist

between samples grown at IA, IL, and PA. Given the lack of

consistency between rankings, it is not clear what factors might

have been at work in influencing FeGC.

Discussion

The objective of this study was to estimate the genetic com-

ponent(s) underlying maize grain Fe nutrition. We were able to

identify multiple loci that influence grain Fe concentration and

bioavailability, and demonstrated these were heritable across

multiple years. While these loci may not explain a majority of the

differences observed, they show promise that genetic analysis will

be useful to dissect questions in maize relating to human Fe

nutrition. These experiments provide entry points into these

nutritional processes at the genetic and ultimately molecular levels.

These experiments also serve as a demonstration of the utility of a

forward genetic approach to dissect grain Fe nutrition, as the QTL

described here can improve Fe concentration and bioavailability

Figure 2. FeGB observed for a maize population. The Intermated
B73 6 Mo17 RI population was grown at Aurora NY in 2003. Grain
samples were evaluated for grain bioavailable Fe via a Caco2 cell culture
bioassay. The bioassay measures the amount of ferritin storage protein
produced in the human cells in response to the maize samples, and
thus estimates how much Fe was absorbed from the samples. Results
for the RI lines are organized into bins of 5 ng ferritin mg total protein21

for the histogram.
doi:10.1371/journal.pone.0020429.g002

Table 2. Locations of FeGC QTL detected by composite interval mapping analysis from summary trait data.

Trait-Chr. Donor Peak Location (cM) Closest Marker LOD Score Additive Effect R2 CI (Peak -1 LOD) CI (Peak -2LOD)

FeGC-2.1 B73 194.11 MMP144 6.21 +0.415 0.101 188…200 176…202

FeGC-5.1 Mo17 279.11 RZ87 7.694 -0.447 0.12 276…285 273…285

FeGC-9.1 Mo17 77.11 SH1 4.61 -0.39 0.093 69…85 67…89

FeGC MIM model 0.261

BLUPs were estimated from the analysis of variance and used as summaries for quantitative trait locus detection by composite interval mapping. Confidence intervals
(CI) for each QTL are reported at two different confidence values. Genetic locations refer to IBM v1 map coordinates. Positive values for the additive effect denote B73
provided the superior allele. Multiple Interval Mapping (MIM) was used to estimate the 3-factor model.
doi:10.1371/journal.pone.0020429.t002
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to a degree comparable with existing transgenic or reverse genetic

approaches.

Biofortification, or the nutritional enhancement of foods via the

direct improvement of the crops that derive them, has been a topic

of great interest in recent years [30–34]. Until very recently, the

focus of this discussion has been upon the possible approaches and

potential impacts, but relatively little research has been performed

with regard to elemental micronutrients. The first experimental

studies in this area for maize were largely germplasm surveys for

micronutrient concentration [35,36]. While these studies demon-

strate that the genetic potential for maize improvement exists,

neither study enhanced our understanding of the nature of grain

micronutrient density, per se. QTL analysis has been applied to

mineral nutrient density in Arabidopsis thaliana and Phaseolus vulgaris;

unfortunately, none of these studies address the issue of nutrient

bioavailability [37–40]. Thus, there is a clear gap in the literature

that the research presented in this study aims to begin to fill.

Transgenic approaches to grain Fe biofortification have been

attempted for rice, wheat and maize [24,41]. In these studies an

approximately 2-fold increase in grain Fe concentration was

observed, presumably by increasing the metabolic sink in the grain

via over-expression of a soybean or common bean ferritin protein

[41]. Attempts have also been made to increase the bioavailable

fraction of grain Fe with transgenic expression of phytase, an

enzyme that catalyzes the breakdown of phytate. In maize, this

strategy increased bioavailable Fe in grains by approximately 2-

fold in the best transgenic event, which translated to an increase of

20 ng ferritin produced mg-1 total protein in the Caco-2 bioassay

[24]. Transgenic approaches for biofortification suffer from two

possible limitations. First, it is impractical to use transgenic plants

as a forward genetic tool; the present bioassay for Fe bioavailability

is somewhat restricted in scale – analysis of hundreds rather than

thousands of samples are the present level of practicality. It is also

unlikely that screening mutagenized populations for mutants that

alter Fe bioavailability is possible, given the number of random

mutants necessary for a saturating screen. Thus, transgenic plants

are likely only useful in reverse genetic experiments, where a

particular putative modifier of Fe bioavailability or nutrition

is being tested. Second, societal acceptance for transgenically

improved crops does not exist in every quarter, such that relying

solely upon transgenic solutions will have limited application. On

the other hand, a QTL-based approach for genetic discovery,

Table 3. Locations of FeGB QTL detected by composite interval mapping analysis for 2003 field season.

Trait-Chr. Donor Peak Location (cM) Closest Marker LOD Score Additive Effect R2 CI (Peak -1 LOD) CI (Peak -2 LOD)

FeGB-3.1 Mo17 189.2 PSR754B 3.54 -7.96 0.078 185…190 183…192

FeGB-6.1 B73 70.4 PHP20528 5.82 +10.39 0.135 63…74 58…81

FeGB-9.1 B73 377.6 UMC2134 3.70 +9.28 0.103 369…384 367…384

FeGB MIM model 0.250

Standardized ferritin protein production values were used for FeGB quantitative trait locus detection by composite interval mapping. Confidence intervals (CI) for each
QTL are reported at two different confidence values. Genetic locations refer to IBM v1 map coordinates. Positive values for the additive effect denote B73 provided the
superior allele. Multiple Interval Mapping (MIM) was used to estimate the 3-factor model.
doi:10.1371/journal.pone.0020429.t003

Table 4. Locations of FeGB QTL detected by GLM Select analysis for 2003 NY field season.

Factor AIC F-score p-value t-value Position Trait-Chr

Intercept 968.18 0 1 5.45 – –

php20528 941.66 16.57 ,0.0001 -5.75 6; 70 FeGB-6.1

csu471 929.75 12.78 0.0005 3.84 9; 102 FeGB-9.2

psr754b 920.46 10.73 0.0013 4.83 3; 185 FeGB-3.1

umc2134 909.61 12.34 0.0006 -4.24 9; 379 FeGB-9.1

umc1910 898.93 12.72 0.0005 4.74 8; 215 FeGB-8.1

umc63a 891.70 11.90 0.0007 -3.68 3; 573 FeGB-3.2

umc1634 884.01 8.19 0.0049 -4.86 9; 179 FeGB-9.3

psr547 877.40 8.82 0.0035 3.56 9; 263 FeGB-9.4

umc23a 870.84 10.34 0.0016 4.38 1; 600 FeGB-1.1

umc1072 863.80 8.50 0.0042 -3.26 5; 540 FeGB-5.1

Source DF F-score p-value SS Adjusted r2

Model 10 16.08 ,0.0001 5572.43 0.54

Error 130 346.54

Total 141 106694

Markers are given in order of inclusion in the trait model according to GLM Select. AIC is the Akaike Information Criterion and estimates the goodness of fit for the
model. Significance of the association between marker and trait is demonstrated by F and p values. The t-value estimates the magnitude of the effect; a positive score
indicates Mo17 donated the superior allele. Marker locations are reported using IBM v1 coordinates (chromosome; position). Summary statistics for the 10-factor model
are presented below.
doi:10.1371/journal.pone.0020429.t004

Iron Biofortification of Maize Grain

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e20429



within a larger, interdisciplinary research scheme, overcomes these

limitations. QTL analysis can effectively survey the genetic

diversity present in a mapping population using hundreds of

bioassays, to build a genetic model for the complexity of the trait of

interest. The information gained from this analysis can then be

utilized for either transgenic or traditional crop improvement.

Our genetic analysis of the IBM RI set identified three modest

sized QTL that contributed to approximately one-quarter of the

variation in grain Fe concentration (Table 2). However, the

estimated heritability for this trait is three times as large, which

indicates that grain Fe concentration is under the influence of

many QTL that are too small to detect using the methods we

employed (Table 1). The analysis of variance also made clear that

local environment plays a strong role in influencing grain Fe

concentration. The field plots used in NY03 and NY05 fell in

different, distinct soil types: the maize from NY03 was grown on a

Lima Silt Loam (alfisol) with an average maize yield of 120 bushels

acre21, while maize from NY05 were grown on a Kendaia Silt

Loam (inceptisol) with only 95 bushels acre21 average productivity

[42]. The same agronomic management practices were used for

both seasons in NY and shared similar weather, typical to NY. In

comparison, NC05 was planted on a Norfolk Loamy Sand (ultisol)

soil, with average maize yields of 106 bushels acre21, where NC

enjoys higher average day and night temperatures, shorter day

length and somewhat less rain than NY. We observed that there

was a higher degree of correlation for FeCG between NC05 and

NY05 than between NY05 and NY03, which suggests that soil

properties may play a stronger role than weather or agronomic

practices to influence FeCG. Future studies will require a far better

understanding of local soil conditions and properties to better

describe the environmental factors that influence grain Fe

concentration. While grain Fe concentration could be a target

for biofortification efforts, substantial progress using conventional

plant breeding may be difficult to achieve using marker assisted

selection and. We predict that more comprehensive technologies

such as genomic selection, which are more effective at accounting

for and combining many small effect QTL, may be necessary to

enhance FeGC by plant breeding [43].

On the other hand, our genetic analysis of grain Fe bioavail-

ability identified multiple putative QTL. Using a conservative

approach, three modest QTL were identified that explained a

quarter of variation observed in bioavailable Fe, similar to that

seen for Fe concentration (Table 3). However, the single marker

analysis found 7 additional significant associations, explaining 54%

of the phenotypic variance observed in FeGB (Table 4). As we can

build a more comprehensive genetic model to explain variation in

FeGB, this suggests that FeGB is a less genetically complex trait

than FeGC and thus more tractable. The lack of a strong, positive

correlation between FeGC and FeGB also suggests that FeGB is

the far more valuable trait to evaluate, although FeGB is more

difficult to phenotype given the limitations and requirements of the

Caco-2 bioassay (Table 5). We have demonstrated the efficacy of

marker assisted selection for FeGB in the development of our sister

derived lines (Tables 7 & 8), such that moving the elite alleles

detected in the IBM population into other germplasm can be

easily accomplished using genotype based methods. Caco-2

bioassay based phenotyping could be reserved for later stages in

a breeding program, to confirm the value of selections rather than

as a selection tool itself.

Near isogenic lines (NILs) are commonly used tools to dissect

QTL [44]. NILs represent very highly related varieties that differ

at perhaps a single QTL, and are useful to dissect QTL function

and identity. We were concerned that isolating single QTL in new

varieties would not create large enough changes in FeGB to be

detected through our process of using field-grown plants and a

bioassay for phenotyping. Thus, we chose to combine the three

QTL detected using composite interval mapping in new varieties,

derived by backcrossing particular IBM RI lines to either B73 or

Mo17. This strategy was clearly successful from the perspective of

producing new varieties with reproducible differences in FeGB

(Tables 7 & 8). In the NY10 field, these lines have been advanced

to the BC2S6 generation and evaluated using the Caco-2 bioassay

(data not shown). Our sister derived lines should now be stable due

to the high degree of inbreeding. Our decision to pursue both high

and low FeGB selections into both the B73 and Mo17 parental

backgrounds was made for two reasons. First, the high and low

Table 5. Correlation analysis of grain nutrients and mass.

Ca grain
concentration

Fe grain
concentration

P grain
concentration

Zn grain
concentration

Fe grain
bioavailability

Fe grain concentration 0.206/0.002

P grain concentration 0.43/,0.001 0.417/,0.001

Zn grain concentration 0.213/0.001 0.439/,0.001 0.511/,0.001

Fe grain bioavailability -0.03/0.725 0.101/0.234 -0.191/0.024 0.076/0.374

Grain mass -0.254/,0.001 -0.119/0.072 -0.174/0.008 -0.045/0.496 0.147/0.079

Pearson’s correlation coefficient (left) and p-value (right) are reported for each correlation. Bold entries indicate significant correlations; italic entries indicate non-
significant correlations from the NY03 dataset.
doi:10.1371/journal.pone.0020429.t005

Table 6. Comparison between FeGB and phytate content (NY 03).

FeGB level (# RIL tested) Average ferritin ng total protein mg21 (± sd) Average phytate mmoles g21 (± sd)

High (5) 54.662.3 9.262.8

Moderate (9) 27.061.2 9.361.6

Low (9) 12.262.2 9.961.0

doi:10.1371/journal.pone.0020429.t006
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selections share three generations of single seed descent and are at

least 87.5% genetically identical to each other. While these are not

isogenic stocks, these sister derived lines do represent an

improvement over using IBM RI lines with regards to normalizing

the effect of the remainder of their genomes. These new inbreds

make excellent targets for detailed metabolomic and genomic

studies, perhaps using next generation sequencing tools, to more

fully describe how they have altered nutritional qualities. Should

they be necessary, true NILs could be constructed by backcrossing

our new inbreds to their recurrent parents and then selecting out

individuals with one, two or three QTL combinations for analysis

of individual genes. Second, B73 and Mo17 are known to have

excellent combining ability, where B73 6 Mo17 was a widely

commercialized hybrid variety used by many North American

seed companies through the 1970s and 1980s. Making hybrids

among the high FeGB and the low FeGB sister derived lines could

create largely identical hybrids with altered FeGB quality, which

would facilitate both agronomic studies and animal feeding trials

by taking advantage of heterosis to boost grain production.

While it has yet to be established whether the amount of

variation in FeGB present in the IBM RI population or the

derived inbred lines is sufficiently large to be immediately useful

for biofortification, we have demonstrated the utility of a QTL/

Caco-2 based strategy to investigate FeGB. These new genetic

tools in maize should rapidly permit animal and human nutritional

studies, whether single meal feeding or longer term studies, to

more thoroughly assess the impact of our work. We selected the

IBM RI panel for grain Fe nutrition testing based upon our prior

experience with this mapping population and the wealth of genetic

and genomic resources available. It is certainly possible that other

RI populations possess broader phenotypic ranges or more simple

genetics for FeGB or FeGC than those observed here. It should be

a profitable strategy to survey additional RI populations, using

both the analytical chemistry and bioassay methods utilized here,

to identify additional determinants for grain Fe nutritional quality.

For example, phenotyping the Nested Association Mapping Panel

of maize would be extremely worthwhile and powerful experi-

ment, given the exceptional capacity of that 5,000 RI line

population to resolve QTL [45,46]. In parallel, once the genes that

underlie that major FeGB QTL are identified, it should be possible

to identify the natural variants that already exist in breeding

populations, which would enable Fe biofortification efforts around

Table 7. Marker co-segregation analysis of BC2S3 and BC3S4 derived families (NY 06).

Marker Location Mean FeGB ± sd for B73 allele Mean FeGB ± sd for Mo17 allele F-score p-value

UMC1742 3; 188 28.361.1 33.761.2 9.81 0.0001

BNLG1641 6; 76 32.161.2 28.361.4 6.50 0.0022

UMC2343 9; ,365 31.461.5 27.061.1 5.22 0.007

Average ferritin production values (ng ferritin mg21 total protein) from Caco2 bioassays are reported for homozygous BC2S3 or BC3S4 individuals from the NY 2006 field
season. Correlation of allelic state with iron bioavailability was assessed using one-way ANOVA; F-scores and p-values report the significance of differences. Location
refers to (chromosome; position) in IBM v1 cM.
doi:10.1371/journal.pone.0020429.t007

Figure 3. Pedigree for sister derived lines with altered FeGB qualities. High and low FeGB derivatives were generated from IBM RI Line #039
using backcrossing to both B73 and Mo17 parents. Circles denote maternal parents and squares are paternal parents, where the numbers that appear
next to the circles or square refer to the field entry (e.g. 02-095 indicates NY2002 row 095). Caco-2 phenotyping was utilized at four points in this
process: for the evaluation of RI lines (Figure 2), to validate the QTL model (Table 7), and to assist derivation of new inbreds (Table 8). The
backcrossing program was initiated three years before Caco-2 phenotyping of the RI lines took place. Individuals with altered FeGB qualities are
denoted with filled black circles (high FeGB) or gray circles (low FeGB). While not shown here, lines have been advanced to the BC2S6 (highly inbred)
generation in the NY2010 field season, with an additional round of Caco-2 phenotyping occurring in early 2011.
doi:10.1371/journal.pone.0020429.g003
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the world using conventional breeding techniques. However, once

the genes and gene products have been identified that enhance

FeGB in our study system, it should also be possible to enhance

FeGB by transgenic means. By either mechanism, it should soon

be possible to biofortify maize and other staple food crops with

additional bioavailable iron.

Materials and Methods

Unless otherwise stated, all chemicals, enzymes and hormones

were obtained from Sigma Chemical Company (St. Louis, Mo).

Plant materials and field site details
The IBM RI population was received from the Maize Genetics

Cooperation Stock Center (Urbana, IL) and grown at research

farms owned by Cornell University and North Carolina State

University. Fields were planted at the Musgrave Farm (Aurora,

NY) in the summers of 2003, 2005, 2006, 2007 and 2008 at the

Central Crops Research Station (Clayton, NC) in 2005. The plots

used in 2003, 2006, and 2007 on the Musgrave Farm had a Lima

Silt Loam (alfisol) soil, with average yield for maize of 120 bushels

acre21 and water extractable soil pH of 6.7, in 2005 were on a

Kendaia Silt Loam (inceptisol), with an average yield for maize of

95 bushels acre21, and a water extractable soil pH of 6.5, and in

2008 were on a Honeoye Silt Loam (alfisol), with an average yield

for maize of 130 bushels acre-1, and a water extractable soil pH of

6.1, while the Central Crops Research Station plots had a Norfolk

Loamy Sand (ultisol) soil, with average maize yields of 106 bushels

acre21 and water extractable soil pH of 4.8 according to the Web

Soils Survey of the National Resource Conservation Service

(http://websoilsurvey.nrcs.usda.gov) [42]. In 2003, single ran-

domized, partial blocks of the RI population were used for this

study (n = 232). A subset of RILs was used for the Caco-2 bioassay

described below (n = 145). Pioneer Hi-Bred (a DuPont Company)

donated untreated grain from 5 hybrid varieties for use as possible

controls in the Caco-2 bioassays. In 2005, replicated, randomized

partial blocks were grown in NY and NC and used for the mineral

analysis (NY n = 257, 3 replicate blocks; NC n = 274, 2 replicate

blocks).

Sister derived inbred lines were developed from backcross (BC)

derivatives of 12 IBM RILs (ie. 24 sets of families). The BC line

project was initiated as a component of a National Science

Foundation Plant Genome Research project on aluminum stress

tolerance in maize roots. Fortuitously, several of the derivative

families were segregating for markers linked to the grain Fe

bioavailability QTL and thus of use to this study. In 2006,

representatives of 9 of the 24 BC2S2 and BC3S3 families were

planted in randomized blocks, genotyped using SSR marker

analysis and all individuals were self-pollinated. Of these, 37

BC2S3 and BC3S4 ears were selected for Caco-2 bioassay

phenotyping to validate the FeGB QTL models. In 2007 and

2008, confirmed high FeGB and low FeGB sister lines were grown

to increase the degree of inbreeding and evaluate using the Caco-2

bioassay. Seeds from single BC2S3 sources were used for

evaluation at Aurora NY, Ames IA, Urbana IL, Columbia MO,

Clayton NC, and State College PA. Seeds for the trial at Puerto

Vallarta MX were generated at Urbana IL. Collaborators

generated self-pollinated seed that were evaluated using ICP and

the Caco-2 bioassay as described below.

Mineral analysis
Mineral analysis of the samples was conducted by inductively

coupled plasma-emission spectroscopy (ICAP; ICAP model 61E

Trace Analyzer; Thermo Jarrell Ash Corporation, Waltham MA).

Twenty-five grains were ground to fine powder using a coffee mill

(Capresso Inc.), where RI lines were sampled once and parents

were sampled six times (i.e. 6625 grains). 1 g samples of ground

maize were weighed into borosilicate glass test tubes and

chemically digested using 1ml of 100% HNO3 at 120uC, followed

by drying the samples completely. Further addition of 1 ml of

100% HNO3 was carried out at 150uC until the residue was light

brown to yellow in color. Then 1 ml of HNO3: HClO4 at 1:1

volume ratio was added and the temperature increased to 180uC
for 2 hours and then to 240uC until the digested samples were dry.

Samples were then resuspended in 5% (v/v) HNO3 before analysis

on the ICP.

Quantifying Grain Fe bioavailability
Sample preparation. Kernels (50g) were sorted to remove

any debris and then placed in an acid washed beaker and covered

with 2 volumes of 18 MV water. Kernels were then autoclaved at

121uC and at a pressure of 115 kPa for 40 min, allowed to cool at

room temperature and then frozen overnight at 220uC. Samples

were then freeze dried at 100 millTorr and a temperature of 250uC
for 7 days, ground to a fine powder with a coffee mill (90 sec) and

Table 8. Multi-site evaluation of FeGB in derived lines.

Site-Year High B73 Low B73 High Mo17 Low Mo17 F-score

IA-2008 0.671 b 0.459 c 0.813 a 0.597 b 15.727

IL-2007 1.573 a 0.974 b 1.411 a 1.055 b 12.370

MO-2008 1.099 b 0.974 b 1.582 a 1.410 a 17.672

MX-2008 1.100 a 0.782 b n.d. n.d. 40.916

NC-2008 0.809 a 0.573 c 0.740 ab 0.671 b 7.961

NY-2007 0.923 a 0.791 b 0.870 ab 0.600 c 12.524

NY-2008 1.208 a 0.379 b 1.238 a 0.490 b 37.247

PA-2008 0.495 ab 0.344 b 0.598 a 0.448 ab 3.762

Contrasting BC2S4 derivatives from the IBM039 RI line were grown on 8 plots
over 2 years, to evaluate the heritability and penetrance of the high FeGB effect
across multiple environments. ANOVA were used to assess whether pairs of
related high and low-nutritional value derivatives were significantly different
and are denoted by letter. Comparisons were made within sites only, where
trait data are expressed as a percentage of the control variety from the Caco-2
bioassay. Locations where significant differences were not observed according
to our hypotheses appear in italic type.
doi:10.1371/journal.pone.0020429.t008

Table 9. Multi-site evaluation of FeGC in derived lines.

Site-Year High B73 Low B73 High Mo17 Low Mo17 F-score

IA-2008 25.06 a 17.48 c 23.14 b 23.25 b 32.29

IL-2007 23.54 b 27.21 a 25.18 ab 23.63 b 4.23

MO-2008 24.03 ab 24.33 ab 25.87 a 20.82 b 1.80 (ns)

MX-2008 20.51 a 21.42 a n.d. n.d. 3.61 (ns)

NC-2008 24.55 a 24.10 a 22.69 a 23.78 a 0.25 (ns)

NY-2007 19.90 a 20.65 a 21.16 a 26.91 a 1.77 (ns)

NY-2008 23.22 a 18.00 b 23.84 a 22.87 a 9.37

PA-2008 20.52 b 19.93 b 24.41 a 21.32 b 16.32

FeGC was evaluated among accessions grown in 2007 and 2008. Comparisons
were made within sites using ANOVA, where trait data reported are entry
averages for grain iron concentration in mg g21 DW. Locations where significant
differences were not observed appear in italic type.
doi:10.1371/journal.pone.0020429.t009
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stored in acid washed, plastic specimen containers with tight fitting

lids at 25uC (Laboratory Product Sales, Rochester NY). Samples

from the commercial hybrid maize were prepared in an identical

manner and used as controls for the each of the bioassays.
Quantifying Fe availability. The test for Fe availability of

maize grain Fe was carried out using the Caco-2 in vitro digestion

method as described by [14]. In this model, cell ferritin formation

in response to Fe uptake is used as a marker of Fe bioavailability.

Ascorbic acid (Asc) was added to enhance Fe bioavailability using

a 20:1 Asc:Fe molar ratio, based upon highest FeGC observed.

Once mixed, 0.25 mL of pepsin solution (trace mineral free) was

added. Total cellular protein was determined in the lysates by the

BioRad DC Protein Assay Kit (BioRad, Richmond, CA). Ferritin

content was determined using a one-stage, two-site

immunoradiometric assay (FER-Fe2+ Ferritin Assay, RAMCO

Laboratories, Houston TX) (Glahn et al., 2002). Ferritin contents

were normalized to total cellular protein concentrations; ferritin

values for each RI sample were then expressed as a percentage of

the control maize (commercial hybrid) sample to standardize the

results of the bioassays.

Phytate analysis
Phytate was analyzed using acidic extraction of the maize grain

meal, followed by liquid chromatography [47]. Samples were

analyzed with a Dionex Liquid Chromatograph System (Dionex

Corp., Sunnyvale, CA) using PO4 and phytate standards (IP5 and

IP6) dissolved in 0.125% (v/v) H2SO4. The results are expressed as

mmole of phytate per gram (DW).

Data Analysis
Basic statistical (one-way ANOVA, Pearson’s Correlation)

analyses were performed using SAS v 9.1.3 for Windows (www.

sas.com, Cary NC) or JMP v8 for Macintosh. Genetic marker

information for the IBM population was downloaded from http://

www.maizegdb.org/qtl-data.php (verified 2/11/11). A genetic

map with 1,338 markers and overall length of 6,243 cM in ten

linkage groups was used for all analyses. QTL searches were

conducted on best linear unbiased predictors (BLUP) of FeGC,

estimated from the ANOVA for the six site/year replicate data

sets, balanced by year and site. Broad sense heritability (h2
b) was

estimated from the mean sum of squares calculated from the

ANOVA table, with

h2
b = MSbetween RIL/(MSwithinRIL + MSbetweenRIL).

A trait with no variance within repeated measurements of the

RILs would have an h2
b = 1 and thus be completely heritable.

QTL searches for FeGB were conducted on Caco-2 bioassay

values of ferritin protein production standardized according to

average response of the Caco-2 cells to a control variety of maize.

QTL analysis by composite interval mapping was conducted using

QTL Cartographer v 2.5 for Windows, with forward and backward

regression (window = 5 cM, step = 2 cM, p(in/out) = 0.01) [48].

Summary models were estimated using the Multiple Interval

Mapping procedure in QTL Cartographer. QTL analysis by single

marker analysis was conducted using the GLM Select procedure in

SAS.

Molecular Marker Analysis
Linkage analysis was conducted using standard methodologies

for simple sequence repeat markers resolved on 4% agarose gels.

Primer sequences were selected from the Maize Genetics and

Genomics Database (http://www.maizegdb.org) [49].
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