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Abstract
Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms
to study brain anatomy. We computed new statistics from the Riemannian metric tensors that
retain the full information in the deformation tensor fields. We introduce two different
holomorphic one-forms that induce different surface conformal parameterizations. We applied this
framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer’s Disease
(AD; 26 subjects), lateral ventricular surface morphometry in HIV/AIDS (19 subjects) and cortical
surface morphometry in Williams Syndrome (WS; 80 subjects). Experimental results
demonstrated that our method powerfully detected brain surface abnormalities. Multivariate
statistics on the local tensors outperformed other TBM methods including analysis of the Jacobian
determinant, the largest eigenvalue, or the pair of eigenvalues, of the surface Jacobian matrix.

1 Introduction
Surface-based methods have been extensively used to study structural features of the brain,
such as cortical gray matter thickness, complexity, and deformation over time [1]. Also,
deformation-based morphometry (DBM) [2] directly uses 2D or 3D deformations obtained
from the nonlinear registration of brain images to infer local differences in brain volume or
shape. Tensor-based morphometry (TBM) [3] tends to examine spatial derivatives of the
deformation maps registering brains to a common template, constructing morphological
tensor maps such as the Jacobian determinant, torsion or vorticity. DBM, by contrast, tends
to analyze 3D displacement vector fields encoding relative positional differences across
subjects. One advantage of TBM for surface morphometry is that surfaces are commonly
parameterized using grids from which local deformation tensors can be naturally derived -
TBM can even make use of the Riemannian surface metric to characterize local anatomical
changes.

In computational differential geometry, a holomorphic one-form [4] can be represented as a
pair of scalars on each edge of a discrete mesh structure. The holomorphic one-form is an
intrinsic, coordinate-free formulation. It provides a practical way to induce conformal
parameterizations on surfaces and compute surface-to-surface registrations. The
holomorphic one-forms are computed by solving linear systems so the computation is very
stable.

In this paper, we present a multivariate TBM framework and apply it to detect abnormal
areas on anatomical structures in the brain represented as surfaces, parameterized using
differential forms (holomorphic one-forms). We performed three empirical studies of brain
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abnormalities in Williams syndrome (WS), Alzheimer’s Disease (AD), and HIV/AIDS. We
studied hippocampal surface deformation associated with AD, and lateral ventricular surface
deformation associated with HIV/AIDS. The proposed multivariate TBM detected areas of
statistically significant deformation even in relatively small test datasets - one compares 12
subjects with AD to a group of 14 matched healthy controls and the other compares 11
subjects with HIV/AIDS to 8 matched healthy controls. We also detected regions with
statistically significant abnormal surface morphology in cortical data from 40 individuals
with WS versus 40 matched healthy controls. For comparison, we also applied another three
map-based surface statistics to the same three brain anatomical surface datasets. Our goal
was to show that the proposed multivariate TBM had more detection power by detecting
consistent but more statistically significant areas of abnormal brain structure. Also note that
the proposed multivariate TBM framework is simple and general. The Jacobian matrix can
be easily computed by Equation 1. Potentially it can take results from any surface
registration methods for further morphometry study.

2 Methods
Holomorphic one-forms, a structure used in differential geometry, can be used to generate
both canonical conformal parametrization [5] and slit conformal parameterization [6] on 3D
anatomical surfaces. The obtained parameterization maximizes the uniformity of the induced
grid over the entire domain (see [5,6] for a more detailed algorithm description).

Suppose ϕ : S1 → S2 is a map from surface S1 to surface S2. The derivative map of ϕ is the
linear map between the tangent spaces, dϕ : T M(p) → T M(ϕ(p)). In practice, smooth
surfaces are usually approximated by triangle meshes. The derivative map dϕ is
approximated by the linear map from one face [v1, v2, v3] to another one [w1, w2, w3]. First,
we isometrically embed the triangle [v1, v2, v3], [w1, w2, w3] onto the plane ; the planar
coordinates of the vertices of vi, wj are denoted using the same symbols vi, wj. Then we
explicitly compute the linear matrix for the derivative map,dϕ, which is the Jacobian matrix
of ϕ,

(1)

In our work, we use multivariate statistics on deformation tensors [7] and adapt the concept
to surface tensors. Let J be the derivative map and define the deformation tensors asS = (JT

J)1/2. Instead of analyzing shape change based on the eigenvalues of the deformation tensor,
we consider a new family of metrics, the “Log-Euclidean metrics” [8]. These metrics make
computations on tensors easier to perform, as they are chosen such that the transformed
values form a vector space, and statistical parameters can then be computed easily using the
standard formulae for Euclidean spaces.

We apply Hotelling’s T2 test on sets of values in the log-Euclidean space of the deformation
tensors. Given two groups of n-dimensional vectors Si, i = 1, …, p, Tj, j = 1, …, q, we use
the Mahalanobis distance M to measure the group mean difference,

, where  and  are the means of the two groups and
∑ is the combined covariance matrix of the two groups.

3 Experimental Results
We applied the multivariate TBM method to various anatomical surfaces extracted from 3D
MRI scans of the brain. For registering anatomical surfaces across subjects, we found that
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conformal slit mapping works well for cortical surface registration because the overall shape
of a cortex is close to a sphere and the landmark curve locations are generally similar to each
other. On the other hand, holomorphic flow segmentation works better for parameterizing
long, cylinder-like shapes, such as hippocampal and lateral ventricular surfaces. In the light
of this observation, we used a canonical holomorphic one-form to conformally map
hippocampal and lateral ventricular surfaces to a set of planar rectangles (subsection 3.1 and
3.2); and we used slit map conformal parameterization to conformally map cortical surfaces
to multiply connected domains (subsection 3.3). Through the parameter domain, we can
register surfaces by using a constrained harmonic map [5].

In this paper, the segmentations are regarded as given, and results are from automated and
manual segmentations detailed in other prior works [9–11].

3.1 Multivariate Tensor-Based Morphometry on Hippocampal Surfaces: Application to
Alzheimer’s Disease

The hippocampal surface is a structure in the medial temporal lobe of the brain. Parametric
shape models of the hippocampus are commonly developed for tracking shape differences or
longitudinal atrophy in disease. Many prior studies, e.g., [9], have shown that there is
atrophy as the disease progresses. In our method, we leave two holes on the front and back
of the hippocampal surface, representing its anterior junction with the amygdala, and its
posterior limit as it turns into the white matter of the fornix. It can then be logically
represented as an open boundary genus-one surface, i.e., a cylinder. Its canonical
holomorphic one-form can be easily computed. By integrating this holomorphic one-form, it
can be conformally mapped to a rectangle and registered by using a constrained harmonic
map.

Figure 1 (a)-(d) illustrate our experimental results on a group of hippocampal surface models
extracted from 3D brain MRI scans of 12 AD individuals and 14 control subjects [9]. After
surface registration, we ran a permutation test with 5000 random assignments of subjects to
groups to estimate the statistical significance of the areas with group differences in surface
morphometry. We also used a statistical threshold of p = 0.05 at each surface point to
compute the supra-threshold surface area, and we estimate the overall significance of the
experimental results by using a non-parametric permutation test to establish an empirical
null distribution for this surface area [10]. Although the samples sizes are small, we still
detected relatively large statistically significant areas, consistent with prior findings [9]. The
overall statistical significance p-values, based on permutation testing (and therefore
corrected for multiple comparisons), were 0.0198 for the left hippocampal surface and
0.0410 for the right hippocampal surface (Figure 1 (a)).

3.2 Multivariate Tensor-Based Morphometry of the Ventricular Surface in HIV/AIDS
The lateral ventricles - fluid-filled structures deep in the brain - are often enlarged in disease
and can provide sensitive measures of disease progression [11]. Ventricular changes reflect
atrophy in surrounding structures, so ventricular measures and surface-based maps provide
sensitive assessments of tissue reduction that correlate with cognitive deterioration in
illnesses. However, the concave shape, complex branching topology and extreme
narrowness of the inferior and posterior horns have made it difficult for surface
parametrization approaches to impose a grid on the entire structure without introducing
significant area distortion. To model the lateral ventricular surface, we automatically locate
and introduce three cuts on each ventricle. The cuts are motivated by examining the
topology of the lateral ventricles, in which several horns are joined together at the
ventricular “atrium” or “trigone”. We call this topological modeling step, interpreting the
ventricles as a set of connected, simpler surfaces, a topology optimization operation. The

Wang et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 June 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



topology optimization helps to enable a uniform parametrization in some areas that
otherwise are very difficult to capture with usual parametrization methods. After the
topology is modeled in this way, a lateral ventricular surface, in each hemisphere, becomes
an open boundary surface with 3 boundaries. We computed the canonical holomorphic one-
form [5]. With holomorphic flow segmentation [5], each lateral ventricular surface can be
divided into 3 pieces. Although surface geometry is widely variable across subjects, the zero
point locations are intrinsically determined by the surface conformal structures, and the
partitioning of the surface into component meshes is highly consistent across subjects. The
automatic surface segmentation result for a lateral ventricular surface is similar to the
manual surface segmentation results used in prior research [11]; even so it improves on past
work as it avoids arbitrarily chopping the surface into 3 parts using a fixed coronal plane.
After the surface segmentation, each lateral ventricular surface is divided to three surfaces,
each topologically equivalent to a cylinder. For each piece, we again applied the
holomorphic flow algorithm to it and conformally mapped it to a rectangle. Then we
registered each part by a constrained harmonic map. Since all ventricle surfaces are similar
and the critical graph is intrinsic to surface, the surface segmentation results are very
consistent. It provides a stable surface registration scheme for lateral ventricular surfaces.

In our experiments, we compared ventricular surface models extracted from 3D brain MRI
scans of 11 HIV/AIDS individuals and 8 control subjects [11]. After surface registration, we
computed the surface Jacobian matrix and applied multivariate tensor-based statistics to
study differences in ventricular surface morphometry. We ran a permutation test with 5000
random assignments of subjects to groups to estimate the statistical significance of the areas
with group differences in surface morphometry. We also used a statistical threshold of p =
0.05 at each surface point to estimate the overall significance of the experimental results by
non-parametric permutation test [10]. The experimental results are shown in Figure 1(e).
Although sample sizes are small, we still detected large statistically significant areas,
consistent with prior findings [11]. The overall statistical significance p-values, based on
permutation testing, were 0.0022 for the left lateral ventricle and 0.008 for the right lateral
ventricle.

3.3 Multivariate Tensor-Based Morphometry on Cortical Surfaces of Subjects with Williams
Syndrome

We also applied our framework to a cortical surface morphometry study of the brain. We
analyzed cortical surface models extracted from 3D brain MRI scans of 40 WS individuals
and 40 healthy control subjects [10]. We selected a set of 10 landmark curves: the Central
Sulcus, Superior Temporal Sulcus Main Body, Inferior Frontal Sulcus, Middle Frontal
Sulcus, Inferior Temporal Sulcus, Secondary Intermediate Sulcus, Transverse Occipital
Sulcus, Inferior Callosal Outline Segment, Superior Rostral Sulcus, and Subparietal Sulcus.
The definitions of these anatomical lines are reported in [12]. After we cut the cortical
surface open along the selected landmark curves, a cortical surface became topologically
equivalent to an open boundary genus-9 surface. With holomorphic one-forms, the surface
can be conformally mapped to an annulus with 8 concentric arcs [6]. Based on surface
conformal parameterization, we use the landmark curves as the boundary condition and
perform a constrained harmonic map to register the cortical surfaces. For each point on the
cortical surface, we ran a permutation test (non-parametric t test) with 5, 000 random
assignments of subjects to groups to estimate the statistical significance of the areas with
group differences in surface morphometry. Also, given a statistical threshold of p=0.05 at
each surface point, we applied permutation test to the overall rejection areas (i.e., using the
suprathreshold area statistic) to evaluate the overall significance of the experimental results
[9].
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After fixing the template parametrization, we used Log-Euclidean metrics to establish a
metric on the surface deformation tensors at each point, and conducted a permutation test on
the suprathreshold area of the resulting Hotellings T2 statistics. The statistical map is shown
in Figure 2(a). The threshold for significance at each surface point was chosen to be p=0.05.
The permutation-based overall significance p values, corrected for multiple comparisons,
were p=0.0001 for the right hemisphere and 0.0002 for the left hemisphere, respectively.

3.4 Comparison with Other TBM methods
To explore whether our multivariate statistics provided extra power when running TBM on
the surface data, in each experiment, we also conducted three additional statistical tests
based on different tensor-based statistics derived from the Jacobian matrix. The other
statistics we studied were: (1) the pair of eigenvalues of the Jacobian matrix, treated as a 2-
dimensional vector; (2) the determinant of Jacobian matrix; and (3) the largest eigenvalue of
Jacobian matrix. For statistics (2) and (3), we applied a Students t test to compute the group
mean difference at each surface point. In case (1), we used Hotelling’s T2 statistics to
compute the group mean difference. For the three new statistics, their calculated statistical
maps are shown in Figure 1(b)-(d), 1(f)-(h), and 2 (b)-(c), respectively. For each statistic, we
also computed the overall p-values (see Table 1). In each experiment, the overall
localization and spatial pattern of surface abnormalities detected by different tensor-based
surface statistics were highly consistent. The experiments also strongly suggested that the
newly proposed multivariate TBM method has more detection power in terms of effect size
(and the area with suprathreshold statistics), probably because it captures more directional
and rotational information when measuring geometric differences.
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Fig. 1.
(a) & (b) illustrate canonical conformal parameterization results. (c)-(j) show statistical p-
map results of various TBMs on (1) a group of hippocampal surfaces from 12 AD patients
and 14 matched controls((c)-(f)); (2) a group of lateral ventricular surfaces from 11 HIV/
AIDS patients and 8 matched controls((g)-(j)). On the color-coded scale, non-blue colors
denote the vertices where there is a significant statistical difference, at the p = 0.05 level.
Multivariate TBM detected anatomical differences more powerfully than other TBM
statistics. Overall statistical significance values (corrected for multiple comparisons) are
listed in Table 1.
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Fig. 2.
(a)-(d) illustrate the slit map conformal parameterization on a right hemisphere cortical
surface with 10 selected landmark curves. (e)-(h) are illustrative the statistical p-map results
of multivariate TBM and other surface TBM for a cortical surface dataset from 40 WS
patients and 40 matched control subjects. The color-coded scale is the same as the one in
Figure 1, where non-blue colors denote the vertices where there is a significant statistical
difference, at the p = 0.05 level. Multivariate statistics on the surface Jacobian matrix tend to
detect group differences with the greatest effect sizes. Overall statistical significance values
(corrected for multiple comparisons) are listed in Table 1.

Wang et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 June 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang et al. Page 9

Table 1

Permutation-based overall significance p value for three experiments. (J is the Jacobian matrix and EV stands
for Eigenvalue. To detect group differences, it was advantageous to use the full tensor, or its two eigenvalues
together; with simpler local measures based on surface area, group differences were missed. )

Full Matrix Determinant of J Largest EV of J Pair of EV of J

Left Hippo Surface 0.0198 0.1446 0.1016 0.0474

Right Hippo Surface 0.0410 0.3600 0.3492 0.0688

Left Vent Surface 0.0028 0.0330 0.0098 0.0084

Right Vent Surface 0.0066 0.0448 0.0120 0.0226

Left Cortex 0.0002 0.1933 0.1627 0.0003

Right Cortex 0.0001 0.1366 0.1201 0.0002
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