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                IT has been known for more than two decades that mam-
malian birth weight is negatively correlated to adulthood 

health. Infants with low birth weight (LBW) are more likely 
to develop adult-onset hypertension, diabetes, cardiovascu-
lar disease, and other metabolic syndromes ( 1  –  4 ). These 
observations have led to the hypothesis of  “ fetal origin of 
adult disease. ”  This hypothesis suggests that poor embry-
onic and fetal environments lead to LBW, which can go on 
to induce structural and functional abnormalities that cause 
permanently altered function of key organs ,  such as the kid-
ney, heart ,  and pancreas ( 1  –  6 ). However, some studies have 
shown that these abnormalities may not appear in LBW 
infants until later in life (e  g  , ( 7  –  9 )). More importantly, 
 although    some studies show the direct association between 
LBW and adult health, a considerable amount of evidence 
shows that the negative infl uence of LBW on later health 
is not apparent unless postnatal growth rate is taken into 
account and postnatal weight is adjusted (see reviews in 
( 2 , 10 , 11 )). Attempting to combine the infl uence of LBW 
and postnatal growth, Hale and Barker ( 11  –  14 ) refi ned the 
 “ fetal origin hypothesis ”  to propose a  “ thrifty phenotype 
hypothesis .  ”    This hypothesis suggests that when the prena-
tal nutritional environment is poor, adaptive responses will 
optimize the growth of important organs, such as the brain, 
to the detriment of other organs, leading to LBW. However, 
the adaptations will be detrimental when nutrition is en-
riched and growth rates increase in the postnatal environ-
ment. Lucas  and colleagues    ( 10 ) further postulated,  “ when 
size in early life is related to later health outcomes only after 

adjustment for current size, it is probably the change in size 
between these points (postnatal centile crossing) rather than 
fetal biology that is implicated. ”  This postulation, along 
with the  “ thrifty phenotype hypothesis ,  ”    has been well sup-
ported by empirical observations. Many animal and clinical 
studies have shown that the catch-up growth, referring to 
that which allows infants with LBW to reach or exceed nor-
mal body weight later in life, increases the risk factor for 
adult diseases and shortened life spans ( 15  –  23 ). 

 Many efforts have been made toward an understanding 
of the  “ dangerous catch-up growth ” ( 11 ). Several empirical 
studies revealed possible molecular and cellular mecha-
nisms of the detrimental effects of catch-up growth 
( 8 , 17 , 24 ), such as telomere attrition, reduction of  β -cell 
mass, impaired antioxidant activities, and so on. But these 
studies were unable to reveal why it is that LBW-induced 
fast growth in a rich postnatal environment can yield ad-
verse consequences later in life. Life history theories and 
empirical data have suggested the existence of trade-offs 
between early growth and later health ( 25  –  27 ), but the cur-
rency and detailed mechanisms of the trade-offs remain un-
clear. Several regression models have been proposed for 
analyzing the correlation between later health outcomes and 
early development variables ( 10 ), but no theoretical frame-
work exists to offer quantitative guidelines as to how later 
health outcomes should be regressed on independent vari-
ables ,  such as birth weight, prenatal and postnatal growth 
rates, adult body mass, or others. In this paper, we present a 
general theoretical model for elucidating the trade-offs between 
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catch-up growth and health maintenance in mammals. 
Based on the fundamental principles of energy conservation 
and organisms ’  energy allocation strategies, our model ana-
lyzes the energetic efforts that an organism will make for 
growth and health maintenance in different sets of pre  natal 
and post  natal environments   and then makes quantitative 
and testable predictions on how growth rates, birth weights, 
adult body masses, and energy budgets affect that organ-
ism’s health outcome, aging ,  and life span. Specifi cally, the 
model shows that if an individual with LBW has normal 
body mass later in life, then this individual must have expe-
rienced relatively faster post  natal growth.    Because  growth 
is energetically costly, this accelerated growth indicates that 
extra energy, which would otherwise be spent on somatic 
maintenance, will be channeled to growth, leading to higher 
levels of molecular or cellular damage. Thus, the individual 
with LBW and normal adult body mass will reach a certain 
mass-specifi c threshold of accumulated damage sooner, 
which will cause an earlier onset of certain diseases or of 
death.  

 M ethods  
 The defi nition of LBW varies   and depends on the species 

and population under investigation. Many researchers have 
used the cut  off value of birth weight percentile,  for example,    
the 10th percentile ( 10 , 28 ), whereas others have used the 
average birth weight of the population or species to discern 
an absolute value for normal weight   below which LBW is 
defi ned (e  g  , see ( 2 )). For example, in a study in Australia, 
the mean birth weight ( SD ) among 317 human infants was 
2.712   ±   0.4 kg, and 35% had been defi ned as  LBW    (  less 
than 2.5 kg)   ( 29 ); the same value, 2.5 kg, was used in stud-
ies of populations in India and Finland ( 2 , 30 ). As far as we 
know, no studies have normalized birth weight data with 
respect to parents ’  weights, although they are known to be 
correlated. Many studies have considered height and BMI 
as indices of body size (e  g  , see ( 2 , 28 , 30 )), but in this model ,  
we use body weight as the sole index. This method offers a 
departure point for more detailed models involving height. 
It should also be clarifi ed that the coarse-grained model pre-
sented here only examines cases in which LBW is the sole 
abnormality, and LBW is usually caused by constrained 
fetal nutrient supply as investigated in many animal and 
clinical experiments (e  g ,    see ( 26 , 31 )). The LBW entangled 
with other birth diseases that are commonly attributed to 
non-nutritional factors, such as radiation, cigarette expo-
sure,    etc. , are not discussed here. 

 Numerous aging theories exist, with some of the most 
popular being mutation accumulation ( 32 ), antagonistic 
pleiotropy ( 33 ), disposable soma ( 34 ), and recently, buffer-
ing mechanisms ( 35 ). Here, we focus and elaborate on the 
oxidative     stress theory of aging, (e  g  , see  (  36  41 ), another 
leading theory amenable to theoretical approaches. This the-
ory proposes that the dissipative mechanisms of oxidative 

metabolism and their subsequent deleterious productions   
(e  g  , reactive oxygen species    [ ROS ] )   cause various forms of 
molecular and cellular damage in nucleic acids, proteins, 
membranes, and mitochondria   among others. Although 
organisms have effi cient mechanisms to scavenge for ROS 
and repair or remove damaged molecules; some detrimental 
effects remain and accumulate   and have become associated 
with the process of aging ( 36  –  41 ). Thus, we make the fol-
lowing simplifying assumptions: 

 (I) We assume that the rate of damage,  H  (in dimension of 
damaged mass/time), is proportional to the organism’s met-
abolic rate (oxygen consumption rate),  B ,    that is ,  H  =  η  B , 
where  η  is a constant in its dimension of mass/energy within 
a taxon.  η  is determined by two factors: the proportion of 
the dissipated metabolic energy that causes damage   and the 
amount of biomass, such as polymeric linkage, that can be 
damaged by one unit of energy (see details in  Appendix I ). 
Here, with the fi rst order of approximation, both  H  and  η  in 
this general model are collective quantities, which      average 
over the damages in key organs and/or tissues contributing 
to aging and death. A more detailed model dealing with spe-
cifi c types of damage, such as DNA mutation or protein 
degradation in a specifi c key organ, will have specifi c values 
of  H  and  η . 

 (II) We assume that the biological pathways for maintain-
ing organisms ’  integrities (e  g  , repairing damage and error  
   checking) require metabolic energy   and that the rate of 
maintenance,  P    (in units of repaired mass/time), is propor-
tional to the rate of energy allocated to maintenance,  B  maint , 
with a coeffi cient,  ρ , which is a constant within a taxon (in 
dimension of mass/energy),    that is ,  P  =  ρ  B  maint . Similar to 
 η ,  ρ  is the product of two factors: the proportion of  B  maint  
that is spent on repair mechanisms   and the amount of dam-
aged biomass that can be repaired by one unit of energy. 

 (III) The oxidative     stress theory of aging associates ac-
cumulated damage with the process of aging, allowing the 
assumption that the degree of aging can be measured by the 
fraction (percentage),  F , of body mass that is damaged. 
When a critical value of  F  is reached,  F  =  F  C , an organism 
will die. Again,  F  C  is assumed to be a constant within a 
taxon. 

 Here, we defi ne a dimensionless constant,  ε  =  ρ / η    , as the 
ratio of repair coeffi cient to damage coeffi cient. This ratio is 
assumed to be a constant within a taxon. Under normal con-
ditions in aging mammals, where accumulated damage in-
creases ( P  <  H ),  ε  is less than 1, assuming  B  maint  =  B  in the 
adulthood (see    later ). However, under special conditions, as 
in the processes of re  juvenilization ( P  >  H ) and re  genera-
tion ( P  >  H )   or in the case of some ectotherms that seem not 
to age or to age very slowly ( P   ≈   H ),   ε   ≥  1 , because  B  maint   ≤  
 B . It is diffi cult to calculate the exact value of  ε  from the fi rst 
principles of physics and chemistry. However, an estimation 
based on some biological constants gives a lower bound of 
0.99 (   s ee  Appendix I   ). Although there is no quantitative em-
pirical data to test this prediction, there is limited qualitative 
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experimental evidence that shows repair mechanisms hav-
ing very high effi ciency. First of all, there exist highly effi -
cient scavenging systems in organisms to eliminate ROS 
generation, such as superoxide dismutase   enzymes, perox-
iredoxins, oxidized cyochorome c ,  and cytochrome oxidase, 
which effi ciently lower the ROS damage (see review 
in ( 40 , 42 ). Second  , there exist effi cient repair/removal 
mechanisms for the macro  molecular targets of ROS dam-
age, including DNA, proteins, and lipids (e  g ,    see review in 
( 38 , 40 , 43 )). For example, oxidized DNA bases are removed 
by base excision mechanisms, and DNA polymerase en-
zymes are able to identify and correct most types of errors. 
The oxidized methionine residues of proteins can be repaired 
by the enzyme methionine sulfoxide reductase, and oxidized 
proteins that cannot be repaired are removed by proteolysis   
either via lysosomal degradation or via the proteasome. In 
the case of membranes, three mechanisms are involved in 
effi cient protection: lipid repair, lipid replacement ,  and 
scavenging of lipid peroxidation  –    derived end products. 

 Based on Assumptions I and II, the accumulated net damage 
at age  T  can be estimated as   maintd d

T T

0 0
(H P) t ( B B ) t . 

Mathematically, the lower bound of the integral,  t  = 0, 
should start from conception. For mammals in early stages 
of pregnancy, particularly the embryonic period, oxygen con-
centrations in the embryo are particularly low, protecting the 
processes of blastulation and normal cell differentiation from 
oxidative stress ( 44 , 45 ). So, we assume that the damage rate, 
 H , is negligible during the embryonic period (e  g  , for human, 
the fi rst 7 weeks from fertilization), and the lower bound of 
the integral above,  t  = 0, starts at the beginning of the fetal pe-
riod   after the precursors of the major organs are formed. Re-
laxation of this assumption will not affect the conclusion of 

the model. Together, the fraction of the damaged body mass at 

time,  T , is   F T B B t m T
T

( ) ( )dmaint0
= η ρ-∫ / ( ) , where  m ( T ) is 

the body mass at age  T . This equation can be rewritten as  

D T B B t m T( ) ( ) / ( ),= ∫ − ε× maint d
0

T

  (1)

where,  D ( T ) =  F ( T )/ η , and again,  ε  =  ρ / η  is the ratio of 
repair coeffi cient to damage coeffi cient.  D ( T ) can be con-
sidered the recalibrated mass-specifi c net damage   and is in 
dimensions of energy/mass. 

 To carry out the calculation of    equation (1) , we need the 
detailed information of  B  and  B  maint  as functions of body 
mass and age over ontogeny. West    and colleagues  ( 46 ) pro-
posed an ontogenetic growth model, which suggests that 
during growth, the whole-organism metabolic rate,  B , is 
partitioned between the rate of energy allocated to synthe-
size new biomass,  B  syn , and the rate of energy allocated to 
maintain existing biomass  B  maint ,    that is ,  B  =  B  syn  +  B  maint . 
The fi rst term can be expressed as  B  syn  =  E  m  d m /d t , where 
d m /d t  is the growth rate and  E m   is the amount of metabolic 
energy required to synthesize a unit of biomass. So the term, 
  B    syn  , corresponds to the  “ organizational work (or override) 
of growth ”  ( 47 , 48 ). The second term can be expressed as 

 B  maint  =  B  m  m , where the rate of energy allocated to mainte-
nance,  B  maint , is assumed to be linearly proportional to body 
mass   because total cell number scales linearly with body 
mass ,  and   on average, each cell requires approximately the 
same power for maintenance. Over ontogeny, the metabolic 
rate,  B , scales with body mass,  m , as  B  =  B  0  m  3/4 , where  B  0  is 
a normalization constant for a given taxon. This scaling re-
lationship is predicted from allometric theories and sup-
ported by data on a diverse set of organisms, including 
mammals, birds, and fi sh ( 47 , 49 , 50 ). Then the growth equa-
tion can be written as

  E
m

t
B m B m.m 0 m

d

d
3/4= -  (2)  

 When growth stops,    that is , d m /d t  = 0, and an organism 
reaches its asymptotic mass,  M ,    equation (2)  gives  B  0  M  3/4  = 
 B  m  M    and  B  m  =  B  0  M  −1/4 . 

 The energy partition,  equation (2)   , applies to both prenatal 
and postnatal growth (see ( 49 , 51 ) and  Appendix II ). Solving 
 equation (2)    with two different sets of parameters yields the 
curves of prenatal and postnatal growth,  m  pre ( t ) and  m  post ( t ):

  m t m /m mf

B t

pre 0
1/4

4

0( ) 1 ( ) e= − − −1 ( )0 0
1 44/ / /,

/

,E mm pre

 (3a) 

  m t m M M
B t E Mm

post e post( ) ( / ) ,/ / / /,
/

= − − ( )−1 1 0
1 4 4

4
0

1 4

 (3b) 

where  m f   is the initial mass of fetus;  m  0  is the birth mass, 
which is the asymptotic mass in the prenatal curve,    equation 
(3a) , but the initial mass in postnatal curve    equation (3b) ;  M  is 
the adult mass; and  E m   ,  pre  and  E m   ,  post  are the energies required 
to synthesize one unit of body mass prenatally and postna-
tally, respectively. These variables consider the energy for 
biosynthesis of tissue macromolecules from monomers, the 
cost of transport of molecules into and within cells, the cost 
of mechanical separation of nucleic acid strands and daugh-
ter cells during mitosis,    etc.  ( 48 , 52  –  54 ).  E m   ,  pre  and  E m   ,post  
are different in principle   as they consider different growth 
environments. Empirical data also show that  E m   ,post  is 
usually larger than  E m   ,  pre  for a given species (( 51 ) and 
 Appendix II   ). 

 Based on    equation (2)  when there is no growth, the rate 
of energy for maintenance,  B  maint , equals  B . So  equation (1)  

  becomes   D T B t m t
T

( ) ( ) / ( )= − ×∫ 1
0

ε d  . But during growth, 
a considerable amount of energy is allocated to biosynthesis   
and  B  maint  =  B  −  B  syn  =  B  −  E  m  d m /d t . Substituting this re-

lationship into  equation (1)    gives     
0

( ) [ (
T

mD T B B E

 
f 3 / 4

0 pre ,pre0
d / d )]d / ( ) (1 ) ( ) d / ( )

T

mm t t m T B m t t m T E  
0

f f 0

( )3 / 4
0 post ,postd / ( ) (1 ) ( ) d / ( )

m T m T

mm T m
m m T B m t t m T E

d m /m( T ) at age,  T , after birth, where  T f   is the length of the 
fetal period.    Because  the mass ratios,  m f  / m  0    and  m  0 / M , are 
very small, the integral in the fi rst and third terms of this 

equation, which have the form of   m t t3 4/ ( )d∫  , can be calcu-
lated and simplifi ed to be   m T M T T0

3 4 3 4/ / ( )f fand −   approxi-
mately,    that is ,  m  pre ( t ) and  m  post ( t ) can be treated as constants 
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 m  0  and  M  in the integrations (see details in  Appendix III ). 
Note: this equation can be integrated accurately, and similar 
conclusion can be drawn, but this approximation yields a sim-
pler equation and clear biological meanings. The second and 
fourth terms of the equation are simply  ε E  m ,pre  ( m  0  −  m  f )/ m ( T ) 
and  ε  E  m,post  ( m ( T ) −  m  0 )/ m ( T ). Together, we have the recali-
brated mass-specifi c net damage at age  T  after birth,  D ( T ) 

 

D T B M T T m T

B m T m T

E mm

( ) ( ) ( ) / ( )

( ) / ( )

(

/

/

= − −

+ −
+

1

1

0
3 4

0 0
3 4

0

ε

ε
ε

f

f

,pre −−

+ −

m m T

E m T m m Tm

f

,post

) / ( )

( ( ) ) / ( ).ε 0  

(4)

  

  Equation (4)  is the major result of the model. In this equa-
tion, except for the repair coeffi cient to damage coeffi cients 
ratio,  ε , all other parameters, namely, adult mass,  M , birth 
mass,  m  0 , initial fetus mass,  m  f , metabolic normalization 
constant,  B  0 , energy to synthesize one unit of biomass,  E m   ,  pre  
and  E m   ,  post , and length of fetal period,  T  f , are not free param-
eters   and can be independently measured for a given species. 
In the following section, we will show several predictions of 
 equation (4)    and suggest how to measure  ε . The symbol, bio-
logical meaning, numerical values, and units of the parame-
ters and variables in the model are listed in  Table 1 .       

 R esults and  D iscussion   

 General Pattern of Aging and the Origin of Scaling 
Laws of Life Span 

 In  Figure 1 , we plot  D ( t ) in  equation (4)     and    the mass-spe-
cifi c net damage as a function of age,  t . We have shown that 

during growth,  D  increases fast   but that it slows down after 
the adult mass is reached,    that is ,  m ( t ) =  M , and  D ( t ) becomes 
a linear function of  t , the slope of which is (1 −  ε )  B  0  M  −1/4 .     

 Using  equation (4)   , we can compare the rate of aging and 
the life span of two organisms within a taxon with adult body 
masses  M  1 , and  M  2 , respectively.  Equation (4)    predicts that the 
mass-specifi c net damage,  D ( T ), which refl ects the degree of 
aging, will have a different slope for each organism, (1  −     ε ) B  0  M  1, 

 2   −   1/4 . This is to say that the organism with larger adult mass 
ages more slowly   as the slope of  D ( T ) is smaller ( Figure 2 ).     

 According to Assumption III, when the life span of these two 
organisms, LS 1  and LS 2 ,    is  reached, they have the same mass-
specifi c net damage,  D  1 (LS 1 ) =  D  2 (LS 2 ). For animals within a 
taxon, the values of  ε ,  B  0 ,  E m   ,  and the mass ratios,  m  f / m  0  and 
 m  0 / M , are roughly the same, so this equation becomes 

 

D B M

B m T M

D

1 1 0 1
1 4

1

0 0
3 4

1

2 2

1

1

1

( ) ( )

( ) /

( ) (

/

,
/

LS LS

LS

1 f,1

= −

+ −

= = −

−ε

ε

εε

ε

)

( ) / .

/

,
/

B M

B m T M

0 2
1 4

2

0 0
3 4

21

−

+ −

LS

2 f,2   

  Equation (3a)  predicts that the length of fetal period,  T  f , 
scales with the birth mass,  m  0 , to a ¼ power,    that is , 
  T CE B mmf ,pre= / /

0 0
1 4  , where  C  = −4ln[1−( m  f  /  m  0 ) 1/4 ]( 49 ). 

This prediction is well supported by empirical data for 630 
species of mammals ( 49 ).    Because  the mass ratio  m  0 / M  is 
roughly the same within a taxon, we have 
  m T M m T M0,1 f,1 0,2 f,2

3 4
1

3 4
2

/ // /=  . Therefore the equation re-
duces to 

 M M 1  1 2  2LS LS− −=1 4 1 4/ / .  (5)  

 Table 1.        Symbols, Values, and Sources of the Parameters  

  Symbol Biological Meaning Value, Equation, and Dimension Source  

   H Rate of biomass damage In mass/time Assumption I 
  η Coeffi cient in equation  H  =  η  B In mass/energy Assumption I and  Appendix I  
  P Rate of biomass repairing In mass/time Assumption II 
  ρ Coeffi cient in equation  P  =  ρ  B  maint In mass/energy Assumption II 
  ε Ratio of repair/damage coeffi cients, ε  =  ρ / η Dimensionless;  ε  = 0.998  Appendix I  and  equation (8)  
  F The fraction of biomass that are damaged In percentage Assumption III 
  D The recalibrated mass-specifi c net damage In energy/mass  Equation (1)  
  B Metabolic rate In energy/time  Equation (2)  
  B  maint Rate of energy allocation to maintain existing biomass In energy/time  Equation (2)  
  B  syn Rate of energy allocated to synthesize new biomass In energy/time  Equation (2)  
  B  0 Normalization constant 0.0223 W/g 0.75 ( 55 ) 
  E m   ,post Energy required to synthesize one unit of biomass during postnatal growth 4,300 J/g  Appendix I ,  equation (3a) , and  Table 2  
  E m   ,pre Energy required to synthesize one unit of biomass during prenatal growth 1,100 J/g  Appendix I ,  equation (3a) , and  Table 2  
  m  0 Birth mass In grams  Equation (3a)  3b  
  M Adult mass In grams (600 g for rat)  Equation (3a)  3b  
  m  f Initial mass of fetus  ~ 0.1 g (for rat) Estimated from ( 56 ) 
  T  f Length of fetal period  ~ 20 days (for rat) Reference ( 56 ) 
 LS Life span In days  Equation (5)  
  C Normalization of scaling relationship between gestation length and birth 

     mass   T Cmf 0
1 4/  

 C  = −4 ln[1 − ( m  f / m  0 ) 1/4 ] Reference ( 49 ) and  Equation (7)  

  µ Ratio of birth mass and adult mass  µ  =  m  0 / M  Equation (8)  
  r Ratio of birth masses of catch-up growth and control animals  r  =  m  0,1 / m 0,2  Equation (10)  
  R Ratio of adult masses of catch-up growth and control animals  R  =  M  1 / M  2  Equation (10)   
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  Equation (5)  predicts that the life spans of the organisms 
within a taxon will scale with the body mass to a  ¼     power, 
 that is   , LS  ~   M  1/4 . Empirical data on life span and body 
mass for mammals, birds, fi sh ,  and invertebrates strongly 
support this prediction ( 57  –  59 ).   

 Effects of the Catch-Up Growth on Aging and Life Span 
 In this section ,  we consider the case of catch-up growth   in 

which two animals of the same species have the same initial 
fetus mass,  m  f , but prenatal growth of    A nimal 1 is slower 
than that of    A nimal 2, so that they have different birth masses, 
 m  0,  1  <  m  0,  2 . In contrast, postnatal growth is faster for    A nimal 
1 than for    A nimal 2, so that after a certain age,  τ , they have 
the same mass,  m  1 ( T  >  τ ) =  m  2 ( T  >  τ )   and ,  consequently, the 
same adult mass,  M  1  =  M  2 . We are going to discuss the net 
mass-specifi c damage,  D , of these two animals at the same 
age after birth,  T      −    T  f . To simplify the discussion without los-
ing generality, we consider the case in adulthood,    that is , 
 m  1 ( T    −      T  f ) =  m  2 ( T    −      T  f ) =  M . Similar conclusions can be 
drawn for the juvenile,    that is ,  m  1 ( T    −      T  f ) =  m  2 ( T    −      T  f ) <  M . 

 According to    equation (4) , when  m ( T  >  τ ) =  M , the mass-
specifi c net damage,  D , becomes 

 

D T B M T T

B m T M

E m m Mm

( ) ( ) ( )

( ) /

( ) /

/

/

= − −

+ −
+ −

+

−1

1

0
1 4

0 0
3 4

0

ε

ε
ε

f

f

,pre f

εεE M m Mm,post ( ) / .− 0  

(6)

  

 First, we compare each term in  equation (6)  for Animal 1, 
 D  1 ( T ) ,  and Animal 2,  D  2 ( T ) ,  qualitatively.

   (1)     Because   M  1  =  M  2 , the fi rst term of  D  1  and  D  2  are equal 
at the same ages after birth,  T    −      T  f  .     

  (2)   Because     m  0,1  <  m  0,2 , the second term of  D  1  is smaller 
than the one of  D  2 .  

  (3)   Because     m  f  is the same   and  m  0,  1  <  m  0,  2 , the third term of 
 D  1  is smaller than the one of  D  2 .  

  (4)   Because     M  is the same   and  m  0,  1  <  m  0,  2 , the last term of 
 D  1  is larger than the one of  D  2 .   

  The second and the third term s  of  D  1 , which are asso-
ciated with prenatal growth, are smaller than those of  D  2 . 
The first and the last terms of  D  1 , which are associated 
with postnatal growth, are either the same as or larger 
than the ones of  D  2 . This means that   LBW   and its subse-
quent catch -   up growth generate   more mass-specific 
damage during the postnatal growth (   T erm 4) in    A nimal 
1, but this excess may be compromised by the difference 
in prenatal growth (   T erms 2 and 3), so that the overall 
effect of LBW and catch-up growth on damage  D  may 
be zero. 

 Now, we compare  D  1  and  D  2  quantitatively. The differ-
ence between them can be calculated as 

 

D T D T B m m T M

E Em m

1 2 0
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ε
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 Figure 1.        Growth      curve (solid),  m ( t ), and mass-specifi c net damage (dash),  D ( t ), of a mammal whose adult mass is about 600 g  . The inset is an expansion of the 
prenatal growth and damage curves   and is calculated from    equation (4)  using prenatal growth variables and parameters. The values of the parameters in  equation (4)   , 
which are used to produce the curves, are given in  Table 1 .    
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 Recalling that the length of fetal period,  T  f , scales with the 
birth mass,  m  0 , to a ¼ power,  that is   ,   T CE B mmf ,pre= / /

0 0
1 4  , 

where  C  = −4ln[1−( m  f  /  m  0 ) 1/4 ] ( 49 ), we rewrite the equation 
above as 
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(7)

  
    Equation (7)    predicts that  D  1  >  D  2    if  ε  >  C /( E  m,post / E  m,pre  

+  C  − 1). Data from 18 species of mammals with adult body 
mass ranging from 20 g   to      approximately  660 kg show 
that  E m   ,  post  is always larger than  E m   ,  pre  and the ratio of 
 E m   ,  post / E m   ,  pre  = 4.07     ±   3.17 (median = 2.84,  N    =   18; see 
 Appendix II   ). This ratio means that it is energetically 
cheaper to synthesize one unit of prenatal biomass than 
postnatal biomass. This ratio also explains why, after the 
asymptotic mass is corrected, the prenatal growth rate is 
faster than the postnatal growth rate (( 51 ) and  Appendix II   ). 
Taking  E m   ,  post / E m   ,  pre  = 4, we have the condition for  D  1  >  D  2 : 
   The  repair coeffi cient to damage coeffi cient ratio,  ε , must 
satisfy  ε  >  C /( C  + 3). Taking the ratio of initial mass of 
fetus and birth mass,   m    f    /  m  0   ≈  0.1 – 0.5%  ( Table 1 ),  C  is ap-
proximately equal to 0.8, therefore ,   ε  > 0.21. As we estimate 
in  Appendix I , most mammals have effi cient repair mecha-
nisms   and a high value of  ε  with a lower bound of  approxi-
mately        0.99, so the condition,  ε  > 0.21, indicates that in 
most mammals ,  the catch-up growth causes more damage 

and a poorer health outcome,    that is ,  D  1  >  D  2 . Although the 
ratio  E m   ,  post / E m   ,  pre  is shown to be >1 for all 18 mammalian 
species tested, the rare case may exist in which a given spe-
cies will have the ratio  E m   ,  post / E m   ,  pre  equal to or smaller 
than 1. In this case, the condition for  D  1  >  D  2  becomes  ε  > 
1, indicating that the mammalian species under normal 
conditions ( ε  <   1) would not show any detrimental effects 
of catch-up growth. 

 In  Figure 3 , we show the difference in  D ( t ) that is due to 
catch-up growth. We consider two animals of the same spe-
cies. The birth mass of Animal 1 (catch-up growth, dashed 
curves) is 15 g  , whereas the one of    A nimal 2 (control, solid 
curves) is 45 g  . Animal 1 grows slower than    A nimal 2 pre-
natally but faster postnatally (inset of  Figure 3 )   so that they 
vary in birth mass but have the same adult mass (600 g  , inset 
of  Figure 3 ). As shown in  Figure 3 , after the adult mass is 
reached,  that is   ,  m ( t  >  τ ) =  M ,  D ( t ) still increases with time. 
This is because  ε  is not 1, so the slope of  D ( t ) in adulthood, 
(1 −  ε )  B  0  M   −1/4 , is not zero.  Figure 3  also shows that once 
the adult mass has been reached by both individuals, their 
rates of damage become the same; the same adult mass,  M , 
gives the same slope of  D ( t ), and the larger  D  in    A nimal 1 is 
due to the faster growth over ontogeny.     

 Based on Assumption III, when two animals reach their 
life span, LS 1  and LS 2 , the mass-specifi c net damage 
 D  1 (LS 1 ) =  D  2 (LS 2 ). Similarly ,  we can assume that a certain 
disease occurs at age  t , when the damage has accumulated 
to a threshold,  that is   ,  D  1 ( t ) =  D  2 ( t ) at the onset age of the 
disease,  t   . Based on this assumption, we can estimate the 

  

 Figure 2.        The damage curves for animals whose adult masses are 600   and 60,000 g   respectively. The horizontal dashed line is the hypothetic threshold of  D ( T ) at 
which organisms die (Assumption III). The vertical dashed lines are the life spans of these two organisms.    
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difference in life span or the onset age of a certain disease. 
Using    equation (6)  and   T CE B mmf ,pre= / /

0 0
1 4  ,   we derive 
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  where  µ  =  m  0 / M    is the ratio of birth mass and adult mass. 
  Equation (8)  makes a quantitative and testable predic-

tion of how differences in birth mass infl uence the life 
span (or the onset age of a certain disease) in the case of 
catch-up growth. It also predicts that within a taxon, 
where the repair coeffi cient to damage coeffi cient ratio,  ε , 
and energy required to synthesize one unit of biomass, 
 E m  , are roughly the same   for the same difference in birth 
mass ratio ( µ  2    −      µ  1 ), the difference in life     span scales with 
the adult mass,  M , to a ¼ power,  M  1/4 . Due to the lack of 
empirical data on the differences in life span, birth mass, 
growth rate ,  and adult mass, we cannot test the predic-
tions of    equation (8)  quantitatively. Nevertheless, its pre-
dictions are in qualitative agreement with the empirical 
observation. 

 In  Figure 4 , we show how the life-span difference, LS 2      −  
 LS 1 , depends on the value of  ε . When  ε  is close to 1, the 
life-span difference increases in the manner of  ε /(1 −  ε ). So, 
signifi cant differences between the life spans of control and 

catch-up growth animals require high values of  ε .  Equation 
(8)    offers a theoretical framework to  the  estimate value of  ε . 
Here, we give an example: Let us assume that for two 
groups of rats with adult mass  M  = 600 g  , the birth mass 
 m  2  = 45 g    and     m  1  = 15 g  ,    that is ,  µ  2  = 7.5% and  µ  1  = 2.5%, and 
the life-span difference LS 2      −   LS 1  is about    6  months,    that is , 
180 days. Taking  C   ~  0.8,  E m   ,  post   ~  4 , 300 J  /g  ,  E m   ,  pre   ~  1 , 100 
J  /g  , and  B  0  = 0.0223 W  /g   3/4 ,  equation (8)    gives  ε   ~  0.998   in 
agreement with the estimation of the lower bound of  ε , 0.99, 
in  Appendix I   .       

 Growth Rate and Life Span (or the onset age of diseases) 
 In this section ,  we discuss how life span or onset age of 

certain diseases is affected by growth rate. We consider sev-
eral general cases   in which the birth mass of    A nimal 1 is 
smaller than that of    A nimal 2,  m  0,  1  <  m  0,  2 , but the growth of 
   A nimal 1 can be slower, equal to, or faster than    A nimal 2. 
Consequently, the ratio of adult masses,  M  1 / M  2 , varies from 
smaller than 1 to larger than 1. According to Assumption 
III, animals from the same taxon have the same mass-spe-
cifi c damage,  D , when their life spans have been reached or 
a certain disease presents,  D  1 (LS 1 ) =  D  2 (LS 2 ). To simplify 
the calculation without losing generality, we take the ap-
proximation of    equation (6)    

  

 Figure 3.        The difference in mass-specifi c net damage,  D ( t ) ,  due to catch-up growth. The inset shows the growth curves of two animals of the same species. Both 
animals have the same adult mass (600 g  ). The birth mass of the catch-up growth animal (dashed line) is 15 g  , and the one of the control animal (solid line) is 45 g  . 
The curves are computed from  equation (4)    ;    the values of other parameters are listed in  Table 1 . Note: The catch-up growth animal (Animal 1) has slower prenatal 
growth than the control animal (Animal 2), so the total net damage is smaller in Animal 1. In    equation (6) , we compare the mass-specifi c damage in adulthood, and 
the mass in the denominator is adult mass,  M , which is the same for both individuals. So, the second and third terms in  equation (6)    of    A nimal 1, which represent the 
damages associated with prenatal growth, are smaller than those of Animal 2. However in this fi gure,  D ( t ) during prenatal growth is calculated as the total net damage 
divided by the prenatal masses at time  t , so the smaller total damage in Animal 1 is cancelled out by the smaller body mass of Animal 1. Therefore, the rate of mass-
specifi c damage,  D ( t ), during prenatal growth is almost the same in Animals 1 and 2   as shown in this fi gure.    
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    and LS >>  T  f , so comparing to the fi rst term, the second 
term is negligible; similarly,  M  −  m  0  >>  m  0  −  m  f    and  E m   ,post  
>  E m   ,  pre , so   comparing to the fourth term, the third term is 
negligible. Substituting the simplifi ed  equation (6)    into 
 D  1 (   LS  1 ) =  D  2 (   LS  2 ), we have 
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 We are going to discuss the predictions of    equation (9)  
for different growth rates of Animal 1 and Animal 2. 

 Case 1: The growth rates of Animal 1 and Animal 2 are 
such that the mass ratios of these two animals are the same, 
   that is ,  m  0,1 / M  1  =  m  0,2 / M  2 . In this case ,   equation (9)    reduces 
to   M M1

1 4
1 2

1 4
2 0− −− =/ /LS LS  .    Because    M M1

1 4
2

1 4− −>/ /  , 
 equation (9)    predicts that LS 1  < LS 2 . 

 Case 2: The growth rates of Animals 1 and 2 are such that 
 M  1  <  M  2 , but there is still a small amount of catch -   up growth 
so that  M  1  is not too small and  m  0,1 / M 1 <  m  0,2 / M  2 . In this 
case,   M M1

1 4
1 2

1 4
2 0− −− </ /LS LS        because   M M1

1 4
2

1 4− −>/ /  , 
 equation (9)    predicts that LS 1  < LS 2 . 

 Case 3: The growth rates of Animals 1 and 2 are such that  M  1  
is much smaller than  M  2    and  m  0,1  / M  1  >  m  0,2  / M  2 . In this case, 
   LS  1  can be larger, equal to, or smaller than    LS  2    depending on the 
specifi c values of the parameters and variables in  equation (9)   . 

 To compare the life spans of Animals 1 and 2 in these 
cases, we derive the ratio of life spans, LS 1 /LS 2 , from  equa-
tion (9)    and express it as a function of birth mass ratio,  r  = 
 m  0,1 / m  0,2 , and adult mass ratio,  R  =  M  1 / M  2 : 
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 The life-span ratio from    equation (10) , LS 1 /LS 2 , depends 
on the ratio of repair coeffi cient to damage coeffi cients,  ε , 
birth mass,  m  2 , adult mass,  M  2 , and life span, LS 2 , of Ani-
mal 2, which can be considered the control animal. For a 
given species with a given adult mass and life span,  equa-
tion (10)    predicts how the life-span ratio, LS 1 /LS 2 , of ex-
perimental (Animal 1) and control (Animal 2) groups will 
change with differing mass ratios,  R  and  r . 

 In  Figure 5 , we plot the life-span ratio as a function of 
adult mass ratio,  R  =  M  1 / M  2  ( Figure 5A ) ,  and birth mass 
ratio,  r  =  m  0,1 / m  0,2     ( Figure 5B ) ,  with a high value of  ε , 
0.998, which is estimated to cause a signifi cant difference 
between the life spans of control and catch-up growth ani-
mals ( equation (8)  and  Appendix I   ). From  Figure 5A , we 
see the following: ( a   ) when the birth mass ratio,  r , is smaller 
than 1 (dotted curve, smaller birth mass of the experimental 
animal), the life-span ratio is also smaller than 1 for a broad 
range of adult mass ratio,  R . In this case, larger  R  (larger  M  1  
and faster catch-up growth) leads to a smaller life-span ratio 
(short life span of Animal 1). Only when  R  is very small, 
   that is , when  M  1  is much smaller than  M  2  (slower growth, 
instead of catch-up growth, of Animal 1), the life-span ratio, 
LS 1 /LS 2 , would be larger than 1; ( b   ) when the birth mass 

  

 Figure 4.        Life-span difference versus birth mass ratio for four different adult masses. The curves are computed from    equation (8) . Parameter values for  equation 
(8)    are listed in  Table 1 .    
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ratio,  r , is larger than 1 (solid curve, larger birth mass of 
the experimental animal), the life-span ratio is larger than 
1 for a broad range of adult mass ratio,  R . Only when  R  is 
very large (Animal 1 grows much faster than Animal 2)   
would the life-span ratio be smaller than 1. ( c   ) When the 
birth mass ratio is equal to 1 (dashed curve), small  R  ( R  < 
1, slower growth of animal 1) leads to large life-span ra-
tio (LS 1 /LS 2  > 1)   and large  R  ( R  > 1, faster growth of 
animal 1) leads to small life-span ratio (LS 1 /LS 2  < 1). 
Similar conclusions can be drawn from  Figure 5B . Here, 
we use the life-span ratio as a measure of relative health 
status and maintenance efforts of Animals 1 and 2, so 

 Figure 5  also reveals the trade-off between growth rate and 
maintenance.     

 In summary, our model quantitatively predicts that ( a   ) 
inter  specifi cally, larger organisms age more slowly and that 
the life span of an organism is inversely proportional to its 
mass-specifi c metabolic rate; (   b ) within a species, an indi-
vidual experiencing catch-up growth will have a poorer 
health outcome and shorter life span than an individual not 
experiencing catch-up growth; and (   c ) the difference 
between life spans (or the age of certain disease onset) in 
control and catch-up growth individuals will increase with 
the birth mass ratio, and this difference is nonlinearly 

  

 Figure 5.        Life-span ratio of experimental and control animals. ( A )  Life -span ratio, LS 1 /LS 2  ,  as a function of adult mass ratio,  R  =  M  1 / M  2 , for different birth mass 
ratios,  r  =  m  0,1 / m 0,2. ( B ) Life-span ratio, LS 1 /LS 2  ,  as a function of birth mass ratio,  r  =  m  0,1 / m 0,2, for different adult mass ratios,  R  =  M  1 / M  2 . The curves are computed 
from    equation (10) . The life span and adult mass of the control animal, LS 2 ,  m  2 , and  M  2 , are taken to be 2 years, 45 g ,  and 600 g ,  respectively. Values of other param-
eters in  equation (10)  are listed in  Table 1 .    

 Table 2.        Data Required to Estimate Ratio  E   m ,post / E  m,pre   

  Species  M  (g)  k  post  (per day)  m  0  (g)  k  (per day)  E   m ,post / E  m,pre   

  Data from reference ( 51 ) 
 African antelope 37,800 0.0043 15,898.8 0.012 2.25 
 Cattle 661,000 0.0031 4,8050.1 0.012 2.01 
 Goat 59,700 0.0041 7,193.9 0.019 2.73 
 Guinea pig 982 0.0106 167.0 0.053 3.21 
 Elk 214,000 0.006 5,837.2 0.024 1.63 
 Human 61,300 0.0005 5,039.2 0.012 12.9 
 Snowshoe rabbit 1,570 0.0308 251.9 0.076 1.56 
 Rhesus monkey 7,990 0.0012 706.9 0.024 10.91 
 European rabbit 2,400 0.0228 817.3 0.073 2.45 
 Domestic sheep 70,500 0.0031 8,786.7 0.021 4.03 
 Olive baboon 8,060 0.0026 1,030.7 0.022 5.06 
 Wild boar 147,000 0.006 1,361.0 0.032 1.65 

 Data from references ( 46 ) and ( 48 ) for postnatal growth and reference ( 56 ) for prenatal growth 

 Species  E m   ,post  (J/g)  E m   ,pre  (J/g)  E   m ,post / E  m,pre  
 Mouse 4,898 1,672 2.93 
 Rat 4,276 1,098 3.89 
 Guinea pig 8,761 1,882 4.66 
 Rabbit 5,245 786 6.67 
 Pig 5,737 2,944 1.95 
 Cow 6,570 2,393 2.75  
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dependent on the repair coeffi cient to damage coeffi cient 
ratio, birth mass, adult mass, and life span of the control 
animal. These predictions are quantitatively and qualita-
tively supported by empirical observations   and offer a 
theoretical framework for future experimental designs 
and data analyses. 

 Our model proposes the detailed mechanism of the trade-
off between growth and health maintenance from an ener-
getic viewpoint   and makes a signifi cant contribution to life 
history theories of aging (e  g  , the disposable soma theory, 
( 34 , 60 )) by offering a quantitative framework with indepen-
dently measurable variables. The proposed mechanism 
agrees with empirical observations, for many researchers 
have found that individuals with catch-up growth have poor 
somatic maintenance, such as lower protein expressions of 
antioxidant enzymes, insulin insensitivity, shortened telo-
meres,    etc.  ( 4 , 15 , 17 , 21 , 22 , 24 , 61 ). The model presented 
here also makes quantitative and testable predictions, which 
are helpful for the analysis of empirical data and the design 
of future experiments. The effects of   LBW  , catch-up 
growth ,  and later body mass on health outcome and life 
span are entangled in the empirical data. Researchers have 
noticed that the positive or negative correlation between one 
of these variables and health outcome can be obscured by a 
negative or positive correlation between another one of 
these variables and health outcome ( 10 , 24 ). Because of this, 
Lucas    and colleagues  ( 10 )    have  suggested that we investi-
gate  “ whether postnatal growth infl uence s  later health in its 
own right or whether it is simply a modifying factor ”  of 
LBW. The authors proposed several regression models, 
which regress the later health outcome or life span on differ-
ent independent variables, including early body size, later 
body size ,  and interactions of the two. Our model gives the 
theoretical guidelines for these regression models. The re-
sults of our model confi rm the hypothesis of Lucas    and col-
leagues    that the adult health status cannot be predicted by 
birth mass alone ,    it is infl uenced by the whole growth tra-
jectory. A straightforward test of our model might begin 
with two cohorts of high and  LBW    individuals, each of 
which would be subdivided into two groups :    one experienc-
ing food restriction and the other being fed ad libitum. Al-
though some studies have been done along this vein, there 
has yet to be one like this, which measures all the relevant 
variables over ontogeny at once: growth rate, body mass, 
metabolic rate ,  and life span (or age at onset of a certain 
disease). Certainly, experiments that compound these anal-
yses will be of great interest to the fi eld aging research. Fi-
nally, the results of our model also suggest that human 
nutritional programs might need to reconsider their strate-
gies about catch-up growth. Individuals having what is 
deemed LBW should be particularly conscious of their di-
ets, insofar as they ration their food intake and make no at-
tempts to  “ bulk up .  ”    Empirical testing of our model’s 
predictions in human    participants  will provide further in-
sight as to how we can optimize health.    
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 Appendix I .    Estimation of the Lower Bound of the 
Repair Coeffi cient to Damage Coeffi cient Ratio, ε 

 The mass -   specifi c accumulated damaged at age  T  is 

  F T B B t m T
T

( ) ( ) / ( )= −∫ η ρ maint d
0

 . When the life span,    LS , 
is reached, it can be expressed approximately as  F (LS) = 
 η ( B  −  ε  B  maint ) × LS/ M ), where  ε  =  ρ / η . Solving this equa-

tion for  ε , we have   
maint

1
LS

FM
B B  . We now try to esti-

mate  ε  based on the quantities in this equation.    Because 
 the energy allocated to maintenance,  B  maint , is equal to 
(during adulthood) or smaller than (during ontogeny) 
total energy  B ,  B  maint  ≤  B . If we take  B  maint  =  B  in this 
equation, we will have an estimation of the lower bound 
of  ε : 

 
lower

1 1 .
LS LS

FM FM
B

B B
  

 As we defi ned in Assumption I,  η  is determined by two 
factors: the proportion of the dissipated metabolic energy 
that causes damage   and the amount of biomass, such as 
polymeric linkage, that can be damaged by one unit of en-
ergy. For the fi rst factor, it is estimated that approximately 



HOU ET AL.638

0.2 %  – 2% of the oxygen consumed by cells is converted by 
mitochondria to ROS ( 42 , 43 ). So, we assume that  ~ 1% of 
the metabolic energy is associated with cellular or molecu-
lar damage. For the second factor, the energy associated 
with one unit of biomass damage is comparable to the en-
ergy required for one unit of biomass biosynthesis, such as 
the free energy to synthesize polymeric linkages from 
monomers. Theoretical consideration based on the fi rst 
principles of biochemistry suggests that energy for biosyn-
thesis ranges from 260   to 690 J  /g   ( 48 , 52 , 53 , 62 ) with an av-
erage  ~  470 J  /g   (for wet mass). So, we assume that    1 g  of 
biomass is damaged by about 470 J  , giving 2.1   ×   10    − 3  g  /J  . 
Together,  η  = 1% × 2.1   ×   10    − 3  g  /J  . Substituting  η  into the 
lower bound of  ε  yields  ε  = 1 −  F  ×  M /(2.1 × 10 −5   B  × LS. 
Using the physiological data of mammals more specifi cally, 
humans,  M  = 70   kg,  B  = 100    W , and    LS  = 70 years, we have 
 ε  = 1− 0.015 ×  F , where  F  is the threshold for fraction of 
damage that causes death. So, even if  F  = 100%, which is 
biologically unrealistic,  ε  is still as high as 0.985. If  F  
ranges from 1% to 20%, then  ε  is estimated to range from 
0.99985 to 0.997. Note: this estimation is the lower bound 
of  ε , so the actual value of  ε  may be even higher.   

 Appendix ii: Equations and Parameters for Prenatal 
Growth 

 Based on empirical data from 36 species of bird and 18 
species of mammal, Ricklefs ( 51 ) has recently shown that 
the embryo mass growth curve can by described by sigmoi-
dal Gompertz functions. The Gompertz function has the fol-
lowing format: 

 0 0 f( ) exp[ ln( / ) exp( )],m t m m m kt
  (11)

where  m  0  and  m  f  are defi ned as in    equation (3a)  3b ,    that is , 
 m  0  is the asymptotic mass of the prenatal growth curve, and  m  f  
is the initial mass of fetus;  k  is a growth rate constant ( per  time    ). 
We are going to show that    equation (11)  and    equation (3a) , 

  m t m m mf

B t E mm

pre e ,pre( ) ( [ ( / ) ] )/ / / / /

= − − −1 1 0
1 4 4 4

0
0 0

1 4

 , which is 
also a sigmoidal function, are approximately equivalent ,  and 
consequently, the coeffi cients of the time-dependent term in 
these functions are the same,    that is ,   k B E mm= 0 0

1 44/ / / /
,pre  . 

 We take the natural logarithm transform of both equa-
tions and then let  µ  =  m  f / m  0  and   1/ 4

0 ,pre 0/ 4 / /mB t E m  . This 
way,    equation (11)  becomes ln[ m ( t )] = ln[ m  0 ] − ln[1/ µ ] × 
exp[− kt ], and    equation (3a)  becomes ln[ m ( t )] = ln[ m  0 ] + 4 
ln[1−(1− µ  1/4 ) × exp[− at ]]. Using the approximation ln(1 − 
 x ) ≈ −  x , when  x  << 1,  equation (3a)    can be further trans-
formed as ln[ m ( t )] = ln[ m  0 ] − 4[1− µ  1/4 ] × exp[− at ]. 

 Now, we compare the two equations transformed from 
   equation (11)  and  equation (3a)   : ln[ m ( t )] = ln[ m  0 ] − ln[1/ µ ] × 

exp[− kt ] and ln[ m ( t )] = ln[ m  0 ] − 4[1− µ  1/4 ] × exp[− at ]. Due 
to the approximation   ln(1 −  x ) ≈ −  x , the coeffi cient in 
 equation (3a)   , 4(1   −      µ  1/4 ), is slightly smaller than the coef-
fi cient in  equation (11)   , ln[1/ µ ], when  µ  is much smaller 
than 1. But these two equations have the same exponential 
time     dependence,    that is ,   

1/ 4
0 ,pre 0/ 4 / /mk B E m  . This rela-

tionship is in good agreement with empirical data   as Rick-
lefs ( 51 ) reported that embryo growth rate,  k , decreases as 
the   −     ¼    power of neonate size,  m  0 ,    that is ,  k   ~   m  0   −   1/4 . Simi-
larly, it can be proved that the postnatal growth rate,  k  post , 
can be expressed in terms of  E m   ,  post    and  M  (the adult mass) 
as  k  post  =  B  0  / 4 /  E  m,post / M  1/4    

 Ricklefs has estimated  k  post  and  k  for a broad range of 
mammals. From these values and the asymptotic values of 
pre- and post  natal Gompertz growth curves,  m  0  and  M , we 
can estimate the ratio of  E m   ,  post  and  E m   ,  pre    as  E   m ,post / E   m ,pre  
= ( m  0 / M ) 1/4  × ( k  post / K ). We also fi t  equations 3a  and  3b  
with the empirical curves for postnatal growth ( 46 , 48 ) 
and prenatal growth ( 56 ) and estimated values of  E m   ,post  
and  E m   ,pre  from these separated measured growth curves. 
In  Table 2 , we list the values of ratio  E   m ,post / E   m ,pre  from 
these estimations. The average value of the ratio is 4.07  ±  
3.17 (median = 2.84,  N  = 18). This ratio means that it is 
energetically cheaper to synthesize one unit of prenatal 
biomass than one unit of postnatal biomass. Lower ener-
getic costs of the fetus may be due to the facts that ( a   ) the 
indirect cost of fetal growth, such as the cost of transport-
ing nutrients and energy, is partially paid by the mother  
and    (   b ) fetal cells and organs are less well differentiated 
and developed, therefore requiring less energy to grow.       

 Appendix III: Approximation of Integral   ( )d
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  where a =  B  0 / E  m . 

 The fi rst term,   1/ 4 1/ 44 21/ 4 1/ 4 212e (1 ) 6e (1 )
at at

M MM

 
3
1/ 44 1/ 4 34 / 3e (1 )
at

M a , decreases exponentially with time, 

and the second term,  M  3/4  t , increases linearly with time, 
that is, as time,  t , increases, the fi rst term becomes negligi-
ble quickly when compared with the second term. So, the 
integral approximately equals  M  3/4  t .    


