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Abstract
Helicobacter pylori  (H. pylori ) infection is among the 
most common human infections and the major risk 
factor for peptic ulcer disease and gastric cancer. With-
in this work we present the implication of C-terminal 
region of H. pylori neutrophil activating protein in the 
stimulation of neutrophil activation as well as the evi-
dence that the C-terminal region of H. pylori  activating 
protein  is indispensable for neutrophil adhesion to 
endothelial cells, a step necessary to H. pylori  inflam-
mation. In addition we show that arabino galactan 
proteins derived from chios mastic gum, the natural 

resin of the plant Pistacia lentiscus var. Chia  inhibit 
neutrophil activation in vitro .
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INTRODUCTION
The Helicobacter pylori (H. pylori) neutrophil activating 
protein (HPNAP) is one of  a number of  virulence fac-
tors produced by the bacterium H. pylori[1]. This protein 
originally purified from aqueous extracts of  H. pylori, was 
shown to induce neutrophil adhesion to endothelial cells 
in vitro[1] as well as in vivo[2], to increase the adhesion of  
neutrophils to endothelial cells[3], to induce migration and 
activation of  human neutrophils and monocytes[4,5] and 
to be a potent stimulant of  mast cells[6]. Its binding to 
neutrophil-glycosphingolipids[7] and mucin, a component 
of  the stomach mucus layer[8], has also been reported. 
HPNAP induced reactive oxygen intermediates (ROI) 
production involves a cascade of  intracellular activation 
events, including increase of  cytosolic calcium ion concen-
tration and phosphorylation of  cytosolic proteins, leading 
to the assembly of  the superoxide-forming nicotinamide 
adenine dinucleotide phosphate-oxidase (NADPH) oxi-
dase on the neutrophil plasma membrane[5,9,10].
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Free radicals produced by neutrophils are a key com-
ponent of  the innate immune system and an effective 
antimicrobial agent against H. pylori as well as a factor 
that perpetuates mucosal damage and gastritis. Activa-
tion of  neutrophils results in NADPH oxidase-mediated 
superoxide anion production which is highly destructive 
for the gastric mucosa, induces oxidative DNA damage 
and leads to substantial mucocal disruption. NADPH 
oxidase targeting is disrupted such that active enzyme 
complexes are present in patches at the cell surface but 
not on H. pylori phagosomes. Consequently, superox-
ide accumulates in the extracellular space but not near 
ingested bacteria. By this unusual mechanism, H. pylori 
evades oxidative killing and promotes tissue damage and 
ulceration. A possible blocking of  reactive species pro-
duction may lead to improvement of  H. pylori induced 
chronic gastritis and reduction of  signs of  inflammation. 

THE TWO ROLES OF HPNAP
Bacterial protection 
HPNAP is a dodecameric protein consisting of  17 kDa 
monomers with a central cavity where iron can bind[11,12]. 
The observation that its synthesis is not affected by the iron 
content of  the growth medium, led to the proposal that 
the primary role of  HPNAP in vivo may not be to scavenge 
iron[13]. The primary sequence and overall structure of  HP-
NAP[14] is similar to those of  Dps family of  iron-binding 
and DNA-protecting proteins[15]. Dps family proteins 
protect DNA from oxidative damage through direct inter-
action. Dps and DNA form a highly ordered and stable 
nucleoprotein complex called a biocrystal so that DNA is 
“sheltered” from the attack of  the free oxidative radicals[16] 
by preventing the production of  hydroxyl radicals produced 
by the Fenton reaction[17]. These proteins are present in 
many prokaryotes[18-22]. They bind ferrous ions and some of  
them lack the ability to bind DNA in vitro[12,19,23].

The role of  HPNAP in protecting H. pylori from oxi-
dative damage was first suggested by the observation that 
loss of  alkyl hydroperoxide reductase (AhpC) leads to a 
concomitant increase in HPNAP expression[24]. Like other 
Dps proteins, HPNAP production is maximal in station-
ary-phase cells, and an H. pylori napA mutant survives less 
than the wild type strain upon exposure to oxidative stress 
conditions[25].

Our previous studies[26] revealed that HPNAP does 
not bind to DNA and therefore protection of  the bacte-
rial DNA by means of  ferroxidase activity ensues by a 
mechanism similar to that suggested for other non DNA 
binding Dps. Molecular dynamics simulations (MDS) re-
vealed that the ferroxidase site amino acids are indispens-
able for dimer formation and that ferrous ions contribute 
extensively to the stability of  the dimers in solution. 

HPNAP’s inflammatory role
The inflammatory role of  HPNAP concerns the attraction 
and activation of  neutrophils. In particular, the 150 kDa 
oligomeric protein isolated from H. pylori has been found to 
promote neutrophil adhesion to endothelial cells[1,11]. This 

protein was designated the HPNAP because of  its ability to 
induce neutrophils to produce reactive oxygen radicals[5,11]. 
HPNAP is released in the medium, probably after cell lysis, 
and binds to the bacterial surface where it can act as an ad-
hesin, mediating binding to mucin or to polymorphonuclear 
leukocyte sphingomyelin[7,8]. Purified recombinant HPNAP 
has been produced in Bacillus subtilis to avoid contamination 
by Escherichia coli lipopolysaccharide. This purified material 
was found to be chemotactic for human neutrophils and 
monocytes in vitro[5]. Moreover, using intravital microscopy, 
it has recently been demonstrated that in rats HPNAP 
is able to cross the endothelia efficiently and to promote 
rapid neutrophil adhesion in vivo[27]. HPNAP-induced ad-
hesivity depends on the induction of  expression and on 
the acquisition of  a high-affinity state of  β2-integrin on 
the plasma membrane of  PMNs[5,27]. This conformational 
change requires a functional p38 mitogen-activated protein 
kinase (MAPK). Collectively, these observations suggest 
that HPNAP plays a central role in the accumulation of  
leukocytes at the site of  infection[5,11,27]. HPNAP stimulates 
PMNs to synthesize and release several chemokines, includ-
ing CXCL8 (interleukin-8), CCL3 (MIP-1α) and CCL4 
(MIP-1β)[27]. Because neutrophils rapidly migrate in large 
numbers at infection sites, the fact that they also serve as a 
chemokine source may contribute to the generation of  the 
conditions necessary for both the recruitment and activa-
tion not only of  additional neutrophils, via CXCL8, but also 
of  monocytes, dendritic cells, and lymphocytes through 
CCL3 and CCL4. After crossing epithelial monolayers, 
HPNAP is also able to activate the underlying mast cells 
to release tumor necrosis factor-α (TNF-α) and other pro-
inflammatory molecules[6,13].

NEUTROPHIL ACTIVATION IN FOCUS 
According to the literature HPNAP is the only protein of  
the DPs family capable of  activating human leukocytes. 
Zanotti et al[14] investigated this unique property of  HP-
NAP by analyzing not only its surface but also the surfac-
es of  the structurally similar Flp, Dlp-1 and Dlp-2 which 
failed to activate human neutrophils. That was an attempt 
to identify regions located on the surface of  these pro-
teins whose different properties could account for such 
biological difference. They found that the surface of  HP-
NAP was characterized by a large presence of  positively 
charged residues, a property that was not shared by the 
other members of  Dps family. The strong prevalence of  
positive charges of  the electrostatic surface potential of  
HPNAP conferred a basic character on it. By taking into 
account the fact that positively charged residues of  several 
proteins, including those of  some chemokines which was 
believed to play a role in the activation of  neutrophils[28,29] 
they suggested that the presence of  the large number of  
basic residues on the HPNAP dodecamer surface was re-
sponsible for its neutrophil activating property.

However according to Kottakis et al[26] by replacing 
His25, His37, Asp52 and Lys134, that are located within 
the ferroxidase site, with Ala, a total loss of  ferroxidase 
activity, dodecamer formation and DNA protection in 
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environments rich in free radicals was observed. 
MDS revealed that dimer formation was highly un-

likely following mutation of  the above amino acids, since 
the ferrous ion is not attracted equally strongly by both 
subunits (Figure 1A and B). These findings indicate that 
iron plays an important role in the conformation of HPNAP 
by initiating the formation of  stable dimers that are 
indispensable for the ensuing dodecamer structure. In 
addition, according to our experiments both HPNAP 
wild type as well as HPNAP mutant were able to acti-
vate neutrophils. In particular, by incubating neutrophils 
separately with the above proteins we observed a similar 
degree of  activation for both cases[26]. Very surprisingly, 
neutrophil activation was stimulated by structural ele-
ments that are localized within the broad C-terminal 
region of  both HPNAPmut and dodecamer HPNAP-
wild type. In particular, it was found that the dodecamer 
conformation was not necessary for activation and that 
helices H3 (Leu69-Leu75), H4 (Lys89-Leu114) or the 
linking coils (His63-Thr68 and Thr76-Ser88) were criti-
cal in stimulating neutrophil activation (Figures 2 and 3). 

It was recently reported that HPNAP promotes a Th1 
immune response by inducing the expression of  IL-12 
and IL-23 in neutrophils and monocytes, and also elicits 
an antigen-specific Th1-polarized T cell response in gas-
tric mucosa of  H. pylori-infected patients in vivo[30]. It has 
been shown that HPNAP is able to shift antigen activated 

human T cells from a Th2 to a Th1 cytotoxic pheno-
type characterized by production of  IFN-γ and TNF-α. 
Since HPNAP is a powerful stimulant for the production 
of  ROS, mediating damage to DNA and enhancing cell 
turnover[19], it may be a risk factor for H. pylori-associated 
gastric cancer. Considering the upregulatory effects of  
HPNAP on the innate immune system, it could possibly 
be argued that the chronic inflammatory response medi-
ated by HPNAP may be associated with an increased 
danger of  occurrence of  gastric cancer in view of  the fact 
that H. pylori is classified as class 1 carcinogen. As a mat-
ter of  fact, a recent impressive work[31] studied the serum 
positivity and mean absorbance value of  HPNAP-specific 
antibodies in patients with gastric cancer in comparison 
to patients with chronic gastritis. Interestingly, HPNAP 
antibodies were significantly higher in the gastric cancer 
group indicating a possible pathogenetic role of  HPNAP 
in gastric carcinogenesis.

ACTIVATED NEUTROPHILS ATTACH TO 
ENDOTHELIAL CELLS
Human neutrophils were separately incubated with HP-
NAP-6xHis, HPNAP1-57-6xHis (N-terminal region) and 
HPNAP58-144-6xHis (C-terminal region) on micro wells 
with pre attached endothelial cells and their attachment 
was quantified by using the myeloperoxidase (MPO) as-
say[32]. Besides the entire protein and its truncated forms 
neutrophils were also incubated by the same manner with 
the neutrophil stimulator formyl-Met-Leu-Pro peptide 
(fMLP) in order to control their “bioactivity”. In addition, 
a synthetic hexa-histidine peptide (6xHis) was also used 
for neutrophil activation in order to exclude the possibility 
that the obtained activation was attributed to the existence 
of  the tailed histidines. Figure 4A shows that HPNAP-
6xHis and the C-terminal region display almost the same 
ability to promote neutrophil adhesion to endothelial cells 
while the N-terminal region lacks this ability. 

Considering the existence of  lipopolysaccharides (LPS) 
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Figure 1  Ferroxidase site of Helicobacter pylori neutrophil activating 
protein. A: The “ferroxidase site” in the equilibrated wild type. The iron ion (pink) 
is kept in position by Asp52, Glu56, His25 and His37. Two water molecules are 
attracted by Fe(Ⅱ); B: The same site in the equilibrated mutant. The ferrous ion 
is attracted one-sidedly by Glu56 and Asp53 (not shown) loosing its ability to 
stabilize the dimer. Four water molecules are attracted by Fe(Ⅱ).
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Figure 2  Schematic representation of exposed helices of Helicobacter 
pylori neutrophil activating protein. Helicobacter pylori neutrophil activating 
protein dimer in stand up (A) and top view (B) with the exposed helices H3 and 
H4 (therefore possible candidates for interacting with the neutrophils) colored in 
violet and orange respectively. 
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and their involvement in the activation it is clearly shown 
that even after their removal the activation effects did not 
change significantly (Figure 4A). These results are consist-
ent with previously published data[26], indicating that the 
58-144 region of  the HPNAP protein is the key compo-
nent in neutrophil recruitment, activation and subsequent 
adhesion to endothelial cells, leading to oxidative burst 
and inflammation during H. pylori infection. Considering 
recently published data[33], on the safety and immunoge-

nicity of  an intramuscular vaccine comprising VacA, CagA 
and HPNAP, we suggest that the obtained neutrophil ac-
tivation by the C-terminal region of  HPNAP opens new 
ways for drug design dealing with H. pylori inflammation. 

NEUTROPHIL ATTACHMENT INHIBITION 
BY ARABINO-GALACTAN-PROTEINS 
FROM CHIOS MASTIC GUM
Chios mastic gum (CMG) and its derivatives were largely 
used in traditional medicine to ease the discomfort in pa-
tients suffering from gastric pain. Its in vitro antibacterial 
properties against a great variety of  bacteria are well es-
tablished[34,35]. In this study we demonstrate that AGPs ex-
tracted from CMG as described in[34] inhibit the neutrophil 
attachment to endothelial cells caused by the HPNAP and 
its C-terminal region. In particular, human neutrophils 
were incubated with either HPNAP-6xHis or HPNAP58-

144-6xHis both in the presence and in the absence of  AGPs 
and their attachment to endothelial cells was investigated 
as above. Figure 4B shows the inhibition of  neutrophil 
attachment to endothelial cells after co-incubation of  
entire HPNAP and its truncated forms (N-terminal and 
C-terminal) with the AGPs. In particular, bar 3 shows the 
absence of  any influence of  AGPs on neutrophil attach-
ment to endothelial cells. The designation “control” on the 
figure represents the found attachment of  isolated neu-
trophils to endothelial cells after incubation, without any 
other addition of  proteins or AGPs. The marked percent-
ages of  all other combinations are calculated by taking into 
account the control values. Thus, comparison of  the bars 
4 (HPNAP entire) to 5 (HPNAP entire plus AGPs) and 6 
(HPNAP58-144) to 7 (HPNAP58-144 plus AGPs) reveals that 
neutrophil activation and their subsequent attachment to 
endothelial cells is inhibited by the AGPs from CMG. 

A recent study[36] focused on HPNAP mediated neu-
trophil activation before and after 2 mo of  per os admin-
istration of  CMG. According to this work, CMG induces 
a significant reduction in neutrophil activation when 
incubated with AGP plus HPNAP in H. pylori-infected 
patients and controls. CMG also induces a significant re-
duction in neutrophil activation when incubated with HP-
NAP in H. pylori-infected patients. These results indicate a 
substantial down-regulation of  the innate cellular immune 
effectors, which - according to unpublished clinical data 
in the context of  this study - are accompanied by a sig-
nificant clinical improvement of  the patients’ complaints 
(dyspepsia, epigastric discomfort, distention). However a 
demonstration of  the histopathological improvement of  
the patients’ chronic gastritis would provide even more 
valuable evidence, concerning the potential anti-inflamma-
tory and gastritis-suppressive effects of  CMG. 

Summarizing our results presented within this work 
we evidenced that the broad C-terminal region of  HP-
NAP stimulates neutrophil adhesion and that the AGPs 
from CMG disrupt the process of  neutrophil-endothelial 
cell attachment caused by HPNAP, an effect that should 
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Figure 3 Neutrophil activation by Helicobacter pylori neutrophil activating 
protein. A: Neutrophil activation by Helicobacter pylori neutrophil activating pro-
tein (HPNAP)-wt and HPNAPmut. Bar 1, activation by formyl-met-leu-pro peptide 
(fMLP) (control), bar 2, activation by HPNAPwt, bar 3, activation by HPNAPmut; 
B: Neutrophil activation by HPNAPwt-hexa-histidine peptide (6xHis), HPNAP1-57-
6His, HPNAP58-144-6His and 6His peptide. Bar 1, activation by fMLP (control), 
bar 2, activation by HPNAPwt-6His, bar 3, activation by HPNAP1-57-6His, bar 
4, activation by HPNAP58-144-6His, bar 5, activation by 6His peptide; C: Values 
after subtraction of “6His” value from these of “HPNAPwt”, “HPNAP1-57” and 
“HPNAP58-144”. 

Choli-Papadopoulou T et al . HPNAP as target for new drugs



be further investigated and maybe exploited in a future 
anti-inflammatory therapy for H. pylori patients.

FAILURE OF ANTIBIOTIC THERAPY AND 
RECURRENCE OF H. PYLORI INFECTION - 
IS H. PYLORI AN INVINCIBLE ENEMY? 
Triple as well as quadruple treatment regimens are so far a 
well established therapy of  H. pylori infection. Eradication 
rates of  over 80% (triple therapy) and 96% for the quad-
ruple regimen with bismuth or ecabet sodium are docu-
mented[37,38]. However, a significant number of  mutants 
is emerging-especially in developing countries - which 
confers resistance to standard antibiotics (amoxicillin, 
metronidazole, clarithromycin)[39-41] as well as to fluoroqui-
nolones. Resistance rates of  35% for clarithromycin and 
26% for fluoroquinolones are documented, a very worry-
ing fact, which limits considerably the future perspectives 
of  successful antibiotic treatment of  H. pylori infection. 

Moreover, a high prevalence of  recurrence of  H. pylori 
infection in adults as well as in children could possibly 
render our efforts to eradicate this pathogen futile[42-45]. 
Indeed, an incidence of  H. pylori annual recurrence of  
2.67% and 13.00% in developed and developing countries 
respectively is documented in a recent study[46]. In view of  
these data, alternative methods of  treatment as adjunct or 
main therapy regimens should be considered. HPNAP, a 
major stimulant of  neutrophil recruitment and activation 
could be effectively targeted by natural agents that reduce 
inflammation (due to their activity as antioxidants) or 
suppress the production of  inflammatory cytokines that 
attract neutrophils[47-50]. On the other side, the advent of  
the structure oriented drug design era would eventually 
provide us with valuable weapons to fight the H. pylori 
infection by the direct inhibition of  HPNAP in vivo. The 
identification of  structural elements at the C-terminal 
region of  HPNAP monomer as a stimulus for neutrophil 
migration through endothelial cells and subsequent release 
of  ROIs[26,51] renders this region eligible for drug mediated 
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Figure 4  Neutrophil adhesion to endothelial cells. A: Neutrophil adhesion to endothelial cells. Black bars indicate neutrophil adhesion to endothelial cells prior to lipo-
polysaccharides (LPS) removal while grey bars indicate the adhesion after LPS removal. The data represent triplicates from at least three independent experiments. Error 
bars indicate standard deviation (SD). Statistical evaluation was performed by Mann-Whitney test. Significant differences with the control values are marked by (bP < 0.001) 
bar 1, control, bar 2, formyl-met-leu-pro peptide (fMLP), positive control of the procedure, bar 3, Helicobacter pylori neutrophil activating protein (HPNAP)wt-hexa-histidine 
peptide (6xHis) effect on neutrophil adhesion to endothelial cells before and after LPS removal, bar 4, HPNAP58-144-6xHis effect before and after LPS removal, bar 5, 
HPNAP1-57-6xHis effect before and after LPS removal, bar 6, 6xHis effect; B: Effect of arabino galactan proteins (AGPs) on neutrophil adhesion to endothelial cells, bar 1, 
control, bar 2, fMLP, positive control of the procedure, bar 3, effect of AGPs, bar 4, HPNAPwt-6xHis effect before and after LPS removal, bar 5, HPNAPwt-6xHis and AGPs 
co-effect, before and after LPS removal, bar 6, HPNAP58-144-6xHis effect before and after LPS removal, bar 7, HPNAP58-144-6xHis and mastic gum extract co-effect, 
before and after LPS removal, bar 8, 6xHis effect. 
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inhibition of  its immunological effects upon neutrophils. 
Indeed, additional studies should be carried out in order 
to validate this assumption and open the way for new and 
alternative perspectives to fight this ubiquitous pathogen.
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