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A pivotal step in electrophoresis sequencing is the conversion of the raw, continuous chromatogram data into
the actual sequence of discrete nucleotides, a process referred to as basecalling. We describe a novel algorithm
for basecalling implemented in the program LifeTrace. Like Phred, currently the most widely used
basecalling software program, LifeTrace takes processed trace data as input. It was designed to be tolerant to
variable peak spacing by means of an improved peak-detection algorithm that emphasizes local chromatogram
information over global properties. LifeTrace is shown to generate high-quality basecalls and reliable quality
scores. It proved particularly effective when applied to MegaBACE capillary sequencing machines. In a
benchmark test of 8372 dye-primer MegaBACE chromatograms, LifeTrace generated 17% fewer substitution
errors, 16% fewer insertion/deletion errors, and 2.4% more aligned bases to the finished sequence than did
Phred. For two sets totaling 6624 dye-terminator chromatograms, the performance improvement was 15%
fewer substitution errors, 10% fewer insertion/deletion errors, and 2.1% more aligned bases. The processing
time required by LifeTrace is comparable to that of Phred. The predicted quality scores were in line with
observed quality scores, permitting direct use for quality clipping and in silico single nucleotide polymorphism
(SNP) detection. Furthermore, we introduce a new type of quality score associated with every basecall: the
gap-quality. It estimates the probability of a deletion error between the current and the following basecall. This
additional quality score improves detection of single basepair deletions when used for locating potential
basecalling errors during the alignment. We also describe a new protocol for benchmarking that we believe
better discerns basecaller performance differences than methods previously published.

DNA sequencing usually begins with a purified DNA
template on which a reaction is performed for each of
the four nucleotides (bases), generating a population of
fragments that have various sizes depending on where
the bases occur in the sequence. The fragments are la-
beled with base-specific fluorescent dyes and then
separated in slab-gel or capillary electrophoresis instru-
ments. As the fragments pass the detection zone of the
sequencer, lasers scan the signals. Information about
the identity of the nucleotide bases is provided by the
base-specific dye attached to the primer (dye-primer
chemistry) or dideoxy chain-terminating nucleotide
(dye-terminator chemistry). Additional steps include
lane tracking and profiling (slab-gel only) and trace
processing, which produce a set of four arrays (traces)
of signal intensities corresponding to each of the four
bases over the many time points of the sequencing run.
Trace processing consists of baseline subtraction, locat-
ing start and stop positions, spectral separation, reso-
lution enhancement, and some mobility correction.
The final step in DNA sequencing is translating the
processed trace data obtained for the four different
bases into the actual sequence of nucleotides, a process
referred to as basecalling.

The accuracy of the computational algorithm em-
ployed for basecalling directly impacts the quality of
the resulting sequence and determines to a significant
degree the economic costs associated with sequencing,
as well as its usability for detecting single nucleotide
polymorphisms (SNPs). Although basecalling is algo-
rithmically straightforward for ideal data (noise-free,
evenly spaced, Gaussian-shaped peaks of equal height
for all four bases), it is naturally more difficult and
error prone for real trace data. Inevitable experimental
as well as systematic factors degrade the quality of ob-
tainable data, resulting in peaks with variable spacing
and height and secondary peaks underneath the pri-
mary peaks. For a summary of influencing factors, we
refer the reader to Ewing et al. (1998). Because base-
calling is error prone, it is desirable to provide an esti-
mate of quality (quality score) for each assigned base.
The estimation of confidence is an integral part of
many existing basecalling algorithms (Giddings et al.
1993, 1998; Golden et al. 1993; Ewing and Green
1998). Quality scores are critical for accurate sequence
assembly and reliable detection of SNPs (Buetow et al.
1999; Altshuler et al. 2000). The rigorous implementa-
tion of the concept of quality scores that translate di-
rectly into an estimated error rate, along with highly
reliable basecalls for slab-gel based sequencing ma-
chines, helped Phred, a basecaller introduced by Ew-
ing and Green (1998) and Ewing et al. (1998), to be-
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come the most widely used basecalling software (Rich-
terich 1998).

Given that Phred was optimized for slab-gel se-
quencers, it performs fairly well for capillary-based ma-
chines. We noted significant problems, however, with
its algorithm for handling variable peak spacing, espe-
cially for MegaBACE sequencers, in which the spacing
between peaks can change rather abruptly along the
traces (commonly referred to as the accordion effect).
Phred starts the basecalling process by predicting ide-
alized peak locations, which are then matched up with
observed peaks to generate the actual calls. The prob-
lems are caused by the way that Phred computes and
uses predicted peak information. Phred first looks for
the portion of the chromatogram that has the most
uniform spacing and works its way outward. At each
step of the way out, there is a limit on how fast the
spacing can change. When the spacing changes too
rapidly, Phred can lose synchronization with the ac-
tual spacing. Attempts by one of the authors (G.B.), in

collaboration with the authors of Phred, to improve its
ability to handle variable peak spacing met with lim-
ited success. When desynchronization occurs, Phred
may add or remove basecalls to preserve uniform peak
spacing. This can result in excessive insertion and de-
letion errors that can lead to serious assembly problems
or frame shifts during translation into amino acid se-
quence. Phred does, however, identify the problem by
assigning low quality scores for such basecalls. An ex-
ample of erroneous Phred basecalls is shown in Figure
1a. Even though the shown segment of the chromato-
gram appears to have good quality, Phred incorrectly
adds bases. The corresponding graph of peak-to-peak
distance as a function of peak location (Fig. 1b), as
determined by LifeTrace, reveals a change in peak-
peak spacing of nearly threefold over the length of
chromatogram data. As our example shows, this may
cause problems in cases in which idealized and ob-
served peaks have poor correspondence.

Here we introduce an algorithm implemented in
the program LifeTrace that focuses on
observed data to determine peaks. Peaks are
determined by transforming each of the
four individual traces by weighting each
position by how peaklike its shape is
around the current location by means of a
cross-correlation coefficient with a single
ideal peak, and then generating a single
new trace that combines all four trans-
formed traces. This methodology substan-
tially reduces noise before peak assignment
and allows for accurate local peak detec-
tion, despite varying peak spacing across
the entire chromatogram. Subsequent fil-
ters are applied to generate the final se-
quence of called bases. We show that, for
the both dye-terminator and dye-primer
sets of MegaBACE chromatograms tested
here, LifeTrace generates calls with sig-
nificantly fewer insertion and deletion er-
rors (indels) and substitution errors than
Phred, and associates predictive quality
scores to each call. In addition, we present
results for chromatogram sets obtained
from ABI-377 slab-gel sequencer and ABI-
3700 (another capillary sequencing ma-
chine) that reveal that the overall perfor-
mance of LifeTrace is similar to that of
Phred.

We also introduce a novel type of qual-
ity score: the gap-quality. It estimates the
probability of a deletion error between the
current and the following assigned base-
call, that is, another true base between the
two basecalls was not called. This addi-
tional quality score can be used for im-

Figure 1 (A) Sample MegaBACE chromatogram with corresponding basecalls by
Phred (top) and LifeTrace (bottom). Length of peak locator tick lines corre-
sponds to associated quality scores, with longer ticks indicating higher quality.
Horizontal lines mark quality score levels of 0 and 15, respectively. (B) Peak–peak
distance as a function of peak location as determined by LifeTrace. For every
peak at a given chromatogram location (x-axis), its associated distance to the next
peak is plotted (y-axis). The chromatogram segment shown in A corresponds to
chromatogram location between 4000 and 4400.
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proved detection of basepair deletions because it helps
locating potential basecalling errors during alignment.

Furthermore, we describe a new protocol for
benchmarking basecaller performance. We believe that
it better discerns the performance differences than the
method introduced by Ewing and Green (1998) and
Ewing et al. (1998) and may find broad application in
future benchmark tests.

METHODS
In this section, we describe the key processing steps
performed by LifeTrace. Documenting all details of
the filtering steps and associated parameters would ex-
ceed the format of this article. Below, we give a broad
outline of the different processing steps of LifeTrace,
and the interested reader is referred to the source code
for more information (see Availability). Like Phred,
LifeTrace takes processed trace data as input. The
processing steps can be divided into three parts. In part
one, LifeTrace transforms the four original traces
into a single trace (designated LT), significantly reduc-
ing noise and emphasizing peaklike shapes. LT is the
primary input for peak detection. In part two, the de-
termined peaks are assigned a base (i.e., the actual base-
calling is conducted). In part three, quality scores are
computed that are then used internally for quality fil-
tering. During quality filtering, basecalls can be either
removed or added.

Peak Detection
A possible method for detecting peaks would be to gen-
erate a fifth trace, computed as the maximum value of
the four traces at all trace locations, and then to find
local maxima in this new trace. This method would
fail, however, if a peak is hidden underneath a flanking
segment of a neighboring peak. To avoid this, it would
help to make the broad and obstructing peak narrower
first, removing the overlap. Ideally, a sharp peak of
zero width—a delta function in mathematical terms—
would identify all, and now well-separated, real peaks.
To accomplish better segregation of peaks by making
the original peaks narrower, LifeTrace measures at
all trace locations how peaklike the traces are locally.
Mathematically, this is accomplished by applying a
cross-correlation computation of the current trace seg-
ment with an ideal, Gaussian-shaped peak. Segments
with peak characteristic, that is, the center of segment
has a maximal trace value that will have high cross-
correlation with the model peak (correlation coeffi-
cient r near +1), concave regions will have negative
correlation (r ∼ �1), monotone regions will result in
no correlation (r ∼ 0). Multiplying the original trace
with the corresponding value of r, which has been re-
scaled to lie between 0 and 1, will in effect narrow
peaks, and repeated application would arrive at delta

functions. LifeTrace applies the cross-correlation
transformation in a single pass as follows:

f(base,loc) = R[base,loc]*T[base,loc]
(1)

with

R[base,loc] = (r(T[base,loc],MP) + 1)/2

in which T[base,loc] is the fluorescence intensity (trace
value) detected for the color of the dye associated with
base (A, C, G, or T) at location loc; that is, r() denotes
the cross-correlation coefficient as explained below,
and MP denotes the ideal Gaussian model peak. Values
R[base,loc] essentially provide a peak-shape indicator at
all trace locations, which is used later during basecall-
ing. The cross-correlation coefficient r is computed as:

r = �1��N + 1��

�
i
��T �base,loc − i� − MP�i�� * �T �base,loc − i� − MP�i��

�T�MP
�;

with − 1 � r � + 1; and − N�2 � i � + N�2 ( 2)

in which �T and �MP are standard deviations of T and
MP, respectively. N is the number of trace locations in
the considered segment. We chose N = 6; (i.e., a win-
dow of seven trace points). If the number of trace
points per initially assigned base call before quality fil-
tering drops below seven, N is adjusted to N = 4 to ac-
count for the somewhat undersampled chromato-
grams. r was set to zero for both of the terminal three
trace points. The model peak was taken as an ideal
Gaussian with:

MP�i� =
1

�2��
exp� −

1
2� i

��2� ( 3)

The standard deviation � was set to 3.5 (2.5 for under-
sampled chromatograms according to the condition
stated above). Occasionally, trace values exceed the up-
per detection threshold of the instrument and are
clipped beyond this value. This produces flat peaks for
which our peak-shape detection method would fail. To
avoid this problem, all traces are preprocessed, and
clipped peaks are replaced by caps conforming to a
quadratic function and rendering it peaklike.

At this stage, four new traces have been generated
that resemble the original traces, but with narrower
peaks. These four traces are now combined to produce
one trace by essentially taking the maximum f-value at
each trace location. In a closed form, and with some
simultaneous smoothing, this new trace LT is obtained
by:

LT�loc� = �k �
bases

f k�base,loc� with k = 4. ( 4)

With larger values of k, the value of LT(loc) will con-
verge to the maximum value of the four values of f,
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whereas smaller values of k simultaneously smooth the
function LT(loc). After testing a range of k-values, best
results were obtained for k = 4.

The described transformation process is illustrated
in Figure 2. It is evident that an improved peak sepa-
ration is accomplished as is a reduction of noise. In-
stead of analyzing four traces to detect peaks, one trace
(LT) is now sufficient. All local maxima and minima of
LT are then detected by scanning through LT.

Peak Assignment
Basecalls are assigned to all detected local maxima of
LT according to:

Base = max
base= A,C,G,T

�Sbase� with

Sbase = R�base,loc� * A�base,loc� ��
j= 1

4

A�j,loc� ( 5)

in which R[base,loc] are the peak shape factors obtained
from Eq. 1; A is the area underneath a trace in a win-
dow of seven trace pixels centered at loc. Effectively,
the base with the maximal fractional area at a given
peak location is chosen weighted by how peaklike the
trace of a given base is (factor R). If the assigned base is
the third or fourth base when traces are sorted accord-
ing to decreasing fractional area at the current location
alone (without factor R), LifeTrace assigns an N (for not
determined) to the current peak.

Quality Filtering
Subsequent to the initial base assignments, two itera-
tions of quality filtering are performed in which, ac-
cording to several quality criteria, peaks can be re-
moved or merged in cases of runs of the same base.
Finally, traces are checked for possible basecall addi-
tions in cases of broad peaks, in which the peak detec-
tion algorithm may have assigned too few bases. The

selection of quality criteria and associated quality
thresholds used during quality filtering were derived
heuristically from numerous test runs and cannot all
be described in sufficient detail here. However, the
most critical parameter for resolving basecall errors is
the proper estimation of the correct peak spacing.
LifeTrace attempts to infer the correct peak to peak
distances in regions of low-trace data quality from the
closest (in terms of location) available regions of higher
quality as determined by the internally assigned qual-
ity scores and uniformity of peak to peak distance in
this region.

Removal of Calls
All basecalls are first sorted according to ascending or-
der of quality score (see below). Starting with lowest
quality, basecalls are checked for whether they pass the
imposed quality criteria and are removed if otherwise.
A total of nine quality thresholds impose restrictions
on the minimally acceptable peak height and peak-to-
peak spacing before and after a potential basecall re-
moval and combinations thereof.

Merger of Calls
If a merger of two consecutive bases of the same type
results in a new peak spacing that is more in line with
higher quality regions, and the corresponding trace be-
tween the two calls does not show a clear separation,
the call with lower quality is removed.

Addition of Calls
Broad, but Gaussian-like, peaks will initially get as-
signed a single basecall. However, it is possible that
several bases of the same type are merged into one
peak. To detect such peaks, LifeTrace determines the
width of all peaks and compares it to the mean ob-
served peak separation for high-quality regions proxi-
mal to the current peak. If the integral value of the
expression 0.45 + peak_width/peak_spacing is >1, a

corresponding number of bases
are added to the current peak.
The width is determined by re-
quiring that peaks of different
bases do not overlap. If the
maximal trace value changes
from one base to another, the
value of LT drops below
max(LTs)/10, or the maximal
trace value at the current posi-
tion drops below max(LTs)/6,
the previous peak ends. The
next peak starts where all the
previously described thresholds
are exceeded again. The index s
denotes which of three equally
sized segments of the chro-
matogram is currently being

Figure 2 Illustration of the processing of chromatogram trace data by LifeTrace. Shown are
the four original traces and the composite trace LT (Eq.4) that provides the basis for peak
detection. LifeTrace basecalls are given in the top row with the length of the tick lines that
indicate the peak location corresponding to the LifeTrace quality score, with longer ticks
indicating higher quality. The two horizontal lines mark quality score 0 and 15. Locations
illustrate the facilitated peak detection provided by trace transformations of LifeTrace (trans-
formed trace LT) making it possible to (a) reliably detect peaks that are peak shoulders and not
local maxima, yet are real; (b) separate overlapping peaks; and (c) to reduce noise from residual
traces as they are not reflected in local maxima in the trace LT.
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processed. This is performed to account for changing
maximal trace values across the chromatogram length.
Inserted peaks are assigned an arbitrary quality score of
max(Qscores)/10.

The peak width determination procedure also
identifies gaps as the space in between peaks. For a
variety of reasons, these gaps can represent real base
drop-outs, and LifeTrace adds a corresponding num-
ber of N-basecalls.

Quality Scores
Equally important as the actual basecalls are associated
quality scores that allow an assessment of the reliabil-
ity of the call and to discriminate high-quality from
low-quality calls (Lawrence and Solovyev 1994; Ewing
and Green 1998). LifeTrace distinguishes between
two different quality scores: the quality of the call and
the quality of the space between calls (gap-quality), an
indication that a true base may not have been called.
The motivation to introduce the gap-quality lies in its
potential application in finding deletion SNPs, in
which a potential base deletion needs to be distin-
guished reliably from a basecall error, and in helping in
locating the deletion during alignment, as the score
can be used as a gap penalty in the dynamic program-
ming alignment process.

The quality score of a base is calculated from the
trace properties at and near its peak position. First, the
level of noise (i.e., secondary peaks underneath the
called base) is evaluated:

Q =
Slargest − Ssecondlargest

�
i= A,C,G,T

Si

( 6)

in which S is obtained from Eq. 5, and Slargest and
Ssecondlargest refer to the respective largest and second
largest values of S. Quality scores associated with peaks
smaller than one third of the mean peak height Pm of
20 base calls centered at the base are multiplied by
sqrt[LT(loc)/(Pm/3)]. For peaks with nonideal peak
shape, LT(loc) will be smaller than the maximal trace
value at this position and, correspondingly:

Q� = Q * �LT�loc�

Tmax
�2

( 7)

where Tmax is the maximal trace value found at loca-
tion loc. Asymmetric trace shapes of LT around base-
calls where factored into Q by:

Q� = Q� *
r + 1

2
( 8)

where r is the linear correlation coefficient between
values of LTloc+i and LTloc�i, with i running from 1 to
integral value of half the mean peak separation (i.e.,
before and after the peak). Variable peak spacing as an
indicator of low quality is accounted for by:

Q� =
Q�

exp�2�d��d	�
( 9)

where d denotes the mean peak spacing calculated for
the first 20 peak-peak distances in the left and right
neighborhood of a given call in which both the call
position and the following call positions have values
of LT greater than one third of the LT associated with
the current position, and �d is the associated standard
deviation.

The gap-quality score is composed of two compo-
nents: the degree of noise between two consecutive
calls and overly wide peak spacing between bases i and
i + 1, indicative of another base that might be there but
was not called:

Qgap = �1 − Rnoise� ( 10)

if �di,i+ 1 � �d	� Q�gap = Qgap * ��d	�di,i+ 1�1�max�0.1,Rnoise�

( 11)

where Rnoise is the fractional area of alternate base
traces under the called peaks i and i + 1.

If a base is removed during quality filtering, the
gap quality score of the base preceding this call is low-
ered. The last base call is assigned an arbitrary gap-
quality score of 0.5 (note that scores are rescaled later).

As a last processing step, the quality scores as-
signed by LifeTrace are smoothed across all basecalls
and transformed in scale to adhere to the convention
that q = �10 � log10(p) (Ewing and Green 1998), in
which q is the quality score, and p is the true observed
error rate. Because LifeTrace quality scores yielded a
monotonic q-to-p relationship resembling a quadratic
function in the semi-logarithmic plot, scale calibration
was accomplished by a simple transformation. If a q-
score of a given base is greater than the q-score of the
preceding and following basecall, it is recalculated as the
arithmetic mean of the three. This was implemented to
avoid high q-scores in otherwise low-quality regions.

Figure 3 exemplifies the concept of a gap-quality
score. In the example, LifeTrace misses a true “C”
basecall. However, the gap-quality score of the preced-
ing “A” is low, indicating the high probability of a
deletion error. Evidently, the neighboring basecalls are
high quality as reflected in the high-quality scores. Fig-
ure 3 also illustrates how a deletion error in a run of the
same base can be aligned differently. The gap-quality
scores help locate the deletion error and the link be-
tween gap-quality score and deletion error can be es-
tablished correctly.

Performance Testing

Data Sets
We evaluated the performance of LifeTrace for three
commonly used sequencing machines: MegaBACE
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1000 and ABI-3700 capillary sequencers and the ABI-
377 slab-gel sequencing machine. Our focus, however,
is on the MegaBACE because we observed the greatest
performance improvement for this machine type. We
used large sets of MegaBACE reads from three human
BAC clones (chromosome 7) for accuracy assessment of
the LifeTrace and Phred base-callers (Table 1). Each
of these clones was shotgun-sequenced to high depth
(10� to 20�) by Incyte Genomics and in one case
(RP11-349E11) also by the University of Washington
Genome Sequencing Center (UWGSC). The sequences
were then assembled and finished by UWGSC. The ac-
curacy of the finished sequences is very high, probably
less than one error in 50,000 bases. Thus, these se-
quences are suitable for evaluating base-caller accu-
racy. Only the reads produced by Incyte were used in
the analysis, and the number of these is shown in Table
1. All of sequences by Incyte were read using Amer-
sham’s MegaBACE 1000 capillary sequencer. Trace pro-
cessing was performed using the Cimarron v1.61
analysis software (Cimarron Software). The data sets
are naturally grouped by chemistry so dye-primer reads
were analyzed separately from dye-terminator reads.

Additional testing was performed for a total of
4714 ABI-3700 sequencer chromatograms of mixed
chemistry (primer, terminator) and corresponding as-
sembled consensus sequences kindly made available to
us by the Genome Sequencing Center of the Washing-
ton University, Saint Louis.

A small set of 1184 ABI-377
chromatograms that assemble
into human collagenase (Gen-
Bank accession no. U78045)
was used for benchmarking the
slab-gel sequencer.

Performance Analysis
For testing the performance of
LifeTrace and comparing it
to that of Phred, we applied
two different strategies. In the
first, referred to as Method 1,
we adopted the benchmarking
algorithm detailed in the origi-
nal Phred publication (Ewing
et al. 1998). Here, the basecalls
are aligned to the known true
consensus sequence using
cross_match with alignment
parameters as given in Ewing et
al. (1998). The alignment re-
gion where both called se-
quences (called by Phred and
LifeTrace) can be aligned, the
jointly alignable region, is ana-
lyzed for basecall errors (i.e.,

substitution errors, deletion errors, or insertion errors).
Basecalls that go beyond the jointly alignable region
and align to the true sequence are captured in the
number of additionally aligned bases for the basecaller
that generated these calls.

In effect, this method confines the analysis to
higher quality regions, because both basecallers agree
to large extent, and consequently, the error statistics
have to be rather similar. It is possible, however, that
one basecaller consistently generates more alignable
bases with few basecall errors. In Method 1, this would
be reflected by the number of additionally aligned
bases, but would not allow a comparison of actual error
rates in those regions.

In contrast to Method 1, where a consensus align-
ment is analyzed, in Method 2 error statistics are col-
lected over the consensus sequence stretch the bound-
aries of which are determined by the left-most (with
regard to the consensus sequence) and right-most
BLAST High Scoring Pair (HSP) bounds (aligned seg-
ment between LifeTrace or Phred query and con-
sensus sequence) contributed by either Phred or
LifeTrace in Method 2. The rationale is that a high
scoring BLAST hit by either one of the two basecallers
proves that the trace data permitted such accurate
basecalling, and therefore, the other basecaller under-
performed.

For every chromatogram, the Phred- and
LifeTrace-generated nucleotide sequences were

Figure 3 Illustration of the concept of a gap-quality introduced in LifeTrace. Part of a
sample chromatogram shows traces and calls, with associated quality scores quantified by the
length of the peak locator tick mark. Two horizontal lines mark quality score levels of 0 and 15.
The left tick line represents the quality score of the actual base call, whereas the right tick line
measures the quality of the gap to the following called base. In this example, a basecall error has
occurred: a C was not called. This single C-deletion can generate three different alignments of
equal alignment score as shown below. However, the chromatogram suggests that the error has
occurred in the first position of the three C run. This is reflected in the low gap-quality score of
the preceding A. By taking into account gap-quality scores during alignments, the gap is cor-
rectly positioned at the first position.
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aligned to the consensus (true) sequence using the pro-
gram BLASTN with default parameters (Altschul et al.
1990; version 2.0a 19 Wash U). The smallest and larg-
est trace locations associated with the first and last
bases belonging to the top HSPs with a p-value smaller
than 10�20, from either the Phred sequence or
LifeTrace sequence, were used to determine the start
and end location of alignable trace data. All bases fall-
ing in between the start and end trace locations are
excised out of both Phred and LifeTrace sequences
and are then realigned using full dynamic program-
ming (Needleman and Wunsch 1977) to the deter-
mined hit region in the consensus sequence (sequence
between the first and last consensus base found by ei-
ther Phred or LifeTrace). To avoid attributing base-
call errors to vector sequence, it was required that ei-
ther Phred or LifeTrace had an exact match over at
least 10 consecutive bases at both ends, and error sta-
tistics were collected only for the remaining middle
section of the alignment. Results reported in the ab-
stract were obtained from applying Method 1.

Deriving error statistics in conjunction with qual-
ity scores requires that basecall errors are located cor-
rectly during alignment. For example, if a deletion er-
ror occurred in a run of four ‘C’s, in which only three
‘C’s were called, the error could be attributed to any of
the four bases and would not change the global align-
ment score. It is therefore possible that such a deletion
error is assigned incorrectly to a high-quality
basecall during standard dynamic programming and not
to an ambiguous trace location. Similarly, what in reality
is an insertion followed by a deletion a few bases later
based on trace data could be misinterpreted as a single
substitution error (Berno 1996). To diminish the impact
of such problems, we used the actual quality scores as
match scores and gap penalty during alignment. As a
result, deletions in runs are placed at positions of lowest

quality (i.e., the most likely place
where the error has occurred),
and matches are assigned with
preference given to high-quality
base calls. In detail, we used a
score of +1 +LifeTraceQscore-
[baseCall]/5 for position-speci-
fic matches, �2 for mismatch,
�3 +LifeTraceGapQscore[base-

Call]/10) as the position-dependent gap penalty. Substi-
tution and insertion errors are linked to the regular
quality score of the corresponding basecall, and dele-
tion errors are associated with the gap quality score of
the base preceding the gap as it measures the quality of
the gap to the next called base.

Phred version 0.99077.f was used in this study.
This version of Phred uses instrument-specific quality
score calibrations for ABI-377, MegaBACE 1000, and
ABI-3700.

RESULTS AND DISCUSSION
We focus our discussion of the performance of
LifeTrace on the MegaBACE chromatogram sets, be-
cause we observed the most consistent performance
gain for this set. Also, all of the presented calibration
results for the quality scores will be for this set. Error
statistics for the other two sets (ABI-377 and ABI-3700
sequencing machines) will also be given but are ob-
tained from Method 2 only.

Error Rates
The benchmark statistics for the two basecallers Phred
and LifeTrace obtained from performance testing ac-
cording to Method 1 (see “Performance Testing” ) for
the MegaBACE chromatogram sets are presented in
Tables 1–3. LifeTrace has 2.4% more aligned bases
than did Phred for dye primer and 2.1% more for dye
terminator. The bulk of this difference comes from
longer reads, but a significant fraction also comes from
additional aligned reads.

Table 1. BAC Clone Descriptions

BAC clone
Accession

no. GI no. Size Reads Chemistry
ID in

this paper

RP11-349E11 AC007312 4586080 185652 bp 8273 Dye Primer MB_prim
RP11-260N14 AC009542 6554502 160367 bp 3264 ET Terminator MB_termRP11-169C22 AC009178 6642684 178097 bp 3360 ET Terminator

Table 2. Alignment Results

Basecaller

MB_Prim MB_Term

aligned
reads

aligned
bases

aligned
reads

aligned
bases

Phred 5299 2425026 5231 2639830
LifeTrace 5352 2483208 5292 2696119

Table 3. Total Number of Jointly Aligned Bases, by
Read Position and Chemistry

Base position MB_Prim MB_Term

–99 168823 175661
100–199 498926 501383
200–299 449075 484530
300–399 397832 458358
400–499 359640 428983
500–599 298010 367775
600–699 159247 177021
700–799 14987 7941
800–899 169 27
900–999 6
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Overall, LifeTrace made 17% fewer errors for
dye-primer data. LifeTrace made 17% fewer substi-
tution errors and 16% fewer indels. For dye-terminator
data, LifeTrace made 13% fewer errors overall. On
substitutions, LifeTrace made 15% fewer errors and
10% fewer indels. The breakdown per error type and
base position is given in Figure 4. For both sets, dye-
primer and dye-terminator, and for all position ranges,
LifeTrace generates consistently fewer total errors,
calls fewer Ns, and makes fewer substitution errors. The
number of indels generated by LifeTrace is lowered

significantly in the range of base position 100 to 500,
the range that usually contributes the most high-
quality trace information and the most base calls in the
error statistics (Table 3).

By restricting the error analysis to regions where
both basecallers align to the true sequence, Method 1
will tend to gather error statistics for regions where
both basecallers generate few errors. It is possible, how-
ever, that what is given as additionally aligned bases in
Method 1 for LifeTrace are in fact high-confidence
base calls with few errors for a region where Phred

introduces exceptionally many errors
(Fig. 1). For example, for a particular
chromatogram, Method 1 generated a
jointly alignable sequence region of 202
bases with seven errors for Phred and
zero errors for LifeTrace with 264 ex-
tra aligned bases. By contrast, Method 2
generates an initial blast alignment of
465 bases based on the LifeTrace-
called sequence with 67 base call errors
in the equivalent chromatogram region
by Phred and zero by LifeTrace. Evi-
dently, Method 2 widens the perfor-
mance difference by further analyzing
the extra aligned bases.

The performance comparison be-
tween the basecallers Phred and
LifeTrace using Method 2 (see “Per-
formance Testing”) is summarized in
Table 4. For the two MegaBACE sets
(dye-primer and dye-terminator),
LifeTrace generates about 30% fewer
basecall errors than did Phred. As ex-
plained above, this sharper decrease of
errors generated by LifeTrace com-
pared with Phred in Method 2 com-
pared with Method 1 originates from ex-
tended error analysis into the extra
aligned bases by LifeTrace. Insertion
errors in particular are reduced signifi-
cantly. This can be attributed to the fre-
quent failure of Phred to adjust to vari-
able peak-spacing as illustrated in Figure
1. The number of substitution errors by
LifeTrace is also reduced compared to
that of Phred. For the primer set, there
are 12,192 basecalls in which Phred has
a substitution error and LifeTrace is
correct, contrasted with only 10,727
(12% fewer) cases for which Phred is
correct and LifeTrace miscalled a
base. The decrease of substitution errors
for the same comparison is 2.3% for
dye-terminator data. The total number
of indels produced by LifeTrace is sig-

Figure 4 Performance comparison of Phred (gray bars) and LifeTrace (black
bars) using Method 1 (see Performance Analysis). Basecall errors are analyzed for the
different error types and as a function of position in the called sequence. (A) Mega-
BACE dye-primer set, (B) MegaBACE dye-terminator set. InDel indicates combined
insertions and deletion errors; N, called Ns (i.e., undecided basecalls).
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nificantly lower (42% less for the dye-primer and 47%
less for the dye-terminator set), largely because of a
much reduced number of insertion errors. LifeTrace
generated on average 3% to 5% longer initial BLAST
alignments of the called sequence to the true sequence
than did Phred, indicative of the increased number of
correct calls.

For the ABI-377–sequencer chromatogram set, the
overall performance is comparable with almost exactly
the same overall error rates for Phred and LifeTrace.
The breakdown into error types reveals that
LifeTrace generates more indels for this set, offset by
a reduced number of substitution errors. The higher
number of indels is also reflected in 2% shorter initial

BLAST-alignments of the called sequence to the true
consensus. It needs to be noted, however, that indels
are more critical in the context of sequence assemblies,
in which indels are more difficult to deal with than
substitution errors and can cause severe frameshift er-
rors.

Similar results were obtained for ABI-3700 chro-
matograms, for which LifeTrace generated 29%
fewer substitution errors but 13% more indels, with an
overall decrease of errors of about 10%. We noticed,
however, that the relative increase of basecall errors of
LifeTrace compared with that of Phred was largely
confined to the end of the reads, that is, in low-quality
regions. When the reads were clipped off at pixel po-

sition 6000, corresponding to a read
length of about 500 nucleotides or
about two–thirds of the original length,
the error statistics are much more in fa-
vor of LifeTrace, with 6% fewer sub-
stitution errors, 20% fewer indels, and
13% fewer errors overall. Thus, al-
though LifeTrace generated more er-
rors in the low-quality terminal read
segments, it produced significantly
fewer errors in the higher quality parts.
Many postprocessing steps include
some sort of quality clipping, so the re-
duced number of errors in the higher
quality parts is even more significant.

The substantial reduction of Mega-
BACE basecall errors achieved by
LifeTrace is largely attributable to
chromatograms, for which Phred intro-
duces exceptionally many errors. Figure
5 shows the LifeTrace error rate rela-
tive to Phred as a function of errors de-
tected in the chromatogram by the
larger error number of either Phred or
LifeTrace. The improved performance
of LifeTrace is more pronounced for
chromatograms with many errors (>25).
Again, this can be explained by the ob-
served difficulties of Phred to adjust to
variable peak spacing. Many of these
chromatograms appear to have high
quality, yet Phred inserts additional
bases to maintain an uniform peak spac-
ing (Fig. 1). However, LifeTrace also
outperforms Phred in higher quality
chromatograms, in which both basecall-
ers generate few errors. Only for dye-
terminator chromatograms with very
few errors (<6 errors) does LifeTrace
produce slightly more errors (∼5%).
However, this subset of chromatograms
includes only ∼20% of all chromato-Figure 4 (Continued)
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Table 4. Error Statistics Derived from Performance Testing

MB_prim
Total base calls aligned: 2,404,898

Phred
LifeTrace Correct Subst Insert Del Total LifeTrace

Correct 2,346,881 12,192 43,884 8,508
Subst 10,727 14,069 0 2,232 27,028
Insert 21,300 0 6,072 0 27,372
Del 4,836 1,179 0 6,072 12,087
Total Phred 27,440 49,956 16,812
Summary:
Both correct: 97.6% of all aligned true-sequence bases
Total LifeTrace errors: 64,689 = 70% of Phred errors, Total Phred errors: 92,410
Total InDels LifeTrace: 37,661 = 57.9% of Phred InDels, Total Phred: 64,970
Mean BLAST hit length to true consensus sequence, LifeTrace: 517.5, Phred: 493.9

MB_term
Total base calls aligned: 2,748,823

Phred
LifeTrace Correct Subst Insert Del Total LifeTrace

Correct 2,691,854 11,020 33,532 8,049
Subst 10,770 15,215 0 1,434 27,419
Insert 11,573 0 3,609 0 15,182
Del 6,714 1,477 0 2,290 10,481
Total Phred 27,712 37,141 11,773
Summary:
Both correct: 97.9% of all aligned true-sequence bases
Total LifeTrace errors: 53,082 = 69.2% of Phred errors, Total Phred errors: 76,626
Total InDels LifeTrace: 25,663 = 52.3% of Phred InDels, Total Phred: 48,914
Mean BLAST hit length to true consensus sequence, LifeTrace: 532.3, Phred: 517.5

337
Total base calls aligned: 666,489

Phred
LifeTrace Correct Subst Insert Del Total LifeTrace

Correct 644,389 5,612 2,974 1,843
Subst 4,414 6,865 0 721 12,000
Insert 4,424 0 651 0 5,075
Del 1,671 317 0 657 2,645
Total Phred 12,794 3,625 3,221
Summary
Both correct: 96.7% of all aligned true-sequence bases
Total LIfeTrace errors: 19,720 = 100.4% of Phred errors, Total Phred errors: 19,640
Total InDels LifeTrace: 7,720 = 113.2% of Phred InDels, Total Phred: 6,846
Mean BLAST hit length to true consensus sequence, LifeTrace: 582.6, Phred: 594.2

3700
Total base calls aligned: 2,659,195

Phred
LifeTrace Correct Subst Insert Del Total LifeTrace

Correct 2,519,021 31,671 23,497 17,676
Subst 17,493 20,863 0 2,698 41,054
Insert 11,930 0 1,482 0 13,412
Del 34,113 5,257 0 10,403 49,773
Total Phred 73,397 24,979 30,777
Summary:
Both correct: 94.7% of all aligned true-sequence bases
Total LifeTrace errors: 104,239 = 91.8% of Phred errors, Total Phred errors: 113,547
Total InDels LifeTrace: 53,185 = 113.5% of Phred InDels, Total Phred: 55,756
Mean BLAST hit length to true consensus sequence, LifeTrace: 662.5, Phred: 705.8

Break down of error statistics derived from performance testing using Method 2 (see Methods section) applied to both the MegaBACE
dye-primer and dye-terminator set. Table lists all possible error combinations. For example, for the set MB_prim there were 12,192
correct calls made by LifeTrace where Phred had a substitution error at the same position compared to 10,727 where Phred was
correct and LifeTrace had a substitution error and 14,069 cases where both basecallers had a substitution error. Mean BLAST hit
length refers to the length of the high scoring sequence alignment between the called sequence and the finished, true consensus
sequence. Called Ns are counted as bases and contributed to substitution and insertion errors.



grams analyzed, as can be seen from the cumulative
chromatogram counts in Figure 5. The comparison of
LifeTrace to Phred is nearly flat for ABI-377 data,
suggesting that both basecallers perform uniformly
over all chromatogram quality ranges. Contrary to
MegaBACE data, there appears to be a performance
gain from LifeTrace in higher quality chromato-
grams from the ABI-3700. LifeTrace is observed to
cause fewer errors in chromatograms, in which both
LifeTrace and Phred make relatively few errors. This
is in line with the reduced error rates for clipped ABI-
3700 chromatograms described above.

Quality Scores
LifeTrace distinguishes between two quality scores:
the quality of an actual basecall and the quality of the
gap between bases. As the trace-related parameters in-
fluencing the LifeTrace quality scores generated raw
quality scores that showed a monotonic relationship
with the true observed error rate, it was possible to
calibrate both the basecall quality score and the gap
quality score to the convention introduced by Phred,
in which q = �10 � log10 (error rate). The calibrated
quality scores assigned to the called bases are com-
pared with the observed error rate in Figure 6. For both
sets, primer and terminator, the LifeTrace quality

scores prove to be reliable predictors of the expected
error rate and fall within a narrow range from the ideal
line; similar to that for Phred, albeit the spread be-
tween the two sets is somewhat wider. It has to be
noted, however, that Phred quality scores estimate the
probability of all three error types: substitutions, inser-
tions, and deletions. Deletion errors were not consid-
ered in Figure 6, neither for LifeTrace nor for Phred.
A deleted base cannot have an associated quality score.
The approach we take here is to introduce the gap-
quality score, whereas Phred propagates low-quality
gaps (wide gaps, or gaps with potential peaks in be-
tween) to quality scores of the neighboring basecalls.

Figure 5 Comparison of LifeTrace error rate to Phred error
rate in subsets of chromatograms grouped according to quality
of the chromatogram. Quality is expressed as the maximum al-
lowed number of basecall errors made by either LifeTrace or
Phred, that is, max(LifeTrace_errors, Phred_errors). For ex-
ample, chromatograms for which both LifeTrace and Phred
generate fewer than five basecall errors can be considered high-
quality chromatograms. As the graph shows, LifeTrace out-
performs Phred in a set of chromatograms for which Phred
generates many errors but LifeTracemakes few. Error rates are
normalized by the number of Phred errors (i.e., Phred is the
horizontal line at relative error rate 1). Broken lines corre-
spond to the cumulative sum of the number of chromato-
grams normalized by the total number of chromatograms in
the set at a given error threshold with the color code match-
ing the legend colors.

Figure 6 Fidelity of LifeTrace and Phred quality scores.
Quality scores associated with all basecalls aligned to the true
sequence were binned into intervals of width �(q-score) = 2.
Semi-logarithmic plot shows observed error rate in each bin as a
function of quality score associated with that bin for the dye-
primer and dye-terminator MegaBACE chromatogram set ana-
lyzed. Only substitution and insertion errors are considered here
as deletion errors are captured by the newly introduced gap-
quality score (see Fig. 3), and a deleted base itself does not have
a quality as it does not exist. Ideal refers to the ideal line of.
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An objective of basecalling by means of assigning
quality scores is to reliably separate high-quality bases
from potentially incorrect basecalls. Figure 7 plots the
frequency histogram for the quality scores associated
with basecall errors compared with the distribution of
quality scores for all calls for LifeTrace and Phred.
As desired, basecall errors accumulate in low-quality
regions and are well separated from the majority of
basecalls. Although the overall distribution is similar
for LifeTrace and Phred, the histogram for Phred is
much more rugged. We believe that this is an effect
introduced by the lookup-table approach taken by
Phred to match trace parameters with quality scores/
observed error rates. Instead, LifeTrace uses continu-

ous parameters to judge quality, and therefore, the
curves appear smoother.

Figure 8 shows that the assigned gap-quality scores
have predictive value and correctly estimate the ob-
served error rate. Deletion errors are confined to low–
gap-quality gap-calls, well separated from the bulk of
higher quality data (Fig. 9). Figures 8 and 9, showing
data for deletion errors, are the equivalent plots to Fig-
ures 6 and 7 for the substitution/insertion error cat-
egory. In the current implementation, the lowest pos-
sible gap-quality score is 15, because of a single par-
ticular threshold in one of the components
contributing to the gap-quality. As many gap-calls ac-
tually fall below that, counts at gap-qualty equal to 15
are elevated.

Summary
We present a new basecalling method implemented in
the program LifeTrace. We showed that it performs
particularly well with capillary sequencing machines
(MegaBACE), with substantially reduced basecall errors
compared with those of Phred. Furthermore, we intro-
duce the concept of a gap-quality score, which allows a
better estimation of deletion errors.

Figure 7 Discriminative power of quality scores and retention
of high-quality base calls. Frequency distribution of quality scores
associated with substitution and insertion errors and all basecalls
for basecallers LifeTrace and Phred for the chromatogram
sets examined. Frequencies are computed for calls binned into
width intervals of two units of quality scores.

Figure 8 Fidelity of LifeTrace gap-quality scores. Semi-
logarithmic plot of observed frequency of deletion errors as a
function of assigned gap-quality score of the preceding base in
the alignment for the MegaBACE chromatogram sets (primer and
terminator) analyzed. The gap-quality score of the base preced-
ing the gap captures the quality of the gap to the next called
base, that is, low gap-qualities indicate a high probability that
another base might be between this and the next called base
indicating a high likelihood of a deletion error. In LifeTrace,
gaps are considered a call. Observed error rate indicates the frac-
tion of incorrect gaps (missed true basecall in between) out of all
called gaps; ideal line, the same as in Figure 8. Bin width was 4
quality units.
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It remains to be noted that the accuracy of base-
calling is also influenced to large degree by the prepro-
cessing applied to the chromatograms, and changes in
the preprocessing steps will result in different compari-
son results.

Other technical parameters (e.g., the chosen read
length or sampling rate per peak) systematically influ-
ence the quality of the recorded chromatogram and
render chromatogram sets different, even if produced
on the same machine type. Despite our efforts to com-
pute quality scores directly from the primary trace data
alone, such systematic differences between sets will
have to be accounted for by a calibration of quality
scores.

The alignment method introduced in this paper—
aligning sequences to a consensus sequence using
quality score information as part of the scoring
scheme—should prove useful in SNP detection efforts,
especially for the detection of deletion and insertion
SNPs in runs of the same base. By better being able to
identify basecall errors by locating a mismatch or de-
letion to low-quality regions of the chromatogram, it

will be possible to identify real base deletions with
greater confidence. LifeTrace is already being used at
Incyte to mine SNPs from sequence assemblies, espe-
cially insertion and deletion SNPs.

Apart from possibly necessary quality score cali-
brations, we think that LifeTrace can find immedi-
ate use in high-throughput sequencing operations.
With its philosophy of solely relying on the presented
trace data as input and without the need to correct for
machine-dependent mobility information, implemen-
tation of LifeTrace should be straightforward.

Processing Time
The processing time required by LifeTrace is compa-
rable to that of Phred. On the computer systems used
for testing, LifeTrace required about 25% less pro-
cessing time for ABI-377 chromatograms but about
50% more time for MegaBACE data, and the time per
chromatogram was in range of 0.1 to 0.2 sec on a DEC-
Alpha workstation.

The Code
LifeTrace was written in C. It provides a graphical
interface to display chromatogram trace data based on
the standard X11 library and should run on any UNIX
Xwindow system.

Availability
Precompiled versions of LifeTrace for various com-
puter platforms, including more detailed descriptions
of the algorithm and associated parameters, are avail-
able at http://www.incyte.com/software/home.jsp.
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Figure 9 Discriminative power of LifeTrace gap-quality
scores. Frequency distribution of quality scores associated with
deletion errors (gap-quality assigned to the gap-preceding base-
call) and all gap calls for basecaller LifeTrace for the chromato-
gram sets examined. Frequencies are computed for calls binned
into width intervals of 2 units of quality scores.
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