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Abstract

Modern microelectrode arrays make it possible to simultaneously record population neural
activity. However, methods to analyze multiunit activity (MUA), which reflects the aggregate
spiking activity of a population of neurons, have remained underdeveloped in comparison to those
used for studying single unit activity (SUA). In scenarios where SUA is hard to record and
maintain or is not representative of brain’s response, MUA is informative in deciphering the
brain’s complex time-varying response to stimuli or to clinical insults. Here, we present two
quantitative methods of analysis of the time-varying dynamics of MUA without spike detection.
These methods are based on the multiresolution discrete wavelet transform (DWT) of an envelope
of MUA (eMUA) followed by information theoretic measures: multiresolution entropy (MRE) and
the multiresolution Kullback-Leibler distance (MRKLD).We test the proposed quantifiers on both
simulated and experimental MUA recorded from rodent cortex in an experimental model of global
hypoxic—ischemic brain injury. First, our results validate the use of the eMUA as an alternative to
detecting and analyzing transient and complex spike activity. Second, the MRE and MRKLD are
shown to respond to dynamic changes due to the brain’s response to global injury and to identify
the transient changes in the MUA.
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l. INTRODUCTION

Recent advances in extracellular microelectrode technology enable researchers to record
action potentials (spikes) simultaneously from a population of multiple neurons [1]-[5]. The
large-scale recording of a population makes it easier to gain a deeper understanding of how
populations of neurons respond to natural or applied stimuli or insults to the brain. Study of
large populations of neurons can be accomplished through simultaneous recording from
population of neurons, or multiunit activity (MUA) or local field potential (LFP) [1], [2].

Conventional approach, however, has been to record and analyze single unit activity (SUA)
as a single neuron’s response in an experiment [2]-[5]. The use of SUA is hampered,
especially when SUA is hard to separate or when if it turns out to be difficult to record from
the same neuron for sufficiently long periods [6], [7]. In experiments where the brain’s
response is transient or time varying, such as when brain is injured, recording or analyzing
SUA can be ineffective. Compared to SUA, MUA may be a better measure of a population
of neurons around the electrode under such circumstances [1], [6], [8]. MUA may also be
useful for investigating the interaction among multiple neurons [2], [6], [8], [9].

Here, we present novel quantitative methods to assess the time-varying dynamics of MUA.
We use a continuous representation of MUA by constructing an envelope of the MUA signal
(eMUA). Such an envelope reflects the changing dynamics of all spike activities regardless
of the magnitude of spike potentials or the number of neurons. Amplitude envelope of
population activity bypasses the need for spike detection and isolation. Moreover, eMUA is
a nonstationary signal that has detailed and coarse temporal features. For such signals, the
wavelet transform has proven itself as a way to deal with local changing features in both
time and frequency. Theory of multiresolution discrete wavelet transform (DWT) has been
developed to optimally decompose complex time-varying signals into orthonormal scales
[10]. DWT has emerged as a very popular tool for the analysis of complex physiological
signals that invariably are time varying and exhibit unique features at various frequencies or
scales [11]-[17]. Here, we use the multiresolution DWT to decompose the eMUA signal
into different scales. Next, to quantify the embedded information content of the eMUA
signal, we calculate its entropy [18]. Two of the most popular measures are the Shannon
entropy and the relative entropy. Numerous studies have used entropy [19]-[22] and relative
entropy, referred to as Kullback-Leibler distance (KLD) [23], to measure the discrepancy
between two distributions [24], [25] of complex physiological signals.

In our paper, two complementary methods of multiresolution wavelet-based entropy of
MUA are developed: the multiresolution entropy (MRE) and the multiresolution KLD
(MRKLD). The former provides the degree of uncertainty associated with the time-varying
eMUA, while the latter captures the local variation in the dynamics of eMUA by comparing
the distributions of the wavelet coefficients of successive eMUA windows.

The remainder of the paper is organized as follows: In Section Il, the eMUA is first
developed and next the multiresolution-based entropy measures for eMUA are formulated.
Section 111 presents MUA simulations followed by analysis of cortical MUA obtained
during experiments to study the brain’s response to global hypoxic—ischemic injury as an
example. Section IV presents the conclusion.

II. MULTIRESOLUTION ENTROPIES FOR MUA

A. Envelope of MUA

High-pass filtering yields the high-frequency spike activity of multiple neurons while
filtering out the low-frequency LFPs. In most studies using MUA, a spike-detection scheme
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is used to discriminate spikes from the underlying noise. Using spike detection, neural
activity can be converted into a binary sequence and subsequent firing rate can be estimated
[6], [26], [27].

In contrast, we represent the filtered MUA as a continuous waveform by obtaining an
envelope of the underlying high-frequency population activity, represented as a voltage. As
shown in Fig. 1(a), the filtered MUA is first full-wave rectified (i.e., taking absolute values
of the signal). Subsequent low-pass filtering (cutoff < 500 Hz) is carried out [6], [9], [28].
Finally, the eMUA is obtained. Following Fig. 1(b) shows that the eMUA captures
distinctive spikes, including hard-to-separate multiple-spike trains. The upper trace is the
eMUA signal and the lower one is the MUA signal. Arrows indicate the occurrences of
spikes. Fig. 1(b)—(d) shows the filtered MUA and its corresponding eMUA. Fig. 1(b)
indicates the raw cortical MUA recording from an anesthetized rat.

Fig. 2(a)—(d) shows the MUA, eMUA, spike sequences from multiple neurons after spike
detection from MUA, and the primary clustered SUA after spike sorting, respectively. While
the multiple neuron spike sequence in Fig. 2(c) treats distinct spikes as a binary sequence
(on/off), the eMUA signal in Fig. 2(b) reflects the time-varying and transient spike
information that preserves the number and magnitude of all spikes. Moreover, we can
observe that SUA in Fig. 2(d) does not account for the population response since it loses
firing information from small amplitude spike activity. On the other hand, the eMUA signal
provides an envelope of the time-varying neural response of all neurons in the population.

B. DWT of eMUA

The eMUA is divided into a number of segments using a sliding temporal window [29]. Let
$(#) denote an eMUA signal. For a given {s(s) : /=1, ..., N}, asliding temporal window w<
Nand a sliding interval A < ware defined. Then, the rth sliding window of the eMUA is
represented as

$u()={s(0):i=1+nA, ..., w+nA} (1)
where 7=0, 1, ..., [(N— w+ 1)/A] and [x] denotes the integer part of x.

Since eMUA is, in general, nonstationary and time-varying, we use the multiresolution
DWT for analysis due to its ability to localize signal characteristics in both time and
frequency domains [15], [30]. In this way, both coarse changes occurring over longer time
scales as well as finer transitions occurring at shorter time scales can be adequately
represented. We incorporate DWT to characterize the eMUA. The signal is decomposed
over /levels by the DWT. A set of wavelet coefficients, DWT ;[s, (4], is obtained from the
eMUA signal in a sliding window s, (/)

DWT; [s,()]=[c', ...,/ (2

where ckfor k=1, 2, ..., j+ 1 are the sets of wavelet coefficients corresponding to the
level DWT.

The next step involves estimating the probability distribution of the wavelet coefficients. We
introduce the set {/;, m=1, ..., M} of disjoint intervals for each window DWT ;[s, (/)] as
follows:

DWT; [s,()l=[c',c?,..., ¢ =0 1, (3)
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Then, p, (m), is the probability that the wavelet coefficient belongs to the interval /,, within
DWT  [sy (4] Itis evaluated as a ratio of number of the wavelet coefficients of DWT [s,
()] within /;,and the total number of the wavelet coefficients in DWT [s, (4], i.e., p, (m) =
np/N, where 71, is the number of times of DWT ;[s, (/)] found within /7th interval and NVis
the total number of wavelet coefficients in DWT  [s, (4)].

C. Entropy Measures of eMUA

The MRE of the time-varying eMUA is calculated as follows:

M
MRE(m)= = " pu(m) log pa(m) ()

m=1

M
where 0 < p,(m)<1and Zm:]Pn(mF 1. The entropy of the wavelet coefficients reflects the
underlying uncertainty associated with the time-varying eMUA signal.

Further, we develop a second measure to detect changes in the entropy of eMUA. Such a
measure is useful as it can be used to interpret changes in the complexity of the underlying
time-varying physiological process. Our approach is to characterize the dissimilarity in
dynamics of two consecutive eMUA windows. Using the relative entropy measure [31]-
[33], the amount of discrepancy between the wavelet coefficients of consecutive sliding
windows is measured. Taking the distribution of wavelet coefficients of the previous
window as a reference, r(m), MRKLD of the signal of interest is obtained as

rom) :ip ) log2 L™ o
Pn(m) =l ! -

M
) IRKLD(n)=mZ:1r(m) log Pa(m)

The resultant MRKLD can detect the transition between two successive windows, i.e., /th
and (/7-1)th windows of the eMUA signal. The MLKLD is nonnegative, asymmetric, and
zero if the distributions match exactly. The greater the variation of the local dynamics is
between consecutive eMUA temporal windows, the greater the MRKLD value. Block
diagram describing MRE and MRKLD is shown in Fig. 3.

The window size was chosen empirically, as discussed in [29]. We calculated the MRE for a
5-s-long segment of the actual cortical MUA [see Fig. 4(a)] for variable nonoverlapping
window sizes w. We started with w= 0.1 s and incremented it steps of 0.1 sup to w=5s.
The effects of window size are demonstrated in Fig. 4(b). As can be seen in Fig. 4(a), MRE
approaches a steady-state value for window sizes > 1 s. Thus, w> 1 s provides an unbiased
estimate of entropy.

Ill. RESULTS

We first examined the MRE and MRKLD of a simulated eMUA signal synthesized from
experimental recordings. Next, we applied these measures to the actual MUA recorded from
rodent cortex in experimental studies of neurological responses to global hypoxic—ischemic
injury and recovery after cardiac arrest (CA) (the experimental details follow in Section I11-
B, and were previously described in [34] and [35]).

A. Simulation Studies

To test the performance of the measures, i.e., MRE and MRKLD, a synthetic MUA signal
was used. The synthetic MUA was modeled by combining three SUAs and background
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noise. The sampling frequency for the simulated MUA was 10 kHz. Three spike templates
for the three SUAs were obtained from cortical single neurons of an anesthetized rat. Each
spike template was recorded from different neurons and the temporal sequence of each spike
template was designed by a integrate-and-fire model with refractory period of 2 ms [36],
[37]. To mimic the signal conditions of the actual MUA signals, noise with a Gaussian
probability distribution was added. The SNR is defined as the ratio between the absolute
peak amplitude of the spiking activity and the standard deviation of the noise [38]. In the
simulation, SNR was set to 5.

By combining the three SUAS, we obtained the simulated MUA segment for 40 s. To
simulate the time-varying MUA pattern, the firing rates of three SUAs were varied every 10
s. To imitate abrupt neural activity changes, the firing-rate parameter was held constant for
10 s, then changed significantly for the following time periods. During the initial 10 s
period, the firing rate of each SUA was 50 spikes/s. Between 10 and 20 s, the firing rate is 3
spikes/s. For the following 10 s, burst firing activity of neurons was included to reflect
similar experimental recordings. During last 10 s, the firing rate of each SUA is set to 50.
Fig. 5(a) shows the resultant simulated MUA. Fig. 5(b) depicts the eMUA signal obtained
from the signal shown in Fig. 5(a) by a full-wave rectification, followed by low-pass
filtering with 150 Hz cutoff frequency. Zero-phase forward and reverse low-pass filtering
was carried out using a second-order Butterworth filter. Note that the eMUA signal not only
retains the high-frequency activity of a population of neurons, but also includes small spike
activities which might be ignored in typical spike detection. In calculating the MRE for the
simulated eMUA, the parameters were: sliding-window length w=1s, sliding step A = 1s,
M = 20. The Daubechies wavelet function [39] was used as the mother wavelet, as daughter
wavelets are orthogonal and suitable for representing nonstationary signals. The number of
decomposition levels in DWT was set to 5, in accordance with the experimental sampling
frequency and to avoid the redundancy of using a greater number of levels. Fig. 5(c) shows
the time evolution of MRE of the simulated eMUA. In Fig. 5(c), we can observe that MRE
is indicative of different firing rates. In addition, MRE reflects the variable dynamics of the
bursting activity during 20-30 s.

In Fig. 5(d), the time evolution of MRKLD of the simulated eMUA is shown. At each
transition of firing pattern, the corresponding MRKLD value was high, implying a high
degree of discrepancy between successive dynamics. For the bursting activities during the
20-30 (s) period, MRKLD detected the transient changes of short-length bursting activities.
Thus, MRKLD is well suited for detecting the transient dynamics of underlying MUA such
as significant changes in the firing activity and occurrence of complex neural activity. Fig.
5(c) and (d) shows that the MRE and MRKLD can identify state changes with respect to the
actual times of transition.

B. Experimental Studies on Cortical MUA Following Hypoxic—Ischemic Brain Injury

Our work on MUA analysis is motivated by experiments that use microelectrodes to record
from injured brain. We investigate the cortical multiunit spiking activity from rats subjected
to hypoxic—ischemic brain injury due to CA and subsequent recovery after cardiopulmonary
resuscitation (CPR). Our long-term goal is to identify the neural response to injury, and this
response is assessed by recording and analyzing the MUA in the cortex of the injured
animal.

The brain injury studies were carried out under a protocol approved by the Institutional
Animal Care and Use Committee of the Johns Hopkins Medical Institution. We have
previously reported on the asphyxic CA and resuscitation protocol [34], [40]. This rat model
has been validated to study multiple aspects of brain injury after asphyxic CA including
duration of injury and temperature manipulation.
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The experimental protocol is as follows. Five adult male Wistar rats (300 + 25 g) were used.
The rats were anesthetized by 1% isoflurane in 50%:50% N,:O,. After anesthesia, a
stereotaxic frame (David Kopf Instruments, Tujunga, CA) was used to place the silicon-
based 16-channel microelectrode array (Neuronexus Technologies, Ann Arbor, MI) into the
parietal cortex of the rats. The cortical MUA was continuously recorded with 6.1 kHz
sampling frequency (RX 5, Tucker-Davis Technologies, Alachua, FL) and followed by a
fourth-order Butterworth bandpass filtering with forward—backward, zerophase lag with
cutoff frequencies of 300-3000 Hz. EEG signal was also recorded simultaneously.

Baseline recording of 10 min was followed by a 5 min anesthetic washout to ensure no
significant residual effect of isoflurane on the physiological signals. After washout, CA was
induced via asphyxia by pharmacological paralysis and clamping of the tracheal tube for 7
min. During the injury phase, CA was defined by two parameters: the time to pulselessness
(MAP < 10 mmHg) and the time to return of spontaneous circulation (ROSC) during
resuscitation (MAP > 50 mmHg). Resuscitation was initiated by unclamping the
endotracheal tube, restarting mechanical ventilation with 100% oxygen, administering
epinephrine, sternal chest compressions (attempting to generate systolic arterial pressure
peaks of > 50 mmHg) until ROSC. Further experimental details can be found in [35] and
[40].

Fig. 6(a) demonstrates the actual MUA recording from cortical population of a rat as well as
the simultaneous EEG recording during baseline, brain injury, and recovery. The recorded
MUA can be divided into three distinct phases. The first phase consists of a 10-min baseline
recording and a 5-min anesthesia washout period, which is further characterized by
spontaneous firing of MUA. The second phase consists of 7 min duration of hypoxia after
CA. This phase was characterized by a significant reduction of MUA. Around 35-40 min,
the spike activity gradually increased, indicative of recovery of neural activity postinjury.
This pattern suggests that neural population activity is strongly related to the status of
recovery. We observed that the population activity during the initial recovery phase had
smaller spike amplitudes and sparse firing. In addition, during the late recovery phase, the
MUA signal exhibited a characteristic busting pattern.

The main aim in this experimental study was to quantify the time-varying cortical MUA
before, during, and after hypoxic—ischemic brain injury. Previous studies have used EEG
signals to track the hypoxic—ischemic brain injury as a suitable marker for neurological
status early after the injury [13], [29]. This study explored the role of underlying activity at
the neuronal population level. We calculate multiresolution entropies of the eMUA. The
parameters used in the calculation of the time-dependent entropies were as follows: sliding-
window length w= 5s, sliding step A =5s, M= 20, and decomposition scale r=5 in DWT.

Fig. 6(b) and (c) shows the time courses of multiresolution entropies, i.e., MRE and
MRKLD, respectively. Fig. 6(b) depicts the time evolution of MRE, normalized to its
average value over the baseline recording period. Compared with the baseline period, we
can observe the sudden decrease of MRE at the onset of CA. Nearly 18 min into recovery,
MRE gradually increased, suggesting the reappearance of neural activity. MRE tends to
increase during the recovery duration. In Fig. 6(c), the time evolution of MRKLD is shown.
The MRKLD increased as the brain recovers from the ischemic insult.

The MRE profiles during the recovery periods of five rats are summarized in Table I. One
channel out of 16-channel microelectrode array that has a highest baseline firing rate was
chosen per rat. Table | lists the averaged MRE for each rat during early and late recovery
periods. For 5-min-long segment in Table I, we obtained the 60 samples of MRE. Based on
the central limit theorem, the MRESs can be assumed to be normally distributed.
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Thus, the £test, which assumes normality of the underlying distribution, was used in the
analysis. Since, the recovery pattern is being studied over time and we tested if there was a
difference between successive time durations, we used a two-tailed test. We can observe that
MRE tends to increase as the recovery progresses. For comparison, we carried out a
nonparametric bootstrap test using the median value of eMUA with a bootstrap resample
size of 500 shown in Table 1. The analysis demonstrated that the median value of eMUA
does not always follow the same trend as the MRE, especially during initial recovery when
dynamic changes to brain’s physiological state occur to restore neural activity from a period
of relative absence of electrical activity. For example, in rats 3 and 5, while the MRE is able
to track the increasing trend of recovery between 25 and 40 min postinjury, eMUA does not
reflect the same trend adequately.

V. CONCLUSION

We have presented an eMUA-based quantitative measure that can capture time-varying
dynamics of neural activity. The eMUA signal used in this study is useful in analyzing
population responses to stimuli or brain dysfunction. Considering the time-varying and
nonstationary nature of eMUA, we used multiresolution-based DWT to detect and localize
the varying temporal-spectral dynamics of the signal. It is well known that information-
theory-based metrics can provide more useful insights about the information embedded in
neurological signals when compared to standard frequency analyses [16], [17], [29], [34].
The combination of distribution of wavelet coefficients and information theoretic measures
are shown to be very effective for describing both the spectral and temporal changes of the
eMUA. The resultant MRE is capable of exploring global quantification of dynamics of the
time-varying eMUA and MRKLD serves to detect the local dynamic transitions in the
MUA. To our knowledge, this study is the first to explore a time-varying MUA without the
detection of spikes and to demonstrate its application to a clinically important problem.
Finally, the quantitative measures developed, MRE and MRKLD, were shown to be useful
in assessing the electrophysiological response of a population of neurons under simulated
and /n vivo experimental conditions.
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Fig. 1.
(a) Block diagram for extracting the eMUA. MUA signal is obtained by bandpass filtering
of a raw extracellular recording. Following full-wave rectification and low-pass filtering are
carried out to estimate the eMUA signal. (b) Examples of MUA recordings and their
corresponding eMUA.. Arrows indicate the occurrence of spike activities.
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Fig. 2.

(a) Bandpass-filtered MUA signal (300 Hz-3 kHz) with a sampling frequency of 6.1 kHz.
These signals were recorded from cortex of rat using microelectrodes (described in Section
I11-B). (b) eMUA for signal in (a). This was obtained by full-wave rectification, low-pass
filtering (cutoff frequency 150 Hz). (c) Multiple neuron spike train recorded by single-
channel microelectrode obtained after spike detection. (d) Primary clustered SUA after spike
sorting. The resulting eMUA preserves the population response, i.e., neural spike activities
of multiple neurons, contained in the filtered MUA signal.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 November 10.




1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Choi et al.

Page 14

eMUA

v

Sliding window

v

[ ]
[ Discrete Wavelet ]
[ J

Transform (DWT)

v

Probability distribution
of wavelet coeflicients

Kullback-Leibler

Shannon entropy distance

v \

MRE MRKLD

Fig. 3.
Block diagram of the proposed measures, i.e., MRE and MRKLD.
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Fig. 4.

Effect of window size on the MRE. (a) 4 s of actual baseline MUA was chosen to evaluate
the time-dependent MRE. (b) Resulting MRE plot versus window size. The plots indicate
that the selection of w> 1 s is appropriate for avoiding a bias.
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Fig. 5.

Synthetic MUA and the time evolutions of MRE and MRKLD. (a) Synthetic MUA is
constructed by convolving three spike templates and three spike train modeled a Poisson
process, along with the addition of Gaussian noise (SNR = 5). Each 10 s period has the
distinct firing rate (period 1: 0-10 s, period 2: 10-20 s, period 3: 20-30 s, and period 4: 30—
40 s). The upper traces show the enlarged synthetic MUA of corresponding numbered
periods. (b) eMUA signal is obtained by a full-wave rectification, followed by low-pass
filtering at 150 Hz. (c) Time evolution of MRE for the simulated eMUA. (d) Time evolution
of MRKLD for the simulated eMUA. In calculating the time-dependent entropy-based
measures, the sliding-window length w= 1s, the sliding step A = 1s, and M= 20 were used.
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The arrows in (d) identify the transition points in the varying dynamics of the synthetic
MUA signal.
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Page 18

Raw EEG and cortical MUA recordings of a rat before, during, and after hypoxic—ischemic

brain injury due to cardiac arrest and multiresolution entropies (MRE and MRKLD) of

eMUA. (a) Raw EEG(upper trace) and cortical bandpass-filtered MUA (lower trace). The
raw recordings consist of 10 min baseline recording, 5 min washout, 7 min CA, and the

subsequent recovery period (BL: baseline, CA: cardiac arrest, RE: recovery). (b) Time

course of MRE for the cortical eMUA shown in (a). (c) Time course of MRKLD for the
cortical eMUA shown in (a). The four lower traces show the enlarged actual MUA of abrupt
increases in MRKLD compared to previous one.
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TABLE |

Statistical Results of MRE Value (Mean + SD) for Different Time

MRE
Rat ID

25-30 min post-CA 3540 min post-CA  60-65 min post-CA 100105 min post-CA
Rat#l  093+0.077,0:®  096:007C ¢ 1.20+0.08® 1.590.09
Rat#2  093+003%< ¢ 099:003C ¢ 1.47+0.05® 1.670.07
Rat#3 06540035 ¢ 07120030 ¢ 0.93:0.03 ¢ 1.060.06
Rat#  084:005%C ¢ 0942007 @ 1.360.06 ® 1.50+0.06
Rat#5 (784007 @ 0.79:0.04C: ¢ 0.89+0.04® 0.97+0.05

Note: The MRE values are normalized with respect to that of baseline recording and are in arbitrary unit.

*
ttest with 35-40 min post-CA, p< 0.001;

o

ttest with 60-65 in post-CA, p< 0.001;

't—test with 100-105 min post-CA, p < 35-40 min with p< 0.05.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 November 10.

Page 19



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Choi et al.

TABLE Il

Statistical Results of the Nonparametric Bootstrap Test on eMUA

Median of eMUA

Ratib 25-30 min post-CA 3540 min post-CA  60-65 min post-CA 100105 min post-CA
Rat #1 107185 @ 127104 @ 1.3576® 1.6598
Rat#2  gg31 V. O @ 10215 ¢ 1.3207® 1.6186
Rat #3 09821 ¢ 0.8280< @ 0.9653® 1.1617
Rat #4 10558 ¢ 10719, # 120459 1.3346
Rat #5 1.3195 09628 @ 1.0012® 1.0623

Note: The bootstrap resampling size of 500 was used.
*t—test with 35-40 min post-CA, p< 0.001,

Ot—test with 60-65 in post-CA, p< 0.001;
't—test with 100-105 min post-CA, p< 0.001,

v
ttest with 35-40 min with p< 0.01.
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