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We report a simple new algorithm, cis/TF, that uses genomewide expression data and the full genomic
sequence to match transcription factors to their binding sites. Most previous computational methods discovered
binding sites by clustering genes having similar expression patterns and then identifying over-represented
subsequences in the promoter regions of those genes. By contrast, cis/TF asserts that B is a likely binding site
of a transcription factor T if the expression pattern of T is correlated to the composite expression patterns of all
genes containing B, even when those genes are not mutually correlated. Thus, our method focuses on binding
sites rather than genes. The algorithm has successfully identified experimentally-supported transcription factor
binding relationships in tests on several data sets from Saccharomyces cerevisiae.

An unprecedented opportunity exists to decipher transcrip-
tional regulation by combining computational analysis of
large-scale gene expression with knowledge of complete ge-
nomic sequence. The logical basis for this research is the now
well-established fact that gene expression is controlled by spe-
cific interactions between regulatory proteins, transcription
factors, and short sequences in the regulatory regions of genes
to which they bind, cis elements (Arnone and Davidson
1997). Taking a reverse perspective, several computational
techniques have used expression data to help focus the search
for cis elements within the vast expanse of genomic sequence
(for review, see Zhang 1999). We describe a simple computa-
tional approach that identifies cis elements and the factors
that are likely to bind them by finding a high correlation
between the expression of a given transcription factor and the
sum of expression patterns of a group of genes that share a
motif in their regulatory regions. Describing the mechanisms
behind gene regulation has enormous implications for under-
standing development and designing therapies for genetic
diseases in humans but the first steps are now focused on
defining the primary level of regulatory interactions.

Microarray technology has permitted genomewide ex-
pression data to be collected in a single experiment (Schena et
al. 1995; Lockhart et al. 1996; DiRisi et al. 1996). For instance,
in Saccharomyces cerevisiae, several public databases exist that
report the expression level of virtually every transcript at dif-
ferent points during a developmental or metabolic time
course (e.g., Chu et al. 1998; Spellman et al. 1998). With the
complete sequence of S. cerevisiae available, it is also possible
to retrieve the putative upstream regulatory sequence of any
gene.

One important approach to identifying cis elements has
been to cluster genes according to their expression patterns

and then search for potential regulatory motifs in the up-
stream regions of gene clusters (Brazma et al. 1998; Roth et al.
1998; Spellman et al. 1998; van Heldon 1998; Zhang 1999).
Spellman et al. (1998) used cDNA microarrays to measure
mRNA transcript levels in synchronized yeast cells at several
time points in the cell cycle. Genes were grouped into expres-
sion profiles using Pearson correlation and their upstream re-
gions were searched for over-represented, degenerate motifs
using a modified Gibbs sampling algorithm. The technique
yielded cis elements that are known to play a role in cell-cycle
regulation, suggesting it could predict novel binding sites
with functional roles.

However, motif searching based on clustered genes
eliminates useful data when gene regulation is complex. For
instance, the expression pattern of a particular gene may be
due to a combination of different regulatory elements confer-
ring different effects at different times or in different tissues
(Yuh et al. 1998; Flores et al. 2000; Halfon et al. 2000; Xu et al.
2000). Thus, genes may share certain functional cis elements
in their regulatory regions but still differ in their overall ex-
pression due to other, nonshared, cis elements.

In a method developed independently, Bussemaker et al.
(2001) assumed that each binding site makes an additive con-
tribution to the expression of a gene in a given experimental
setting. That is, Gi = �j Nij Cj, where Gi is the normalized
expression value of gene i at a given experimental point, Nij is
the number of times binding site Bj appears on the promoter
region of gene i, and Cj is the coefficient for binding site Bj for
a particular experiment. An important assumption of this
method is that each binding site B contributes the positive or
negative influence on expression for every gene as repre-
sented by its coefficient. That implies, for example, that if two
binding sites B and B� happen to have the same coefficients
and if a promoter for gene G has both, then replacing each
instance of B by B� will result in the same expression level of
gene G.

We have developed a technique that decomposes pro-
moter regions into reading frames of modest length (e.g., 6–7
bp) that represent the entire set of nondegenerate potential cis
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elements for a given set of expressed genes. For each such
motif z, we add other motifs having degeneracy at each pos-
sible position of z. Those are the set of potential cis elements.
(We conducted some computational experiments with motifs
as large as 16, with 10 degenerate elements.) Then, we calcu-
late correlations between the expression of known transcrip-
tion factors and the composite expression of genes with re-
spect to specific potential cis elements (Fig. 1). In an experi-
ment, the composite expression with respect to a motif z is
defined as the sum of all expression values of those genes
containing z in their promoter regions. The expression pat-
tern of a known transcription factor is then compared with
the composite expressions of each potential cis element found
in the promoters of the genes under study. The motifs whose
composite expression correlates best (over a series of experi-
ments) to a transcription factor constitute the best candidate
binding sites for that transcription factor.

The weighted value of cis element motifs, which we call

the composite expression, is not influenced by genes whose
promoters have the cis element but are not expressed (in con-
trast, see Bussemaker et al. 2001). The basis for this formula-
tion is that a cis element may induce expression on some
promoters but not on others that, for instance, lack other cis
elements needed for expression or contain bound repressor
elements. This is one way to account for combinatorial
mechanisms in gene regulation. In our algorithm, the com-
posite weight of a cis element is not a measure of how well the
motif explains overall expression but rather has meaning only
in its correlation to the expression of a single transcription
factor over a series of experiments.

A critical assumption of our approach is that there is a
quantitative response to a transcription factor’s expression
level by at least some of its immediate downstream targets.
This assumption incorporates two potential effects. (1) As a
transcription factor increases in concentration, the mRNAs it
induces also increase in concentration (DiRisi et al. 1997; Chu
and Herskowitz 1998). For instance, a reporter gene fused to a
promoter with GCN4-responsive cis elements showed in-
creases in activity that were proportional to increases in
GCN4mRNA levels during histidine starvation (Albrecht et al.
1998). (2) Alternatively, a transcription factor may induce
more genes at a higher concentration, possibly due to low-
affinity binding sites requiring high transcription factor con-
centration for induction (Driever et al. 1989).

Another one of our assumptions is that mRNA expres-
sion accurately reflects relative levels of transcription factor
proteins. Although there is not a strict concordance between
RNA expression and protein concentration, numerous studies
have shown that there is usually a very good correlation be-
tween the RNA expression level of a transcription factor and
its protein concentration.

Correlations between a transcription factor and a com-
posite expression pattern can be computed with data from a
series of microarray experiments, which may be conducted at
various times during a developmental process, under differing
conditions, or on different cell types in a multicellular organ-
ism. Positive correlations predict induction, whereas negative
correlations predict repression. At present, we restrict our
analysis of program performance to induction and defer re-
pression to future work. Because of the number of correlations
that are measured, it is likely that some correlations do in fact
arrive by chance. However, we consider false correlations ac-
ceptable if the correct binding sites rank within the top 10
highest candidates. Here, we evaluate our program on several
data sets from experiments on yeast comparing our results
with known transcription factor binding sites.

RESULTS

Theoretical Basis of the cis/TF Program
An attractive feature of correlating transcription factor expres-
sion with composite gene expression is that it accommodates
complex mechanisms of gene regulation (including boolean
AND/OR circuits and even circuits with amplifiers). Figure 2A
shows an example of combinatorial gene regulation; any two
of three transcription factors binding to their respective sites
on the same promoter leads to gene expression. Although
none of the genes shares the same expression pattern, the
composite expression pattern of genes grouped by cis ele-
ments does correlate with the transcription factors that bind
them (Fig. 2A,B).

The technique does not assume that a transcription fac-

Figure 1 The method for correlating a transcription factor with a
regulatory motif is based on creating a composite expression of genes
for each putative cis element. The regulatory region of all expressed
genes are scanned and each frame of a given size (in this case seven)
is regarded as a potential cis element. (A) At each time point, a com-
posite expression pattern is generated by adding the expression value
of genes carrying a given motif in their regulatory regions (in this
case, the summation for ACA?GTC is shown at time 5 where ? can be
any base). (B) A series of time points is analyzed and, systematically,
composite expression patterns based on potential motifs are com-
pared with the expression of each transcription factor. The expression
patterns of genes with ACA?GTC in their promoters, shown as solid
lines, is summed to create a composite expression pattern, the broken
line directly above. Transcription factor expression, depicted as a solid
line with circles, is shown to correlate well with the composite pat-
tern. The best correlations are considered the best transcription fac-
tor-binding site hypotheses.
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tor will always induce a gene with its target binding site. Fig-
ure 2, C and D, shows the genes that comprise one composite
expression pattern in more detail. The gene in the first row of
Figure 2C contains the binding site for transcription factor X
(denoted x) but the gene is not expressed at time 2 when
transcription factor X is expressed (because of the absence of
transcription factor Y). However, the gene in the second row,
which has a promoter containing binding sites x and z, does
express at time 2, contributing to composite expression of the
genes with binding site x in their promoters. Summed to-
gether, the two genes match the expression of transcription
factor X (Fig. 2D).

The lack of any correlated gene expression in this ex-

ample shows that clustering would not succeed. Algorithms
that assume cis elements contribute to expression in an addi-
tive fashion would be misled by genes with promoters that
contain a transcription factor-binding site but are still not
induced because not all transcription factors needed for ex-
pression are present.

Figure 3A models an example of independent regulation;
any one of multiple transcription factors binding to their re-
spective sites can lead to induction. Our program predicts the
correct association between transcription factors (Fig. 3B) and
their binding sites even though the mechanism of transcrip-
tional activation is different from the cooperative model
shown in Figure 2. In this case, an additive model leads to the
correct inference (because additivity is a generalization of dis-
junction). Although no gene clusters exist in this example,
our simulations (data not shown) suggest that clustering often
performs well under a model of independent induction.

Algorithm Testing: Evaluation Criteria
We tested our algorithm on three yeast data sets, including
two derived from analysis of the mitotic cell cycle (Spellman
et al. 1998; Cho et al. 1998) and one from analysis of the
steady-state expression of nearly 300 yeast knockout lines
(Hughes et al. 2000). We evaluated the program’s perfor-
mance by comparing algorithm results with documented
binding sites for specific transcription factors from SCPD (Zhu
and Zhang 1999) and TRANSFAC (Wingender 2000) as well as
the published literature. We set four criteria for establishing
valid program predictions and for making a comparison be-
tween our results and documented transcription factor-
binding sites: (1) For the Spellman et al. (1998) data set (see
Methods), a transcription factor value is considered to be non-
zero if its value is at least a factor of 2 greater than or less than
the reference level (the red/green ratio must be <0.5 or >2), (2)
a transcription factor had five significant data points in any
data set (at least five experiments contained a nonzero value
of that transcription factor), (3) correlations had a null prob-
ability of 0.05 or less (see Methods), and, (4) the documented
binding sites to which we compared sites predicted by the
program had been narrowed down to a consensus region. We

Figure 2 How the program operates under cooperative gene regu-
lation in which two transcription factors binding to their respective cis
elements are necessary to induce expression. (A) The top row in the
table shows a hypothetical case in which different pairs of transcrip-
tion factors are expressed at three time points. In the leftmost column
are promoters containing the binding sites for transcription factors
[e.g., transcription factor X (TFX) binds cis element x]. The internal
cells illustrate gene expression patterns given expression of transcrip-
tion factors and composition of gene promoters. (B) Expression pat-
terns of the transcription factors (TFs; top) and the composite expres-
sion of genes grouped by the presence of cis elements in their pro-
moters (x,y,z). A comparison of the top graph and the bottom graph
shows that transcription factors correlate with composite patterns to
reveal the correct binding relationships. (C,D) Breakdown of compos-
ite expression pattern construction. (C) A hypothetical case of coop-
erative binding as in A and B but with expression of genes with cis
element x in bold. (D) Expression of TFX is in the top graph. The
expression patterns of the two genes with cis element x are shown as
solid lines in the bottom graph and their composite expression is the
broken line immediately above. A comparison shows that TFX expres-
sion correlates with the composite expression of genes with cis ele-
ment x in their promoter although TFX alone is not sufficient to
induce expression.

Figure 3 (A,B) The case depicts independent gene regulation in
which the binding of any one of three transcription factors is sufficient
to cause gene expression. (A) As in Fig. 2, the table illustrates how
genes with given promoters are induced (internal cells) under a hy-
pothetical transcription factor expression pattern (top row). (B) Tran-
scription factor expression (top) also correlates well with composite
expression patterns under the independent binding model.

cis Element/Transcription Factor Analysis

Genome Research 1569
www.genome.org



searched for hits (defined as a match in at least five positions)
in the top 10 correlating motifs. We trained our program on
the knockout lines to determine the minimum number of
data points required (see Methods).

Overall Performance
In the knockout lines (the training set), there were 11 tran-
scription factors that fit the criteria for comparison. Of the 11
transcription factors, the program’s predictions matched the
documented binding site in four cases, giving a success rate of
about 36% in finding the expected answer within the top 10
motifs (Table 1). Of these, three motifs overlapped in six po-
sitions and one overlapped in five positions. Two other tran-
scription factors failed to meet the training criteria but
showed close matches, including GCN4, which ranked 38th
among top correlating sites, and GCR1, which matched at
only four sites.

In data from high-density oligonucleotide arrays gener-
ated by Cho et al. (1998), two documented binding sites were
found by the algorithm out of six transcription factors that fit
the comparison criteria, giving a success rate of 33% (Table 1).
In a data set using cDNA arrays on yeast expression in the cell
cycle, the algorithm found one documented binding site out
of nine possible candidates, the lowest hit rate at about 10%
(Table 1).

Detailed Results: Knockout Lines
An example of the program’s output for the knockout lines is
shown in Table 2. A detailed analysis provides further support
for some of the program’s inferences. For instance, a high
scoring binding site predicted for STE12 includes five of the
six bases in the SCPD consensus binding site (Table 2). Addi-
tionally, binding sites for STE12 on several promoters (SCPD)
show support for the degeneracy of the A in the first position
and a well-conserved C in the seventh position, which is not
part of the consensus site (Table 3).

In several cases, two or more high-ranking motifs for a
single transcription factor were similar in sequence, suggest-

ing that the algorithm detected additional degeneracy in core
binding sites. For instance, 8 of the top 10 ranking sequences
for BAS1 were at least close matches to the documented bind-

Table 1. cis/TF’s Matches to Documented TF Binding Sites

TF Rank
Correlation
(r value)a

Significance
level

Program
prediction

Documented
siteb

Knockout lines
STE12 4 0.89 0.001 ?TGAAACc ATGAAA
BAS1 7 0.52 0.01 ?GAGTCA GAGTCA
PDR3 5 0.65 0.05 CGCGG?T TCCG(C,T)GGA
MET28 4 0.87 0.001 ?GTCACG TCACGTG
GCR1d 2 0.99 0.001 ACCA?CC C(A,T)TCC
GCN4d 38 0.50 0.01 TGACTC? TGANTNe

Total evaluated: 11
Cell cycle (high density arrays)
MET32 2 0.99 0.001 CT?TGGC AACTGTGG
GCN4 2 0.95 0.001 CTGAC?C TGANTNe

Total evaluated: 6
Cell cycle (cDNA arrays)
PHO4 1 0.95 0.002 CACG?G CACGT(T,G)
Total evaluated: 9

aProbability that the correlation is different from zero.
bTaken from SCPD.
c“?” denotes a position where the program allowed any base.
dThese two did not meet criteria for successful hits.
eApproximately one-half of the 20 documented GCN4 binding sites in SCPD contained the sequence TGACTC.

Table 2. Detail of cis/TF’s Output

TF/Motif
rank

Correlation
(r)

Program
predictions

Consensus
site

STE12
1 0.929085 ?GTCGCA
2 0.929085 GTCGCA?
3 0.911508 CGGT?TC
4 0.890778 ?TGAAAC ATGAAA
5 0.890778 TGAAAC?
6 0.887036 GTC?CAT
7 0.880103 GTC?AGC
8 0.879187 GGTC?AC
9 0.879041 CGATA?T

10 0.876010 CTTCG?G
MET28

1 0.899350 G?CCGGT
2 0.887494 ?GTGACC
3 0.880627 GTGACC?
4 0.867763 ?GTCACG TCACGTG
5 0.867763 GTCACG?
6 0.865051 CGGTC?C
7 0.862943 ?CACGAC
8 0.862943 CACGAC?
9 0.852736 GGC?CCA

10 0.852028 GGTCA?G
BAS1

1 0.6048632 GGTC?CG
2 0.6038906 C?GAGTC
3 0.5608319 CAG?GTC
4 0.5487359 GG?CACG
5 0.5385006 GA?TCAC
6 0.5337829 CTGAG?C
7 0.5166461 ?GAGTCA GAGTCA
8 0.5166461 GAGTCA?
9 0.5148253 TGA?TCA

10 0.5051281 ?GTCACG
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ing site. The seventh and eighth highest-ranking motifs were
exact matches to the six bases in the documented consensus
site whereas the second highest ranking motif matched the
consensus site in five positions. Five other top ranking sites
overlapped the documented site in five or six positions and
included degeneracy in one of several positions (see the 3rd,
5th, 6th, 9th and 10th ranking sequences). In the case of
MET28, the second and third ranking sequences were similar
to the best match (the fourth sequence) with two base
changes.

In other cases, only one top-correlating motif matched
the documented binding site with no closely related se-
quences among the highest correlating motifs. An example is
STE12 (Table 2). Although we cannot rule out that these non-
matching sequences are alternate binding sites, we assume
they are false positives, possibly binding sites that are fre-
quently found on the same promoters as the target motif.

For several binding sites, the program predicted degen-
eracy in a position that was identified as conserved in the
documented binding site. In other cases, the sequence pre-
dicted by the algorithm only partially overlapped the consen-
sus site. For instance, in the case of MET28, the last five po-
sitions of the motif that the algorithm identified, ?GTCACG,
overlap with the first five positions in the MET28 docu-
mented site, TCACGTG. We expect these differences because
consensus sites are generally determined from a relatively
small set of sequences. They may not represent the full range
of degeneracy in a binding site whereas our algorithm’s analy-
sis of binding sites generally includes information from many
promoters.

It has been shown that MET28 forms a complex over its
binding site with CBF1, a general transcription factor, and
another specific factor, MET4 (Kuras et al. 1997). Therefore,
we expected the algorithm to identify the same binding motif
for MET4 andMET28 (Table 2). The algorithm did identify the
TCACG motif for MET4 as it did for MET28. However, in the
case of MET4, the correlation was not significantly different
from zero.

Permutation Test
To assess whether the above success rate could have been
achieved by chance alone, we devised a permutation test us-
ing data from the knockout lines to analyze the program’s rate

of false positives. The test randomly swapped expression pat-
terns among genes whereas the links to their upstream regu-
latory sequence remained unaltered. The random reassign-
ment should effectively scramble the signals between gene
expression and upstream sequence on which our program re-
lies. However, the test does not alter potential biases in the
base composition of upstream regulatory sequences. We ran
the permutation test several times to assess the success rate for
100 transcription factors using the same criteria listed above.
Of 100 transcription factors examined in the permutation
test, there were two matches, indicating that the rate of false
positives is well below our hit rate. Thus, the program’s suc-
cess appears to be based on real biological signals in the data.

Another test of the algorithm was based on evidence that
most known yeast cis elements are found within 600 bp of the
start of transcription of the regulated gene (Roth et al. 1998).
As a null test, we analyzed the correlation of transcription
factors with cis elements found in the region from �1 to
�600 proximal to the start of translation, which should con-
tain most cis elements. We compared that result to a separate
analysis using a 600-bp region distal to the start of translation,
defined as the sequence from �1400 to �2000, which should
contain few, if any, transcription factor-binding motifs. For
the proximal region, the correlation for a known transcrip-
tion factor/cis element relationship, BAS1/GAGTCA, was simi-
lar to when 2000 bp was used. The correct binding site had
the highest correlation. For the distal region (�1400 to
�2000), the 10 motifs with the highest correlations did not
include the documented binding site. This result provides fur-
ther evidence that the correlations between transcription fac-
tors and putative cis elements that we are detecting using
cis/TF appear to be based onmeaningful biological signals and
not general sequence bias in nontranscribed regions.

DISCUSSION

Overview
With no a priori knowledge of the sequence of a transcription
factor-binding site or its location in a promoter region, cis/
TF is able to identify the binding sites of known transcription
factors and determine their positive regulatory effect. Our
early tests show that the program is able to identify docu-
mented binding sites for transcription factors in three sepa-
rate data sets generated by two different types of microarrays.
Our predictions do not imply that a particular transcription
factor is sufficient or necessary to cause expression of a gene
whose promoter contains the identified motif. For instance,
more than one transcription factor may be required for gene
induction, or, alternate transcription factors may induce the
same expression (Arnone and Davidson 1997; Yuh et al.
1998). Thus, the assumptions in our algorithm do not pre-
clude complex regulatory mechanisms.

Although the program has proved effective for well-
documented transcription factors, some transcription factors
may not follow this pattern. One possibility is that a tran-
scription factor’s function may require cofactors that vary in
expression temporally or spatially in a way that is not corre-
lated with the transcription factor itself. In addition, a tran-
scription factor may be constitutively expressed but regulated
strictly post-transcriptionally. Our algorithm would not be
able to discover the binding sites of such transcription factors
nor would the algorithm make successful predictions con-
cerning transcription factors that do not vary in expression.

In some cases, a transcription factor may have the same

Table 3. Binding Sites for STE12

STE12
targets

Putative binding
site on

target genes

Ty1 TGAAACG
Ty2 TGAAACG
YCL027 GAAACA
YCL027 GAAACG
YDR461 TGAAACC
YFL026 TGAAACA
YNL145 ATGAAACa

YNL145 TTTTCATTTGAAACAb

Source of data: Saccharomyces cerevisiae Promoter Database
(SCPD).
aThe sequence listed is the reverse complement of the motif listed
in SCPD.
bNote that the reverse complement of this sequence also contains
the motif ATGAAAA.
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quantitative effect on induction at moderate and high expres-
sion levels (i.e., a threshold effect). However, even when a
transcription factor has a threshold effect, a general correla-
tion between a transcription factor and a composite expres-
sion can still exist: Above a certain threshold an inducing
transcription factor can lead to high levels of downstream
target genes, and below the threshold it will lead to low or no
detectable levels of downstream targets. Partial violations of
our program’s assumptions such as threshold regulatory ef-
fects or some level of post-transcriptional regulation may still
lead to high enough correlations to give the correct answer.
Our program requires further testing with many transcription
factors and in other organisms to see how often its assump-
tions are valid.

Program Performance and Data Sets
The success rate of our program varied significantly among
the different data sets used. The program performed best with
the knockout line data, achieving a success rate of almost 40%
in providing the expected answer within the top 10 motifs.
The distinguishing feature of this data set was the use of rep-
licate microarray measurements and the calculation of a con-
fidence value for each data point. The other data sets did not
use replicate experiments to assess variability in microarray
measurements. It seems likely that a reduction in experimen-
tal noise by use of replicates and confidence values enabled
our program to perform better on this data set, emphasizing
the importance of high quality data.

The knockout lines also contained more information
with 300 different conditions to compare. However, the vast
majority of the different knockout lines did not contribute to
transcription factor-binding site correlations. Typically, only
20–30 different knockout expression profiles were informa-
tive because low confidence in transcription factor measure-
ments eliminated many data points and many lines showed
no variation in expression. The program was able to find cor-
rect transcription factor/cis element relationships when as few
as five different expression profiles were used for correlations.
Thus, the algorithm does not require an unrealistically large
set of different expression profiles.

Coregulation
By use of our technique, transcription factors that have a simi-
lar expression pattern will often share the same predicted
binding site. For instance, our program assigned the same
binding site to BAS1, GLN3, and TEA1. At least two of these
transcription factors are involved in amino acid biosynthesis,
and all share a similar expression pattern in the knockout data
set. In such cases, different experimental conditions may be
required to generate differing transcription factor expression
profiles, or, direct molecular analyses may be necessary to
analyze DNA binding sites. In other cases, the program’s as-
signment of shared predicted binding sites might also give
clues to molecular interactions. For instance, if transcriptional
cofactors were included in the analysis, the program should
list a DNA-binding protein and a necessary cofactor with a
similar expression pattern as sharing the same cis element.

Clearly, our technique is a starting point for cis element
discovery and not a replacement for direct experimentation.
Its purpose is to generate a short list of potential binding sites
for a known transcription factor. Other techniques could be
used in complement to further refine the list of candidate
binding sites, such as algorithms that detect a nonrandom

distribution of potential motifs in genomic DNA (e.g., Wag-
ner 1997). The power of our technique is linking potential
new cis elements to the transcription factors that bind them.
This added information suggests a much more specific set of
hypotheses for testing results that could bring biologists a step
closer to deciphering genetic pathways.

METHODS

Data set training
The algorithm was initially trained on data from a genome-
wide expression of sporulating yeast (Chu et al. 1998), match-
ing the transcription factor NDT80 to its known core binding
site, CACAAA (Chu and Herskowitz 1998). Further training on
the Rosetta knockout lines (Hughes et al. 2000) led to a mini-
mal number of data points requirement and a simplification
of the weighting scheme for composite expressions. After set-
ting the minimal data points criteria, the sporulation data and
another data set on the diauxic shift (DiRisi et al. 1997) led to
only two results that could be compared. Therefore, these data
sets were not included in the analysis.

Gene Expression Data sets
For the cDNA microarrays, we used log2 ratios (experimental
time point value over the reference state value). For the data
set of Spellman et al. (1998), data points with less than a
twofold increase or decrease in expression were considered to
be zero, following the authors’ convention. The knockout line
data set (Hughes et al. 2000) was also generated using cDNA
arrays but replicates allowed the authors to include a signifi-
cance value (P) for each data point based on variation among
replicates. We used only data points with a 95% confidence
level or higher but did not set a minimum increase or decrease
in expression. In the data set of Cho et al. (1998), we used the
raw expression values generated by DNA oligonucleotide ar-
rays. We set a minimum expression value of 500 to minimize
computation time.

Composite Expression
Our approach is to correlate transcription factor expression
with a summed or composite expression pattern. This com-
posite expression is calculated as follows: the upstream regu-
latory sequence of size N (we used 500) bases from the trans-
lational start site for each yeast gene was obtained from the
Saccharomyces Genome Database (Cherry et al. 2000). Every k
base pair frame in the regulatory regions and the reverse
complement of regulatory regions of expressed genes was
catalogued so that each gene’s regulatory region provided
2(N � [k � 1]) frames (some of which were identical in se-
quence). In experiments presented here, we used k = 7. Then,
we took each potential cis element z and created degenerate
cis elements consisting of z with a single wild card at every
possible position. For instance, from the motif ACCGATG we
create: ?CCGATG, A?CGATG, AC?GATG, ACC?ATG, ACC-
G?TG, ACCGA?G, and ACCGAT?. Each wild-card motif
matches four nondegenerate motifs. For example, AC?GATG
matches ACAGATG, ACCGATG, ACTGATG, and ACGGATG.

To calculate composite expression patterns and correla-
tions, we used the following formulas: Let Egt be the expres-
sion level of gene g at time t. Let Gz = {g | the promoter of g
contains potential cis element z}, the set of genes whose pro-
moters have at least one copy of the potential cis element
(motif) z. Then, the composite expression for potential cis
element z at time t is: Wzt = �g�Gz

Egt. Similarly, let Fxt be the
expression of some transcription factor x at time t. We then
calculate the simple linear correlation (Pearson product mo-
ment) between composite expression based on a potential cis
element, Wzt1, Wzt2. . .Wztn and the expression of a transcrip-
tion factor, Fxt1,Fxt2. . .Fxtn, where n is the number of different
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time points or experiments. The program calculates correla-
tions between all transcription factors and all potential cis
elements. The output lists each transcription factor and the
potential cis elements to which it binds ranked by the highest
correlation coefficients. For most of the analysis, we exam-
ined the 10 cis elements with the highest correlation for each
transcription factor.

Significance of Correlation
We tested whether each correlation was significantly different
from zero using the following formulas: first, the standard
error of the correlation coefficient was computed as follows:
sr = ([1 � r2]/[n � 2])1/2, where r is the Pearson correlation
coefficient and n is the number of experimental points in the
correlation. The probability of the null hypotheses was then
computed using a student’s t test, t = r/sr (Sokol and Rohlf
1995).
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