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Abstract
Disruptions of interregional correlations in the blood oxygenation level dependent fMRI signal
have been reported in multiple diseases, including Alzheimer’s disease and mild cognitive
impairment. “Default network” regions that overlap with areas of earliest amyloid deposition have
been highlighted by these reports, and abnormal default network activity is also observed in
unimpaired elderly subjects with high amyloid burden. However, one limitation of current
methods for analysis of interregional correlations is that they rely on transformation of functional
data to an atlas volume (e.g., Talairach-Tournoux or Montreal Neurological Institute atlases) and
may not adequately account for anatomic variation between subjects, particularly in the presence
of atrophy. We assessed the utility of the FreeSurfer cortical parcellation to analyze default
network functional correlations on the native surfaces of individual subjects. Group-level
quantitative analysis was accomplished by comparing correlations between equivalent structures
in different subjects. The method was applied to resting-state fMRI data from young, healthy
subjects; preliminary results were also obtained from cognitively unimpaired elderly subjects and
patients with Alzheimer’s disease, Parkinson’s disease, Parkinson’s disease dementia, and
dementia with Lewy bodies.
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1 Introduction
Characteristic patterns of low-frequency correlations have been repeatedly identified in the
blood oxygenation level dependent (BOLD) fMRI signal when subjects are asked to simply
lie still in the scanner (Biswal et al., 1995; Greicius et al., 2003; Buckner et al., 2008). The
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relative consistency of these patterns across studies and analysis methods, as well as the
simplicity of the instructions, has led to considerable interest in their potential application as
a biomarker in disease (Fox and Raichle, 2007; Rogers et al., 2007; Greicius, 2008; Auer,
2008; van den Heuvel and Hulshoff Pol, 2010). Particular attention has been paid to a
collection of regions called the default network1 and the disruption of correlations across
these regions in Alzheimer’s disease (Greicius et al., 2004; Wang et al., 2006; Allen et al.,
2007; Supekar et al., 2008; Koch et al., 2010; Zhang et al., 2010; for review, see Greicius,
2008; Sorg et al., 2009). Disruptions in so-called functional connectivity in the default
network have also been reported in conditions believed to precede onset of Alzheimer’s
disease, including patients with amnestic mild cognitive impairment (Sorg et al., 2007;
Pihlajamäki et al., 2009; Bai et al., 2009) and cognitively unimpaired subjects with high
amyloid burden (Hedden et al., 2009; Sheline et al., 2010).

Anatomical variability across subjects gives rise to two notable challenges in the analysis of
spontaneous BOLD correlations within the default network. First, if analyses are to be
extended beyond qualitative assessment in individual subjects, a method of comparing
results across subjects is critical. Second, the network of interest has to be identified in each
subject. In seed-correlation analyses, this is typically accomplished by choosing an a priori
seed region known to lie within the network (e.g., Hedden et al., 2009; Sheline et al., 2010).
For independent component analyses (ICA), a template is used to identify the component
that best matches the default network (e.g., Greicius et al., 2004; Seeley et al., 2009).

Currently, both of these challenges are addressed by performing analyses in atlas-volume
space. Anatomical and functional images from each subject are transformed, or warped, to
match a canonical brain (e.g., Talairach-Tournoux or Montreal Neurological Institute
template). Once in a standardized, or atlas, volume, seed regions and templates from the
literature or other data sets can be applied to the spatially transformed data to identify the
default network. The process of transforming data to an atlas volume also permits direct
comparison of analysis results across subjects and studies.

Unfortunately, atlas-space results are only valid to the extent that the warping process is
valid, a point of particular concern in conditions where participants’ brains differ
considerably from the atlas due to disease. Functional correlation analyses are subject to
concerns similar to some known issues with voxel-based morphometry, a method for
structural MRI analysis which also depends heavily on accurate registration to a template.
Improper registration can lead to misleading results in both cases because, for example, a
given coordinate represents gray matter in the template but lies in cerebrospinal fluid in a
patient’s warped brain. Voxel-based morphometry gives varied results depending on the
particular warping algorithm used (Senjem et al., 2005), and even algorithms identified as
“optimized,” which include multiple steps to improve normalization, are still prone to errors
when atrophy causes gross changes in brain structure (Bookstein, 2001; Ashburner and
Friston, 2001; Senjem et al., 2005). Despite the crucial role warping plays in functional
correlation analyses and the known pitfalls of common methods in the face of structural
brain pathology, accuracy of individual transformations are rarely, if ever, reported or
displayed.

Analysis on a subject’s native surface offers potential advantages over atlas-volume
methods. First, possible ambiguity about precise anatomic locations is reduced. Measuring
functional correlations on native surfaces also facilitates accounting for anatomic effects of

1A number of brain regions exhibit greater activity in functional neuroimaging studies when subjects are permitted to rest than when
they are instructed to engage in a specific cognitive task. These regions have been collectively deemed the “default network” (Raichle
et al., 2001; Raichle and Snyder, 2007; Buckner et al., 2008)
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disease and age. Moreover, by preserving inter-individual anatomic variability, longitudinal
patient studies can better avoid confounds due to disease-related structural changes that
affect an individual patient’s brain over time. Comparison of functional measures to other
individual markers is also straightforward on native surfaces, in particular cross-modal
imaging markers such as amyloid imaging results and regional cortical thickness. There is
also a clinical appeal to obtaining and displaying functional imaging results on the brain
surface of an individual patient. Prior studies have pointed to the potential of functional
correlations to provide meaningful results in individual patients (Greicius et al., 2004;
Buckner and Vincent, 2007; Koch et al., 2010); analyzing functional data on native surfaces
may be an important step toward that aim.

We assessed the utility of the FreeSurfer (http://surfer.nmr.mgh.harvard.edu) cortical
parcellation to analyze functional correlations on the native surfaces of individual subjects.
Automated processes are employed to anatomically parcellate each subject’s cortical surface
into distinct regions of cortex (subcortical gray matter structures are included after a similar
automated volume segmentation). One cortical region, the isthmus cingulate, is proposed as
a suitable native-surface seed for identification and analysis of the default network.
Parcellation and segmentation regions are then used for group-level analyses by comparing
interregional correlations between equivalent regions in different subjects. Additionally,
registration of native sulcal and gyral patterns to an average surface allows display of group-
level results after quantitative parcellation analysis on native surfaces.

Here we present results from the application of this method to BOLD data from young,
healthy subjects as a proof of concept. The primary findings were reproduced in preliminary
data from multiple disease populations, including Alzheimer’s disease (AD), Parkinson’s
disease dementia (PDD), Dementia with Lewy bodies (DLB), and cognitively unimpaired
elderly controls.

2 Methods
2.1 Subjects

Subject demographics are provided in Table 1. Patients designated ‘Alzheimer’s disease’
had a clinical diagnosis of probable AD based on the NINCDS/ADRDA criteria (McKhann
et al., 1984); diagnoses for dementia with Lewy bodies and Parkinson’s disease dementia
were based on the criteria established by the Movement Disorders Society Task Force
(Geser et al., 2005; McKeith, 2007). Diagnosis for all patients was made by consensus of
two or more neurologists in the UCSD Shiley-Marcos Alzheimer’s Disease Research Center
Clinical Core. Elderly controls with no cognitive impairment had a mini mental status exam
score of at least 27 and a CDR score of zero.

2.2 MRI Acquisition
Functional imaging of each subject consisted of two T2*-weighted sequences of
approximately seven minutes each on a General Electric Signa Excite HDx using an eight-
channel phased-array head coil (General Electric Healthcare, Waukesha, WI). Data for
young subjects were acquired on a 3.0 Tesla system (TE: 30 ms; TR: 2124 ms; flip angle:
90°; matrix: 64 × 64; voxel size: 3.75 mm × 3.75 mm × 4 mm; 36 adjacent sagittal slices;
205 samples per series); data for elderly subjects, including patients, were acquired on a 1.5
Tesla system (TE: 45 ms; TR: 2624 ms; flip angle: 90°; matrix: 64 × 64; voxel size: 3.75
mm × 3.75 mm × 5 mm; 32 adjacent sagittal slices; 155 samples per series). The initial five
samples from each functional run were excluded to allow for T1-equilibration. Immediately
prior to each functional series, a spin-echo volume was acquired with opposite phase-
encoding polarity for field inhomogeneity correction (Holland et al., 2010). Instructions for
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the young subjects were to rest motionless with eyes closed. Instructions for the elderly
subjects were to rest motionless with eyes open; this modification was adopted after it was
suggested that functional correlations in the default network are more robust with eyes open
(Yan et al., 2009; Van Dijk et al., 2009). In addition to the functional volumes, a high-
resolution, three-dimensional, T1-weighted volume was acquired for each subject during the
same session (TE: 2.8 ms/3.8 ms; TR: 6.5 ms/8.5 ms; TI: 600 ms/500 ms; flip angle: 8°/10°;
matrix: 256 × 256; voxel size: 0.9375 mm × 0.9375 mm × 1.2000 mm; values separated by
‘/’ are for 3.0 T data/1.5 T data). Respiratory effort and heart rate were monitored with a
pressure transducer (BioPac Systems Inc., Goleta, CA) and a pulse oximeter (BioPac
Systems and InVivo, Orlando, FL), respectively.

2.3 Structural MRI Processing
A model of each subject’s cortical surface was reconstructed from the T1-weighted MRI
volume (Dale et al., 1999; Fischl et al., 1999a). To ensure accuracy, the automatically
generated boundaries were overlaid on the original T1-weighted volume as thin colored lines
to aid visual confirmation of the tissue boundaries on each slice—yellow for the boundary
between white and gray matter, and red for the boundary between gray matter and
cerebrospinal fluid. Where these automatically generated lines deviated from the visually
identified boundaries, manual control points were created, and the automated algorithms
were applied again. Final surfaces were visually inspected to search for gross errors; none
were found in the present data set.

The surface model was then anatomically parcellated using the Desikan-Killiany atlas and
standard FreeSurfer tools (Fischl et al., 2004; Desikan et al., 2006). This process assigns
each point (vertex) on the native surface to the most probable anatomical label (e.g., inferior
parietal, precentral, parahippocampal, etc.) based on registration to a probabilistic atlas of
surface folding patterns and on the observed surface geometry at that location of the native
surface (Fischl et al., 2004). Subcortical structures were similarly identified by volume
segmentation (Fischl et al., 2002). Automated parcellation by this method has been shown to
be comparable to manual labeling (Fischl et al., 2004). Additionally, the parcellation for
each subject was visually inspected to search for gross errors; none were found in the
present data set.

For direct comparison with prevailing methods, the T1-weighted volume from an
Alzheimer’s patient exhibiting atrophy was submitted to common registration algorithms to
warp the atrophied brain to the Montreal Neurological Institute (MNI) 152 T1 reference
brain provided in standard software packages. Affine transformation with 12 degrees of
freedom was performed using 3dWarpDrive in AFNI (http://afni.nimh.nih.gov/afni).
Nonlinear transformations were performed using FNIRT in FSL
(http://www.fmrib.ox.ac.uk/fsl/index.html), the “normalise” process in SPM2
(http://www.fil.ion.ucl.ac.uk/spm/), and the DARTEL process in SPM8. An older version of
SPM (SPM2) was included because it appears to be among the more common packages used
in the relevant literature (e.g., Wang et al., 2007, 2010; Supekar et al., 2008; Buckner et al.,
2009; Van Dijk et al., 2009). All registration procedures followed the configurations and
parameters recommended in the documentation provided with the corresponding software.
Simple alignment of the original volume was also performed using manually defined
markers in AFNI in order to display the original images in a similar orientation to the
registered images.

2.4 fMRI Data Pre-analysis Processing
All fMRI pre-analysis processing was performed using custom software written in
MATLAB (Mathworks, Natick, MA), except where noted. Functional images were first
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corrected for distortion due to inhomogeneity in the static magnetic field (Holland et al.,
2010). Effects of respiratory fluctuations were modeled and removed from time series using
RETROICOR (Glover et al., 2000). Similar removal of cardiac fluctuations did not have a
meaningful impact on the results in any group, and this step was not included in final
analyses for the sake of consistency across all subjects (pulse recordings were sporadically
lost in approximately 20% of scans in elderly and disease subjects due to technical
problems). After interpolation for slice acquisition timing, rigid body volume registration
was performed using AFNI (Cox and Jesmanowicz, 1999), followed by voxel-wise
regression of six head motion parameters and a cubic polynomial baseline from each
functional series. Functional data were next projected onto the subject’s cortical surface
model using FreeSurfer, and a bandpass filter of 0.01–0.08 Hz was applied to the time series
from each vertex on the surface. BOLD correlation analyses typically include a smoothing
step with a Gaussian kernel to account for functional and anatomic variation across subjects,
but this step is not necessary for native-surface parcellation analysis.

2.5 fMRI Correlation Analysis
We designed an fMRI correlation analysis that takes advantage of the FreeSurfer surface
generation and parcellation tools and avoids transforming functional data to an atlas volume.
All steps were performed using custom software written in MATLAB, except where noted.
Functional time series were averaged across surface vertices within the left isthmus
cingulate region to serve as the seed time series for correlation analyses. Average time series
were also calculated from each of the other 30 cortical surface parcellation regions in the
Desikan-Killiany atlas not adjacent to the seed (see Figure 4), as well as from five volume
segmentation regions from the left hemisphere (hippocampus, caudate, pallidum, putamen,
and amygdala). A Pearson’s correlation coefficient was calculated for the correlation
between the seed time series and each region’s average time series, and Fisher’s z-transform
was applied to these coefficients. The same process was repeated for right hemisphere
regions, with the right isthmus cingulate region as the seed. Region time series were
obtained by loading both the subject’s functional data and the parcellated native surface
(which contains a region code at each vertex location) in MATLAB; time series at each
vertex could then be classified by the region code at the corresponding location in the
parcellated surface.

Results from native-surface parcellation analysis were summarized in two ways. First, the z-
transformed correlation coefficients from each region were averaged across subjects.
Second, as it is possible that relative changes in correlation coefficient may also be
informative, all 35 regions per hemisphere were ranked in order of highest to lowest
coefficient for a given subject. These ranks were summarized by calculating the median rank
across subjects for each region.

A power analysis was performed to give an estimate of the number of subjects needed to
detect a difference between two groups. For each region, the standard deviation (across
subjects) was calculated for the z-transformed correlation coefficient with the isthmus
cingulate seed. This standard deviation was included in Cohen’s equation sample size for a
population difference (Cohen, 1988; Dawson and Trapp, 2004). The expected effect size
(i.e., population difference) was assumed to be 0.2; the actual value is unknown and specific
to the populations studied, but available published values suggest this value is conservative
for comparing unimpaired elderly with high risk for Alzheimer’s disease to age-matched
controls (Fleisher et al., 2009; Hedden et al., 2009; Koch et al., 2010). All calculations also
assumed 80% power and an alpha value of 0.05. The final result of the power calculations
was an estimated sample size for each region, corresponding to the number of subjects
necessary to detect a population difference of 0.2 in the correlation coefficient.
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Vertex-wise correlation analysis was performed in addition to the parcellation analysis,
allowing visualization of entire hemispheres at finer resolution. Individual maps were
produced by calculating the Fisher’s z-transformed correlation coefficient for the average
seed region time series and the time series of each vertex on the surface. Individual native
surfaces were registered to the FreeSurfer fsaverage surface using a spherical-based
algorithm in FreeSurfer (Fischl et al., 1999b). That registration was used to transform the
individual maps to the fsaverage surface, also using FreeSurfer tools. Group maps were
created by loading the fsaverage versions of the individual maps in MATLAB and taking the
average across subjects. A surface-based smoothing process was applied using FreeSurfer
for display in the figures (28 iterative steps, approximately equivalent to a 6 mm full-width
half-maximum Gaussian kernel in two dimensions). Group maps were calculated from
unsmoothed individual maps so that the smoothing process was only applied once. The
minimum threshold for both group and individual hemisphere maps was set as the mean
coefficient across all vertices on the surface plus 0.5 times the standard deviation; the
maximum threshold was set as the mean coefficient plus 1.5 times the standard deviation.

2.6 Comparative Analysis: Volume Atlas vs. Native Surface
To assess the degree to which warping to a volume atlas affects functional correlation
results, all functional data from this study were also analyzed after nonlinear transformation
to the MNI152 volume atlas. All pre-analysis processing and correlation procedures for the
volume-atlas analysis were performed as in the native-surface analysis up to the point of
projection of time series data to the surface. Instead of directly projecting processed
functional time series to each subject’s native surface, all data were transformed to volume-
atlas space using standard tools in a software package cited in several resting correlation
studies (SPM2). The transformation to volume-atlas space was calculated for each subject
using the individual high-resolution T1-weighted volumes. The time series in MNI space
were then projected onto the fsaverage surface using the standard transformation provided
with FreeSurfer. Subsequent bandpass filtering and correlation analysis (using the fsaverage
surface parcellation) were performed as in the native-surface analysis.

Any inaccuracies in registration to the MNI volume atlas could change the definition of the
seed and therefore affect correlation measures across the entire brain even if the rest of the
brain was perfectly registered to MNI. To isolate the effect of whole-brain registration to a
volume atlas, the time series from each subject’s native-surface isthmus cingulate was used
as the seed in both the native-surface and volume-atlas analyses. Additionally, the
correlation coefficient between the native-surface isthmus cingulate time series and the
MNI-transformed isthmus cingulate time series was calculated for each subject to quantify
the effect of MNI transformation on the seed. Note that, in order to maintain intuitive
interpretation of the values, these seed-to-seed correlation coefficients were not Fisher-
transformed.

MNI volume-atlas correlation coefficients for each region on the fsaverage surface were
compared to the corresponding region on the native surfaces. As volume-atlas registration
inaccuracies lead to a heterogeneous mix of both increases and decreases in correlation
values, the magnitude of the differences was used for comparing the methods. The mean
(across-subjects) difference between MNI-transformed and native-surface results was
calculated for each region. Paired t-tests were applied to evaluate the statistical significance
of any regional differences between the two methods.

Vertex-by-vertex comparison of the MNI volume-atlas results (projected on the fsaverage
surface) to the native-surface results was achieved using the native-surface maps that were
registered to the fsaverage surface (see section 2.5). Difference maps were calculated by
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taking the root-mean-square (RMS) average, at each vertex, of the difference between MNI-
transformed and native-surface results.

3 Results
Both linear and nonlinear algorithms successfully aligned the atrophied brain to the MNI
template (Figure 1). The nonlinear methods (FSL, SPM2, SPM8) appear to have reduced
ventricular spaces and stretched the brain tissue to fill portions of the adjacent CSF space
(distortions to the skull and other tissues in the nonlinear examples should be ignored, as the
methods are optimized for registration of the brain, not extraparenchymal tissues). None of
the transformations, however, fully accounted for the bulk atrophy in the superior brain or
the enlarged sulci evident throughout the cortex. Many MNI coordinates that lie within
cortical regions in the template correspond to cerebrospinal fluid in the transformed brains
for this patient.

The T1-weighted volume and reconstructed cortical surface model are shown in Figure 2A
and 2B, respectively, for the brain of a young subject and the atrophied brain from Figure 1.
Anatomic features of each individual brain were preserved by the surface reconstructions.
The depression of the superior aspect of the atrophied brain is reflected in the relatively flat
superior aspect of the surface. Similarly, the patient’s enlarged sulci are readily observable
in the corresponding surface. Neither of these abnormalities prevented successful automated
parcellation of the cortical surface (Figure 2C). The isthmus cingulate seed region is
identified for each subject within the parcellation (Figure 2D, dark green), allowing
calculation of correlation coefficients for the rest of the cortex on the subject’s native
surface (Figure 2D, 2E).

Cortical surface models reconstructed from five individual young subjects are shown in
Figure 3A (all subjects are included in supplementary material). As expected, substantial
variability in anatomy is observed between individuals; brain size, gyral patterns, and
structural landmarks are all unique for each surface. The inferior parietal region identified
by the FreeSurfer parcellation is also shown for each subject.

Functional correlation maps are displayed on the native surfaces for the same five individual
young subjects in Figure 3B. Many individual subject maps resemble the well-known
default network pattern typically reported in group averages. As with the anatomy, though,
the functional maps demonstrate considerable variability from one individual to another.

Native-surface regions most consistently correlated with the seed region in each hemisphere
are shown in Table 2. All of the top five regions in each hemisphere are among those
frequently included in the default network (dorsolateral prefrontal, medial prefrontal,
inferior parietal, and medial temporal). Both the mean correlation coefficient and median
rank measures identify default network regions as the most strongly correlated with the
isthmus cingulate seed.

Group-average functional correlation maps for the young subjects are displayed in Figure 4.
While interindividual variability is lost in the group average, the pattern at the group level
confirms that typical default network patterns are identified using the isthmus cingulate
seed.

Power analysis estimated the sample size required for a difference in population mean for
the regions in Table 2. Sample sizes for the regions in Table 2 had a median of 21.5 subjects.
Among these regions, the right inferior parietal and right parahippocampal regions had the
greatest estimated sample sizes at 37 subjects each. Right medial orbitofrontal had the
smallest estimated sample size at 15 subjects.
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Functional correlation maps were calculated for five additional populations (Figure 5). The
qualitative patterns in these group-average maps were similar for cognitively unimpaired
elderly, Parkinson’s disease, Parkinson’s disease dementia, Alzheimer’s disease, and
dementia with Lewy bodies. Characteristic features of the default network are observed in
each group. Sample sizes from each group are insufficient for intergroup comparisons, but
pooled analysis across groups demonstrates that some of the same regions remain most
consistently correlated with the isthmus cingulate seed in native-space analysis (Table 3). As
with the young subjects, the top two most consistently correlated regions in both
hemispheres were inferior parietal and superior frontal.

The effect of defining a seed in volume-atlas space rather than defining a seed on the native
surface was quantified by calculating the correlation coefficient between the two average
time series for each subject. For young subjects, the median correlation coefficient (and
interquartile range) between the MNI isthmus cingulate and native-surface isthmus cingulate
was 0.84 (0.81–0.86) for the left hemisphere and 0.87 (0.85–0.87) for the right hemisphere.
The minimum coefficient among the young subjects was 0.63, and the maximum was 0.93.
For healthy and impaired elderly subjects, the median correlation coefficient was 0.77
(0.65–0.85) for the left isthmus cingulate and 0.79 (0.66–0.85) for the right. The minimum
coefficient among the elderly and patients was −0.09, and the maximum was 0.95.

Registration to an atlas volume also led to significant effects on correlation results
throughout the rest of the cortex, even when the same (native-surface) seed time series was
used for both methods. Correlation coefficients for MNI-transformed regions on the
fsaverage surface differed from their native-surface homologues by a mean magnitude of
0.14 ± 0.06 (standard deviation) in young subjects. Paired t-tests for a non-zero magnitude
difference between MNI and native regions gave p-values less than 0.005 for all regions in
both hemispheres in the young subjects, and the median p-value was less than 10−4. In the
elderly (including patients) group, the mean magnitude of the difference was 0.16 ± 0.04,
which was significantly greater than in the young subjects (t-test, p < 0.05). Paired t-tests
between MNI and native regions gave p-values less than 10−5 for all regions in both
hemispheres in the elderly and patients group, and the median p-value was less than 10−7.

Vertex-wise group-level maps showing the root-mean-square difference between correlation
coefficients obtained with MNI-transformed time series versus native-surface coefficients
are displayed in Figure 6. The maps have a threshold RMS difference of 0.2, corresponding
to the magnitude of the estimated population difference used in the power analysis above.
Root-mean-square differences greater than 0.2 are widespread throughout both hemispheres
in both young and elderly/diseased subjects. Among regions with the greatest RMS
differences (greater than 0.35) are some associated with the default network, including the
isthmus cingulate, inferior parietal, and medial prefrontal cortices.

4 Discussion
Spontaneous BOLD correlation studies may afford opportunities to increase our
understanding of how regions of the brain interact and to develop clinical tools for diagnosis
or measurement of disease progression. Already, intriguing results have been reported in
various diseases, including mild cognitive impairment and Alzheimer’s disease. Analysis in
native space may improve accuracy, allow more rigorous investigation into resting-state
correlation phenomena, and otherwise facilitate transition to clinical utility.

Reliance on warping to atlas space has the potential to critically influence results of
functional correlation analyses. Despite the critical importance of accurate localization and
known issues with warping, very few studies report on the accuracy of transformations, and
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transformed images are rarely included in published manuscripts. Many methods for
warping to atlas volumes exist, and these usually have many user-selected parameters that
affect the transformation but are not typically reported in methods descriptions. In the case
of patients with atrophy or other structural abnormalities, these issues become more apparent
and have been described previously (Bookstein, 2001; Ashburner and Friston, 2001; Senjem
et al., 2005).

Figure 1 gives a striking example of the pitfalls of warping an atrophied brain to a normal
template. Four methods from three standard software packages, using the recommended
parameters, produced warped volumes that have obvious inconsistencies with the MNI
template. Analysis of this subject with current methods might yield decreased correlations
relative to controls, for example, in regions corresponding to the hippocampus or dorsal
cortex. Following typical practices, statistical results would be overlaid on the atlas brain to
show the effect. However, decreased correlations in this hypothetical example might be
explained by the fact that relatively large portions of the MNI cortex correspond to
cerebrospinal fluid in the patient’s warped brain, and therefore in the patient’s warped
functional data.

Analysis on native surfaces avoids warping individual brains to atlas volumes and the
accompanying issues. Figure 2 demonstrates how the model of the individual cortical
surface can still readily capture the features of the severely atrophied brain from the
previous example. Remaining within the individual anatomy rather than attempting to distort
it through spatial normalization, reduces the risk of mistakenly analyzing correlations
outside the gray matter, or outside the brain altogether. Images of other brains, especially
those without atrophy, may transform more accurately to the template. Use of other warping
algorithms, other warping parameters, or other templates may improve the registration of
this, and other, imaged brain volumes. However, at a minimum, the accuracy of the
transformations for brains with structural pathology must be assessed and reported alongside
functional analyses that depend on that transformation. Moreover, it is possible even studies
using young, healthy subjects with no pathology could benefit from analysis on individual
surfaces.

The effects of warping to a volume atlas on seed definition and on interregional correlations
are quantified in this manuscript by direct comparison of native-surface results to results
obtained after warping to the MNI152 volume atlas. In one such comparison, MNI
transformation was shown to affect the isthmus cingulate seed time series, yielding MNI
seed time series that were often poorly correlated with the seed defined on the subject’s
native surface. 25% of the healthy and impaired elderly subjects had MNI-to-native isthmus
cingulate correlation coefficients less than 0.66, and two subjects had coefficients less than
0.10. The weak correlation between the MNI and native time courses in this region suggests
defining the seed on the native surface may impact resting correlation analyses independent
of other methodological considerations. Moreover, a region-by-region comparison of
volume-atlas and native-surface results revealed significant differences in every region
tested, even when controlling for potential differences in the seed time series. This was true
both in the young and elderly/patient groups. Finally, group maps of vertex-wise root-mean-
square differences between the two methods also showed that MNI transformation led to
sizeable effects throughout the cortex in both groups. Of concern is the observation that
these group-level effects were as large as population differences reported in the literature,
and regions highly correlated with the seed (in this case, default network regions) may be
particularly vulnerable to modulation during transformation to an atlas volume. As the
accuracy of registration to a volume atlas is logically dependent on the severity of structural
pathology, studies of disease populations require special attention to these possible
confounds.
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Quantitative, native-surface parcellation analysis of spontaneous fMRI in young subjects
highlights known default network regions when the isthmus cingulate is used as a seed
(Table 2). Because the seed is defined on the native surface, individual vertex-wise maps
can also be calculated to show both the similarities across subjects and the unique features of
each subject’s data. Inter-individual variability in both anatomy and functional correlations
is preserved in this method, and composite statistics still allow comparisons between groups
and between sessions.

Association with other individual markers is one of the primary advantages of analysis in
native space. Native-surface cortical analysis is especially convenient for comparison to
cortical thickness, as many morphometry studies already use FreeSurfer to measure cortical
thickness in the same parcellation regions used in the present study for functional analysis
(for example, see Du et al., 2007; Desikan et al., 2010; Rimol et al., 2010; Liu et al., 2010).
A potential confound in all functional MRI studies of populations with atrophy, including
those using the present method, is that decreased tissue volume might lead to a decrease in
BOLD signal-to-noise ratio. Therefore, while a decrease in functional correlations with
atrophy is expected due to effects on neural communication, it is difficult to distinguish this
neural effect from the signal-to-noise effect. While this limitation is not entirely addressed
by analysis on native surfaces, the availability of regional cortical thickness and volume
measurements allows local atrophy effects to be accounted for in each subject. This may be
additionally advantageous in longitudinal studies of patients with neurodegenerative
disorders where atrophy may give structural changes over the course of the experiment.

The power analysis for the native-surface parcellation analysis suggests that a moderate
difference in correlation coefficient (with the isthmus cingulate seed) can be detected in any
of the regions in Table 2 with practical sample sizes for neuroimaging studies and clinical
trials (Jack et al., 2010). Sample sizes range from 16 to 42 subjects, depending on the
region; this is consistent with another report of regional differences in variability of
correlation strength (Chang and Glover, 2010). The actual sample size necessary to detect a
change is highly dependent on the effect size between the populations (sample size is
proportional to the square of the effect size). Both the intersubject variance and the effect
size will be unique to each disease studied, so caution should be exercised when
extrapolating the values presented in Table 2 to other populations. Further research is
warranted to estimate population-specific sample sizes; these power analyses will provide
additional quantitative information to guide inference and practical application of correlation
measurements in those diseases. The value of the power analysis presented here is to
demonstrate that the range of expected sample sizes suggests studies of diseases with
moderate differences in BOLD correlations are feasible using the native-surface method.

In addition to the benefits of quantitative native-surface analysis of individual subject data, it
is also valuable to display surface-based, group-level results. Integrating and interpreting
large numbers of individual maps can be difficult, and space constraints will prevent many
authors from including maps for each individual in publications. Comparison to other
published group maps, particularly those of cortical thickness in aging and dementia (Salat
et al., 2004; Dickerson et al., 2009), might also be useful. Registration of individual surface
models to a surface average (e.g., the “fsaverage” subject in FreeSurfer) requires
transformation to an atlas space, which raises some of the same concerns described for
volume transformations, but evidence suggests that surface registration may be substantially
more accurate (Fischl et al., 1999b). Importantly, since cortex is being registered to cortex,
the risk of mapping an atlas coordinate to white matter or cerebrospinal fluid is greatly
decreased.
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Results from the patient and elderly subjects demonstrate that default network regions are
highlighted in native-surface analysis in multiple populations and with relatively small
sample sizes. The robustness of default network correlations to the effects of age, atrophy,
and dementia (of at least two different presumed etiologies) is also evident. However, the
group maps also serve as an illustration of the degree to which inter-individual differences
can be hidden by group averages. The Alzheimer’s disease group map in Figure 5, for
example, was generated from only four subjects. This map shows many of the characteristics
of typical default network maps and is not remarkably different from the maps of the other
groups. At least one of the four subjects, though, has a functional correlation map (Figure
2C, 2D) divergent from the typical default pattern. Investigation into the cognitive and
pathological correlates of inter-individual differences in functional correlation patterns may
prove enlightening, and native-surface analyses would be a powerful approach for such
investigation.

Limitations of analysis on native surfaces include the computational cost of reconstructing
and parcellating each subject’s surface, which can take approximately 24 hours processing
time per node. Visual confirmation of automated pial and white matter boundaries in the T1-
weighted volume is also recommended. In our opinion, however, checking the anatomical
boundary definition is simpler than an equivalent check on a warping algorithm’s match of
each gyrus in each slice in the volume. We also find it easier to correct small errors in the
boundaries for the surface than to optimize nonlinear registration parameters for individual
subjects. Analysis with this method requires a high-resolution T1-weighted volume for each
subject, which may be viewed as a limitation to authors not routinely including this
acquisition in their scanning protocols.

The parcellation atlas itself poses a limitation to the size and shape of the regions tested with
the native-space parcellation analysis. Some applications may require more flexibility in
region definitions, smaller regions, or specific subdivisions within some of the atlas regions.
For others, there may be reason to question the implied assumption of relative functional
homogeneity within the anatomically-defined regions. Exploratory studies may require
functionally-defined regions or a vertex-wise analysis, which makes transformation to the
atlas surface necessary for inter-subject comparisons. Investigators may also consider
another atlas available in FreeSurfer for native surfaces that subdivides the regions shown in
Figure 4 into gyral and sulcal cortex (Destrieux et al., 2010). Many other atlases exist, and
custom atlases can be created within FreeSurfer or elsewhere; these additional atlases
typically rely on registration to the average surface, though, and are not automatically
produced in the reconstruction process within FreeSurfer. The primary advantages of the
Desikan-Killiany atlas parcellation are its common use for cortical thickness studies and its
definition based on landmarks that can be consistently identified in individual subjects’
anatomy.

An alternative to native-surface analysis is analysis within the native volumes of individual
subjects. To avoid manual ROI selection, the seed region could be defined by a coordinate in
the atlas volume and reverse-transformed to each subject by applying the inverse of the
transformation matrix from the warping algorithm. Accuracy of seed placement in this case,
however, is subject to the same limitations of the transformation matrix as analysis in atlas
space. Seed location should be verified for each subject, most likely by visual inspection. A
spherical region centered on a reverse-transformed atlas coordinate may increase the
chances of including the desired cortex, but if the spheres are much larger than the thickness
of the cortex, it is very likely voxels containing primarily white matter or cerebrospinal fluid
will be included in the seed. Common diameters for spheres range from 8 mm to 12 mm or
larger (Fox et al., 2005, 2006; Vincent et al., 2006; Hedden et al., 2009), compared to
cortical thickness which is around 2 mm (Du et al., 2007; Liu et al., 2010).
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Even if the reverse-transformed seed is sufficiently accurate, the native-surface functional
correlation maps generated with it cannot be quantitatively compared across individuals
unless additional regions are defined. One approach is to create more regions of interest
from other reverse-transformed atlas volume coordinates, but each of these regions will be
subject to the same limitations as the seed. Another approach is to use the reverse-
transformed seed to perform seed-correlation analysis in the native brain. However, inter-
subject comparisons of the native results in this voxel-wise approach still requires warping
the functional data to an atlas volume, and it is unlikely that any advantage is gained by
applying that transformation to final statistics rather than to the raw data. An analogous
challenge faces independent component analysis (ICA) in native space: even if a suitable
template is defined for each subject to identify the component of interest, warping the
native-space components to atlas space is necessary for comparison across subjects or
groups.

Future development of this method could focus on broadening the scope of its applications.
Parcellation regions other than the isthmus cingulate might be used as seeds for other
cortical networks that are associated with neurological or psychiatric diseases (Greicius,
2008; Seeley et al., 2009; Ebisch et al., 2010). Additional methods of analyzing functional
correlations might also be adapted to native surfaces. Currently, methods such as ICA could
be readily applied within the average surface space; however, ICA components are difficult
to compare quantitatively across subjects without transforming to atlas space. One idea for
native-space ICA is to use one or more of the anatomical parcellation regions highlighted in
this study as a template for identifying the default network components. Independent
components could then be compared across subjects within analogous parcellation regions.
A similar approach could be taken to define templates for other resting-state network
components. Regardless of analysis method, investigation of these resting-state functional
patterns in disease can benefit from leveraging the underlying anatomy and pathology of
individual subjects.
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Abbreviations

BOLD blood oxygenation level dependent

fMRI functional magnetic resonance imaging

ICA independent component analysis

AD Alzheimer’s disease

PD Parkinson’s disease

PDD Parkinson’s disease dementia

DLB dementia with Lewy bodies
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MNI Montreal Neurological Institute

RMS root-mean-square
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Research Highlights

• Automated method using FreeSurfer for analyzing BOLD correlations on native
surfaces

• Surface parcellation allows comparisons of native-surface analyses across
subjects

• Method highlights default network regions in data from individual subjects

• Results presented for young, elderly, Alzheimer’s, Parkinson-related dementias
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Figure 1. Warping to an atlas volume
T1-weighted volume from a patient with atrophy transformed to an atlas volume using
popular software packages. AC-PC aligned: original image, after rotation and cropping for
comparison with transformed images (rotation in AFNI after manual landmark
identification). AFNI: after affine (12 degrees of freedom) transformed with 3dWarpDrive.
FSL: after nonlinear warping with FNIRT. SPM2: after nonlinear warping with
“Normalise” tool. SPM8: after nonlinear warping with the “DARTEL” process. MNI 152:
standard T1 atlas volume used for all transformations presented here. None of these methods
adequately accounted for the structural effects of atrophy in this patient. One consequence of
the poor alignment is some cortical MNI coordinates correspond to cerebrospinal fluid in the
patient’s transformed brain.
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Figure 2. Analysis on native surfaces
The top row shows structural and functional analysis for a young subject; the bottom row
shows corresponding images from a patient with atrophy (see Figure 1). A: Original T1-
weighted volumes after AC-PC alignment. B: Cortical surface models generated from T1-
weighted volumes; anatomical features from individual subjects, including effects of
atrophy, are preserved. C: Automated anatomical parcellation of cortical surface for each
subject. D–E: Individual correlation maps consisting of coefficients (z-transformed) from
correlation of each surface vertex with the average time series of the isthmus cingulate seed
(dark green). The isthmus cingulate region was defined on the native surface for each
subject during the automated anatomical parcellation. Thresholds (for display only) were
determined separately for each subject from the mean and standard deviation of correlation
coefficients for the vertices on the individual surface.
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Figure 3. Individual correlation maps
Columns represent individual subjects. A: Cortical surface models with a single parcellation
region (inferior parietal) highlighted in blue. The substantial anatomic variability across
subjects is captured by the individual surfaces. B–C: Individual correlation maps for five
young subjects, consisting of coefficients (z-transformed) from correlation of each vertex on
the surface with the average time series of the isthmus cingulate seed (dark green). The
isthmus cingulate region was defined on the native surface for each subject during the
automated anatomical parcellation. Individual correlation maps for all fifteen young subjects
are included in the supplementary material.
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Figure 4. Group correlation map for young subjects
Vertex-wise average correlation map across fifteen young subjects after surface-based
registration to the FreeSurfer “fsaverage” subject. The Desikan-Killiany cortical parcellation
atlas is shown in the first column, and the isthmus cingulate seed is shown in dark green on
all medial surfaces.
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Figure 5. Group correlation maps for elderly subjects and patients
Vertex-wise average correlation maps after surface-based registration to the FreeSurfer
“fsaverage” subject. The isthmus cingulate seed is shown in dark green. The upper left map
is the average across all thirty-four elderly subjects and patients; the other five maps are
averages within elderly and disease subgroups.
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Figure 6. Group RMS difference maps for volume-atlas versus native-surface correlation results
The overlays in the bottom two rows show the root-mean-square difference between
correlation results obtained after nonlinear transformation to the MNI152 volume-atlas and
results obtained from analysis on each subject’s native surface. The minimum threshold for
the RMS difference (0.2) matches the magnitude of estimated population difference used in
power analyses (see Table 2 and Table 3). For reference, the fsaverage parcellation is
included in the top row.
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Table 1

Subject demographics

Subject group n Age range Field strength

Young adults 15 22–28 3.0 Tesla

Elderly controls 7 69–90 1.5 Tesla

Alzheimer’s disease 4 61–94 1.5 Tesla

Parkinson’s disease dementia 8 65–86 1.5 Tesla

Dementia with Lewy bodies 7 61–75 1.5 Tesla
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