
Regulation of appetite to treat obesity

Gilbert W Kim1, Jieru E Lin1, Michael A Valentino1, Francheska Colon-Gonzalez1, and Scott
A Waldman1,†

1 Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University,
132 S. 10th Street, 1170 Main, Philadelphia, PA 19107, USA

Abstract
Obesity has escalated into a pandemic over the past few decades. In turn, research efforts have
sought to elucidate the molecular mechanisms underlying the regulation of energy balance. A host
of endogenous mediators regulate appetite and metabolism, and thereby control both short- and
long-term energy balance. These mediators, which include gut, pancreatic and adipose
neuropeptides, have been targeted in the development of anti-obesity pharmacotherapy, with the
goal of amplifying anorexigenic and lipolytic signaling or blocking orexigenic and lipogenic
signaling. This article presents the efficacy and safety of these anti-obesity drugs.
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The unmet clinical need
Obesity is now a global pandemic [1]. Worldwide, more than 1 billion adults are overweight
(BMI >25 kg/m2), while 300 million adults are obese (BMI >30 kg/m2) [2]. In the USA,
65% of adults are overweight, and 32.2% are obese [3,4]. This obese population has doubled
in only 20 years [5]. Moreover, obesity rates in children have achieved epidemic levels in
developed countries and continue to grow worldwide [6,7]. Obesity is associated with
striking comorbidities, including cancer, coronary artery disease, hypertension, liver/biliary
disease, obstructive sleep apnea, osteoarthritis, stroke and Type 2 diabetes. In that context,
life expectancy with chronic obesity is significantly shortened [8]. Notably, chronic obesity
is associated with higher rates of health problems and healthcare costs compared with
smoking or alcohol abuse [9]. Currently, up to US$100 billion of annual healthcare expenses
in the USA can be ascribed to obesity. Within the next 15 years, 20% of US national health-
care costs will reflect the care of chronic diseases related to obesity [10].
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Therapeutic approaches to the obese patient
Medical treatment for obese patients has largely focused on complications and
comorbidities, such as diabetes, hypertension and hyper-lipidemia. Studies have shown,
however, that targeting the underlying disease through weight loss and lifestyle
modifications are effective in combating chronic comorbidities, such as cardiovascular
disease and diabetes. Lifestyle modification programs and clinical intervention have
succeeded in driving approximately a 10% weight reduction within 6 months [11]. In that
regard, even a modest loss of weight (<10%) significantly improves blood pressure,
cholesterol levels and glycemic control [12,13]. Unfortunately, patients enrolled in lifestyle
modification programs typically regain about 35% of their lost weight within 1 year
following treatment, while >50% of patients return to their baseline weight in fewer than 5
years [14,15].

Bariatric surgery generates the most rapid and sustained weight loss. Through gastric
banding, gastric bypass or sleeve gastrectomy, bariatric surgery achieves long-term weight
loss in patients, reduces their risk for obesity-related comorbidities and thereby improves
their lifestyle [16,17]. Unfortunately, this treatment is associated with a number of principal
adverse effects and, consequently, is recommended only for patients who are morbidly
obese (BMI >40 kg/m2) or suffering serious comorbidities. Therefore, bariatric surgery is an
unlikely treatment for the millions of obese patients worldwide [16,18]. However, clinical
trials are underway for transoral gastroplasty, in which the stomach is stapled or sutured to
reduce its capacity via oral insertion of flexible devices, thereby eliminating surgical
incisions [19].

Anti-obesity pharmacotherapy may represent the means by which overweight and obese
patients can safely achieve long-term weight reduction. For example, clinical trials have
demonstrated that the weight-loss drug orlistat (Alli® [GlaxoSmithKline]; Xenical®
[Roche]), which is a lipase inhibitor and prevents some of the fat in food from being
absorbed, can produce weight loss that can be sustained for up to 2 years [20–22]. Those
observations notwithstanding, the history of anti-obesity pharmacotherapy is characterized
by setbacks and dilemmas over safety, efficacy, abuse and adverse effects. For example, the
potentially fatal adverse effects of valvular heart disease and pulmonary hypertension of the
anti-obesity medication fenfluramine–phentermine (Fen–Phen) led to its withdrawal and
legal damages of more than US$13 billion [23]. In fact, with the withdrawal of sibutramine
(Meridia®; Abbott) from the market after 13 years owing to cardiovascular risks, orlistat has
recently become the only drug that is US FDA approved for long-term use in weight
management [24–28].

Anti-obesity drug development research has focused on the regulation of appetite and
energy consumption. Endocannabinoid signaling and monoamine neurotransmission are
involved in this regulation, but many centrally-acting drugs directed at these pathways
induce major cardiovascular and psychological adverse effects. Hormonal regulators,
including neuropeptides from gut, pancreatic and adipose tissue, serve as endogenous
mediators of energy balance. By targeting these pathways, drug development programs aim
to minimize central or peripheral adverse effects, while driving appetite reduction and
weight loss. This article discusses the efficacy and safety of these anti-obesity
pharmacotherapeutics.

Central appetite regulation
The hypothalamus integrates neurohormonal signaling from gut and adipose tissue. Specific
hypothalamic nuclei, including the dorsomedial nucleus (DMN), paraventricular nucleus
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(PVN) and ventromedial nucleus (VMN), serve as control centers for appetite. In animals,
lateral hypothalamic lesions produce anorexia while VMN lesions produce hyperphagia
[29–33]. In that context, more recent studies have demonstrated that appetite reflects the
integration of orexigenic and anorexigenic signals from numerous hypothalamic nuclei and
tissues outside the CNS (Figure 1).

The arcuate nucleus (ARC) is the major target for peripheral hormones that regulate
appetite. The ARC is located at the base of the hypothalamus, outside the blood–brain
barrier. As it is surrounded by a permeable barrier, the ARC is accessible to circulating
hormones [34]. The ARC contains two distinct neuronal subtypes that are critical for
appetite regulation:

• Those expressing the neuropeptides pro-opiomelanocortin (POMC) and cocaine-
and amphetamine-regulated transcript (CART);

• Those expressing neuropeptide Y (NPY) and Agouti-related protein (AgRP).

Pro-opiomelanocortin/CART-expressing neurons suppress appetite, while NPY/AgRP
neurons stimulate appetite. It is the balance between these neuronal signals that regulates
energy homeostasis [34–36].

Pro-opiomelanocortin is a precursor polypeptide that is cleaved to yield several hormones,
including melanocortins such as α-melanocyte stimulating hormone (α-MSH).
Melanocortins control appetite by activating the melanocortin 3 (MC3R) and melanocortin 4
(MC4R) receptors on second-order neurons. Intracerebroventricular (ICV) administration of
MC3R and MC4R agonists reduces food intake, while antagonist administration produces
hyperphagia [37]. Elimination of MC4R expression in transgenic mouse models produces
overeating and obesity [38]. Furthermore, polymorphisms of MC4R are associated with
obesity [39].

Cocaine- and amphetamine-regulated transcript is coexpressed with α-MSH and has similar
anorexigenic properties. Fasting produces a significant decline in CART expression. ICV
administration of CART peptide suppresses feeding, while ICV administration of antiserum
to CART stimulates food intake [40]. Some reports, however, have demonstrated that CART
injection into specific hypothalamic nuclei produces an orexigenic phenotype [41],
indicating that CART’s effects depend on signaling location.

Neuropeptide Y belongs to the pancreatic polypeptide family, which activates the seven-
transmembrane G protein-coupled receptors (GPCRs) Y1–Y6 [42]. NPY is a potent
orexigenic neuro-peptide. Its expression is controlled by nutritional status, and mRNA levels
are increased during fasting and reduced following food intake [43,44]. Signaling pathways
mediating NPY effects have yet to be definitively characterized. Nevertheless, Y1- and Y5-
receptor activation appears to stimulate appetite [45], while Y2- and Y4-receptor activation
suppresses food intake via presynaptic inhibition of NPY release [46].

Agouti-related protein (AgRP) expression is localized to the ARC [47]. AgRP is a selective
inverse agonist of MC3R and MC4R and a powerful appetite stimulant. AgRP levels rise
during fasting and decline following food intake [43]. ICV administration of AgRP
stimulates food intake [48,49]. Mice overexpressing AgRP develop hyperphagia and obesity
[50].

From the ARC, these first-order POMC/CART and NPY/AgRP neurons project to second-
order neurons in several hypothalamic nuclei, including the VMN, DMN, PVN and the
lateral hypothalamic area. These second-order neurons subsequently project to such areas as
the caudal brainstem, cortex and limbic system, and thereby act to process and integrate
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feeding signals. Lesions in these hypothalamic nuclei result in hyperphagia (PVN, DMN and
VMN) or hypophagia, and demonstrate the significance of these second-order neurons in
generating hunger and satiety responses [29–33].

Second-order neurons in these hypothalamic nuclei are crucial to regulation of feeding, and
express potent chemical mediators themselves to serve this function. Corticotropin-releasing
hormone (CRH) and thyrotropin-releasing hormone (TRH) are anorexigenic peptides
expressed in the PVN. NPY/AgRP signaling downregulates expression of CRH and TRH,
and α-MSH signaling, in turn, upregulates their expression [51–53]. Melanin-concentrating
hormone (MCH) is expressed in the lateral and perifornical hypothalamus. As a potent
orexigenic neuropeptide, MCH levels rise during fasting and stimulate appetite with ICV
administration [54]. Orexin A and B are a pair of neuropeptides that also are expressly found
in the lateral hypothalamus and perifornical areas, and function to stimulate appetite [34].
Brain-derived neurotrophic factor (BDNF) has a wide tissue distribution, but has a notably
high expression level in the VMN. In rodents, central BDNF administration produces a
decline in weight and appetite [55]. In humans, a mutation in NTRK2, which encodes TrkB,
the BDNF receptor, causes hyperphagia and obesity [56]. Activation of MC4R upregulates
BDNF expression and signaling [57], which suggests that central melanocortins may curtail
appetite by activating downstream BDNF effectors.

Extensive reciprocal circuits between the hypothalamus and brainstem relay information
regarding feeding status. Of note, the dorsal vagal complex (DVC) receives signals from
peripheral satiety hormones and vagal afferents from the GI tract [58,59]. In addition,
dopamine reward pathways play a role in feeding. Mice deficient in dopamine exhibit
hypophagia, and recover with dopamine replacement in the caudate putamen and nucleus
accumbens [60]. Furthermore, opioid signaling pathways regulate feeding behavior. In mice,
deficiency in the opioid receptor ligands β-endorphin and enkephalin diminish food-seeking
behavior [61]. Finally, the endocannabinoid system, notably through central CB1 receptors,
stimulates appetite and promotes lipogenesis in the hypothalamus, mesolimbic system and
periphery [62]. In the following section, we will discuss the anti-obesity drugs that the
pharmaceutical industry has in various stages of clinical development; Table 1 lists the
prominent identifying and distinguishing features of these pharmacotherapeutics.

Antagonists of central neuropeptide signaling
Neuropeptide Y—Neuropeptide Y regulates feeding through Y1- and Y5-receptors. NPY
signaling inhibition reduces food intake and bodyweight in mice [63,64]. In patients, the
NPY receptor antagonist MK-0557 (Merck; 1 mg/day) induced modest weight loss over the
initial 12-week period of administration. Following 52 weeks of therapy, MK-0557
produced a statistically significant, but not clinically meaningful (less than 3 kg), weight loss
[65].

Other appetite modulators—The AgRP inhibitor TTP-435 (TransTech Pharma), in
Phase II trials, antagonizes the activity of AgRP with no effect on MC4R alone or in the
presence of α-MSH [301]. In addition, the MCH-1 receptor antagonist BMS-830216
(Bristol-Myers Squibb) is in Phase I/II clinical testing [302]. The MC4R agonist MK-0493
(Merck) induced a reduction in food intake and minimized weight gain in rodents with diet-
induced obesity. However, in Phase II clinical trials, MK-0493 demonstrated only
statistically insignificant weight loss relative to placebo in both a 12-week fixed-dose study
as well as an 18-week stepped-titration study [66]. As MC4R agonism has been a promising
target of anti-obesity pharmacotherapy, drug development studies continue to search for
selective small agonists for MC4R. Deficiency of MC4R signaling due to over 150 different
mutations is a well-characterized genetic basis of obesity, and potential therapeutics
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including exogenous agonists and molecular chaperones continue to be investigated in
preclinical studies [67]. However, given the extensive and complex activity of melanocortins
in not only energy homeostasis but also cardiovascular and sexual function, significant
concerns remain over the potential adverse effects of long-term MC4R agonism, including
hypertension and sexual arousal [68]. While neuromedin U (NMU) originally looked
promising as an anorexigenic, inducing the release of CRH by neurons of the PVN [69],
administration of NMU does not reduce food intake or weight [70], and diet-induced obese
rats are relatively insensitive to the effects of NMU [71].

Therapeutic approaches to regulating food intake
Intestinal peptides

Cholecystokinin—Cholecystokinin (CCK) is produced by I cells in the duodenum and
jejunum, and serves a variety of functions, including that of a neurotransmitter in the CNS
[72]. CCK secretion by the gut is stimulated by foods high in fat and protein, and aids
digestion [73]. The CCK receptor, a seven-transmembrane GPCR, exists as two different
isoforms, CCK-A and CCK-B. CCK-A is expressed in the pyloric sphincter and in vagal
afferents. It appears to be responsible for the effect of CCK signaling on satiety, and CCK-A
agonists suppress appetite [74,75]. In rodents, deficiency of CCK-A or receptor blockade
produces hyperphagia and obesity [76]. In humans also, treatment with the CCK-A receptor
antagonist, loxiglumide, drives increased caloric intake [77]. However, targeted antagonism
of CCK-B appears to have no effect on CCK-mediated appetite reduction [78]. With chronic
administration, tolerance to CCK develops [79], eliminating its ability to reduce weight [80].
Moreover, intermittent CCK reduces the size, but increases the frequency, of meals [81]. In
that context, the selective CCK-A agonist GI 181771X (GlaxoSmithKline) failed to induce
weight loss in Phase II trials [82]. However, CCK potentiates appetite and weight reduction
by leptin [83], suggesting that combination therapy may have utility. It is noteworthy that
chronic CCK administration in animals produced pancreatitis [84,85], suggesting limited
utility of this therapeutic approach in humans.

Glucagon-like peptide 1—Glucagon-like peptide 1 (GPL-1) is produced by
enteroendocrine L cells in the ileum and proximal colon. It is generated after processing of
preproglucagon by prohormone convertase-1 [86]. Its secretion is stimulated by nutrients
and neural and endocrine factors [87] after ingestion of a meal, particularly one rich in fat
and carbohydrates [88]. The GLP-1 receptor (GLP-1R) is a GPCR expressed in the heart,
kidney, lung, pancreas, CNS and PNS, including the nucleus tractus solitarius (NTS) of the
DVC, and the ARC [86]. GLP-1 is an incretin, which are gut hormones that increase
secretion of insulin by pancreatic β-cells [87]. GLP-1 is anorexigenic. Its administration
induces satiety and weight loss in animals and humans [89–92]. In rats, GLP-1 effectiveness
was lost after monosodium glutamate-induced lesions in the ARC [93], subdiaphragmatic
vagotomy and transection of brainstem–hypothalamic connections [94], suggesting that
hypothalamic and vagal signaling are essential for mediating the satiating effects of GLP-1.
Moreover, GLP-1 antagonizes the orexigenic effects of NPY [95].

Glucagon-like peptide 1 has a characteristic short circulating half-life, reflecting rapid
proteolysis by dipeptidyl peptidase IV (DPP-IV) [96], limiting its therapeutic utility in
patients. This pharmacokinetic limitation has been abrogated by employing two different
approaches. GLP-1 analogues resistant to DPP-IV degradation have been developed,
including liraglutide (Victoza®; Novo Nordisk) and exenatide (Byetta®; Amylin/Eli Lilly),
comprising exendin-4, a peptide extracted from the salivary gland of the Heloderma
suspectum(gila monster). Furthermore, orally active DPP-IV inhibitors, vildagliptin
(Novartis) and sitagliptin (Januvia®; Merck) have been developed. A meta-analysis
examining these approaches in Type 2 diabetic patients revealed that, compared with
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patients receiving insulin therapy, patients receiving GLP-1 analogues lost an average of
4.76 kg [97]. Indeed, weight loss induced by GLP-1 analogues was dose dependent,
progressive and did not plateau by 30 weeks. Further to this, more weight was lost in
patients receiving exenatide compared with liraglutide [97]. Moreover, DPP-IV inhibitors
were less effective in inducing weight loss compared with GLP-1 analogues [97]. Similarly,
in nondiabetic obese individuals, liraglutide induced a mean of approximately 6.0 kg in
weight loss and >35% of the subjects treated with the highest dose achieved a reduction of
≥10% baseline weight [303]. As a result, liraglutide was approved by the EMA in 2009 and
the US FDA in 2010 for the treatment of Type 2 diabetes, and is in trials to win FDA
approval for the treatment of obesity. Recently, long-acting exenatide (exenatide-LAR) was
shown to improve bodyweight during a 15-week trial in diabetic patients [98]. Following 2
years of weekly treatment, exenatide-LAR induced average reductions in bodyweight of 5.8
lbs [304]. To improve convenience and patient compliance, nasal and transdermal
formulations of exenatide are being developed [305]. In that context, oral formulations of
GLP-1 are being developed, and oral administration induces a rapid dose-dependent rise in
circulating peptides, which are active [99]. With respect to adverse events, severe
hypoglycemia was rare, but mild-to-moderate hypoglycemia was more than twice as
common in patients receiving GLP-1 analogues [97]. In patients receiving exenatide, nausea
and vomiting were the most common adverse effects [97]. Mild-to-moderate nausea was
also the most common adverse effect reported with weekly treatment of exenatide-LAR
[98]. Furthermore, exenatide should not be used in patients with renal disease, and kidney
function should be monitored in patients receiving this medication [100].

Oxyntomodulin—Oxyntomodulin (OXM), a product of the gut, is also produced from
processing of preproglucagon. OXM is secreted post-prandially along with GLP-1 by the L
cells of the colon. It demonstrates weak activity as an incretin, but induces potent appetite
suppression. In rats, ICV or intraperitoneal administration of OXM produced diminished
feeding and weight gain [101,102]. In humans, intravenous infusion of OXM suppressed
appetite and feeding, without a significant change in circulating insulin levels [103]. OXM
may mediate its effects via activation of central GLP-1Rs. The anorectic effects of OXM are
abolished both in GLP-1R knock out mice [104] and with administration of the GLP-1R
antagonist exendin (9–39), even with concomitant ICV OXM administration or OXM
injection into the PVN [101]. Another OXM receptor, however, may exist: compared with
GLP-1, OXM binds GLP-1R with 100-fold lower affinity, but exerts the same degree of
anorexia at equimolar concentrations [102]. Furthermore, intra-ARC administration of
exendin (9–39) blocks the anorectic effects of OXM, but has no effect on GLP-1 activity
[102]. Perhaps OXM stimulates ARC neurons directly, while GLP-1 does so indirectly
through connections with the brainstem. The role of OXM in the ARC may be to stimulate
POMC neurons, as the incubation of POMC neurons with OXM ex vivo stimulates α-MSH
release [102]. Intravenous infusion of OXM (3.0 pmol/kg/min) reduced food intake by 19%
compared with saline-infused subjects. Furthermore, OXM infusion reduced 12-h food
intake by 11%, without affecting 24-h food consumption [103]. Subcutaneous injection of
OXM (three-times daily, 30 min before each meal for 4 weeks) significantly reduced food
consumption at the beginning and end of the 4-week trial, inducing an average weight loss
of 2.3 kg [105]. In overweight and obese subjects, OXM administered before meals
increased activity-related energy expenditure by 26% and total energy expenditure by 9.5%
in addition to reducing food consumption [106]. Inducing an increase in physical activity is
noteworthy, as weight loss can be achieved by promoting greater energy expenditure than
energy intake. Many stimulants are well-characterized drugs that effectively increase
physical activity, suppress appetite and promote weight loss. However, stimulants are also
well known to pose serious risks such as addiction, hypertension and cardiovascular
damage. Therefore, OXM might represent a safer means of stimulating an increase in energy
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expenditure. However, as injections of OXM are required to induce weight loss, this is
considered to be a barrier to therapy. Regarding adverse effects, this agent rarely induced
mild nausea [105,106].

Peptide YY—Peptide YY (PYY) belongs, along with NPY, to the pancreatic polypeptide
family, which bind to the GPCRs Y1–Y6 [42]. However, in contrast to NPY, PYY is
potently anorexigenic. PYY is expressed throughout the small intestine, with the highest
concentration found in L cells of the terminal ileum and colon, which secrete the peptide in
response to a meal [107]. PYY stimulates gastrointestinal absorption of fluids and
electrolytes [108], reduces gastric and pancreatic secretions and delays gastric emptying
[109]. In rodents, administration of PYY induces a dose-dependent decrease in food intake
[110–112]. PYY-deficient mice display hyperphagia and obesity [113]. Obese humans and
rodents have lower circulating levels of postprandial PYY compared with lean controls
[114]. Notably, however, obese subjects achieve a progressive rise back to normal plasma
PYY levels following bariatric surgery. This phenomenon has been implicated in the success
of bariatric surgery in producing long-term weight loss. Regarding PYY, obesity engenders
a state of deficiency rather than resistance, which is the converse of obesity’s effects on
leptin. Thus, PYY replacement therapy is an attractive concept for treatment. PYY circulates
as two major forms: PYY1–36 and PYY3–36. The more common PYY3–36 exhibits high
affinity for Y2R, and some affinity for the Y1R and Y5R [42]. Peripheral PYY
administration induces appetite suppression by activating Y2R in the ARC. ICV
administration, however, stimulates food intake, presumably due to PYY activation of
orexigenic Y1R and Y5R in second-order neurons of the PVN [115]. Therefore, PYY
conceivably suppresses appetite by activating presynaptic Y2R, which inhibits the activity
of NPY/AgRP neurons. Vagal afferent signaling, too, is implicated, as bilateral
subdiaphragmatic vagotomy or transecting brainstem–hypothalamic connections attenuates
the anorectic effects of PYY [94]. Continuous infusion of PYY in healthy subjects reduced
hunger and caloric intake by 36% [112], and obese patients behaved similarly [116]. Indeed,
infusion of PYY reduced food consumption in a dose-dependent manner, with a maximum
inhibition of 35% [117]. Unfortunately, continuous intravenous infusion is not a tractable
approach for weight-loss therapy, and an intranasal formulation of PYY (Nastech/Merck)
was ineffective in inducing weight loss [118]. Moreover, PYY produces nausea and
vomiting in a dose-dependent manner, limiting its therapeutic utility in appetite suppression
[117,118].

Ghrelin—Ghrelin is the only known circulating orexigenic hormone. Ghrelin is cleaved
from preproghrelin and is mainly produced in the gastric fundus. It has been reported to
stimulate the release of growth hormone by activating the growth hormone secretagogue
receptor (GHS-R) [119]. As ghrelin deficiency does not translate into defective growth in
mice, however, its physiological relevance on growth hormone release is unclear [120].
Ghrelin plays a role in energy balance. In rodents, ICV or peripheral administration induces
a dose-dependent increase in food intake and bodyweight [121,122]. Ghrelin also regulates
long-term energy homeostasis. Obese patients display reduced circulating ghrelin levels and
anorexic patients display exaggerated circulating ghrelin levels. Weight gain correlates with
a decline in ghrelin levels [123–125]. The receptor GHS-R1a is expressed throughout the
CNS, notably within certain hypothalamic nuclei, the pituitary gland and the hippocampus.
GHS-R1a is also expressed, albeit at lower levels, in the adrenal glands, heart, pancreas,
spleen and thyroid [126,127]. Ghrelin is believed to induce hunger and feeding by activating
NPY/AgRP neurons in the ARC. Vagal stimulation is also important. In rats with
mechanical or chemical disruption of vagal signaling, ghrelin administration fails to
stimulate feeding or activate NPY-expressing neurons [128]. In fact, ghrelin appears to
function at several sites. Ghrelin induces food intake when injected into other CNS sites
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expressing GHS-R, including the mesolimbic reward pathway, the hippocampus and the
dorsal raphe nucleus [129,130]. A variety of therapeutic approaches to blocking ghrelin’s
action are being explored as a strategy for treating obesity. A first-generation ghrelin
vaccine, CYT009-GhrQb, was discontinued because patients did not lose weight, even
though they showed a strong ghrelin antibody response [306]. The next generation of ghrelin
vaccine has been developed that decreases feeding, adiposity and bodyweight in rodents
[131]. Furthermore, a ghrelin-neutralizing RNA Spiegelmer®, NOX-B11 (NOXXON
Pharma Ag), which is an aptamer that binds to and inactivates ghrelin, blocked the
orexigenic activity of exogenous ghrelin administration but did not alter food intake in rats
[132]. Furthermore, ghrelin antagonists, produced by Elixir Pharmaceuticals, are in
preclinical testing [307]. Moreover, ghrelin O-acyltransferase (GOAT) is a membrane-
bound enzyme that adds octanoate to ghrelin, which is required for receptor binding, and
inhibition of GOAT may be an effective strategy to inhibit ghrelin activity [133].

Pancreatic hormones
Pancreatic polypeptide—Pancreatic polypeptide (PP) is homologous to PYY, possibly
originating as a duplication of the PYY gene [134]. PP levels in the circulation rise after
eating, increasing proportionally to caloric intake, and remain elevated for up to 6 h [135].
PP secretion is induced by vagal stimulation and peripheral hormones, including ghrelin
[136]. PP administration to obese mice decreases appetite [137] and repeated administration
limits their weight gain [138]. PP administration to lean mice also suppresses feeding
associated with delayed gastric emptying [138]. Similarly, overexpression of PP in
transgenic mice suppresses eating, gastric emptying and weight gain [139]. Moreover,
fasting- and food-induced PP levels are lower in obese patients [140], while PP responses
are exaggerated in patients with anorexia nervosa [141]. PP binds with highest affinity to the
Y4- and Y5-receptors [42]. As with PYY, the route of PP administration affects its impact
on appetite. In rats, ICV administration of PP increases feeding [142], reflecting activation
of orexigenic Y5R [64]. By contrast, peripheral administration of radiolabeled PP reveals
significant accumulation in the area postrema (AP) of the DVC, which expresses Y4-
receptors [143,144]. Vagotomy abolishes PP’s anorectic effects in mice [138]. Peripheral
administration of PP increases vagal activity and induces changes in the levels of
hypothalamic neuropeptides, including decreasing NPY and orexin, and increasing the
anorexigenic peptide, urocortin [138]. In healthy subjects, intravenous infusion of PP (10
pmol/kg/min) reduced appetite and caloric intake by 22%, an effect that was sustained over
24 h [145]. PP has a short half-life, and extended-duration formulations of Y2R or Y4R
agonists may be more efficacious in long-term appetite control and weight loss [146].
Obinepitide (7TM Pharma), a Y2/Y4-receptor agonist, and TM30339 (7TM Pharma), a
selective Y4-receptor agonist, are in Phase I/II clinical trials [308,309].

Amylin—Amylin, or islet amyloid polypeptide, is secreted with insulin by β-cells [147],
and patients with Type 1 diabetes are deficient in both hormones. Like insulin, fasting
plasma levels of amylin are low and increase in response to eating [148,149]. Amylin
regulates post-prandial glucose levels together with insulin. Beyond glucose homeostasis,
amylin has anorectic characteristics, and ICV administration reduced food intake in rodents,
while constant infusion over 10 days reduced feeding and adiposity [150]. Conversely,
pharmacologic antagonism of amylin signaling increased rodent appetite and adiposity
[151], and amylin-deficient mice gain excess weight [152,153]. Amylin is homologous to
calcitonin gene-related peptide, calcitonin and adrenomedullin [154,155], and amylin
receptors appear when calcitonin receptors are coexpressed with receptor activity-modifying
proteins [156,157]. Amylin receptors are expressed in selective regions of brain, including
the AP [158]. The effects of amylin on gastric emptying and appetite are attenuated by
vagotomy or injury of the AP/NTS, suggesting that vagal signaling is essential in mediating
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the appetite suppression induced by amylin [159–161]. Pramlintide, a synthetic amylin
analogue (Symlin®; Amylin) [162] has a pharmacokinetic and pharmaco-dynamic profile
that is similar tothat of amylin [163]. Pramlintide is approved to treat diabetes and, unlike
traditional diabetic medications, elicits weight loss in diabetic patients. Thus, subcutaneous
injection of pramlintide with meals reduced bodyweight over 52 weeks of treatment in Type
2 diabetic patients [164,165]. Similarly, pramlintide produced bodyweight reductions in
Type 1 diabetic patients [166]. Finally, a pooled post hoc analysis in Type 2 diabetic
subjects demonstrated that pramlintide, at 120 μg twice daily or 150 μg three-times daily,
induced an average weight loss of 2.6 kg over 52 weeks of therapy [167]. The only adverse
effects associated with pramlintide were a transient increase in mild-to-moderate nausea and
headache [164–167].

Adipose tissue hormones
Leptin—Leptin, an adipose tissue-derived hormone, has been labeled the ‘obese gene’ (ob),
since mice harboring mutations develop morbid obesity [168]. Administration of leptin to
ob/ob mice decreases consumption, increases energy expenditure and is associated with a
30% decrease in weight following 2 weeks of therapy [169,170]. Similarly, congenital leptin
deficiency in humans manifests as early-onset obesity, which is treated with leptin
replacement [171,172]. Circulating levels of leptin reflect both the degree of adiposity [173]
and the feeding state [174]. Typically, obese patients exhibit elevated circulating leptin
levels [173], which can be confirmed in rodent models of obesity. Elevated circulating leptin
in obesity reflects leptin receptor resistance. Leptin receptors, members of the gp130 family
of cytokine receptors, are expressed in the hypothalamus [175]. Leptin receptors activate
janus kinase [176], which, in turn, activates signal transducer and activator of
transcription-3, increasing the expression of POMC, while reciprocally suppressing the
expression of AgRP [177]. Similarly, activated janus kinase phosphorylates insulin receptor
substrate proteins, stimulating the phosphoinositide 3-kinase pathway, which also suppresses
NPY and AgRP, while increasing POMC. Furthermore, 5′-AMP-activated protein kinase, an
energy-sensing protein, which is active in low energy states and stimulates feeding, is
inhibited in multiple areas of the hypothalamus by leptin receptor activation [178]. Leptin
regulation of appetite is specifically related to signaling in the ARC. NPY/AgRP and
POMC/CART neurons in the hypothalamus express leptin receptors [179,180] and ICV
leptin fails to reduce food intake in rats if the ARC is damaged [181]. Indeed, leptin inhibits
NPY/AgRP signaling and downregulates the expression of these neuropeptides, while it
upregulates POMC expression and stimulates POMC/CART signaling in the ARC [182–
184]. Targeting leptin as an therapeutic endocrine approach to obesity and weight loss has
been disappointing, probably reflecting receptor resistance in obesity [185].

Adiponectin—Adiponectin is secreted from adipose tissue into the bloodstream and is
very abundant in plasma relative to many hormones. Adiponectin promotes insulin
sensitivity and the survival of pancreatic β-cells and cardiomyocytes [186]. Similar to leptin,
it acts in the brain to mediate weight loss. However, it has yet to enter clinical trials.

Combination therapy with pramlintide & leptin—The ability of amylin to reduce
appetite and weight in obese rats is potentiated by coadministration of leptin. This effect is
specific to amylin, and synergy is not observed with other peptides, including PYY and
GLP-1/exendin-4 analogues. This synergy appears to reflect the ability of amylin to restore
leptin receptor signaling in the hypothalamus in the setting of obesity [187]. In overweight
and obese patients, coadministration of pramlintide and leptin by subcutaneous injection
twice daily produced approximately 13 kg of weight loss, while monotherapy with either
agent only resulted in approximately 8 kg of loss. Importantly, patients on combination
therapy continued to lose weight, while those on mono-therapy achieved a plateau over the
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duration of the study [187]. In a Phase II study, overweight and obese individuals treated
with combination therapy twice daily lost approximately 11% of bodyweight, which was
significantly greater than patients receiving either agent alone (approximately 5.0%) [310].
In a continuation of this study, patients receiving cotherapy exhibited sustained weight loss,
while those receiving placebo regained almost all their weight [311]. Based on these results,
pramlintide/leptin cotherapy is advancing into Phase III trials.

Oleoyl-estrone—Oleoyl-estrone (OE) is packaged in lipoproteins derived from adipose
tissue for secretion in the circulation. Like leptin, OE levels are associated with adiposity
[188], but in contrast to leptin, obese patients exhibit reduced circulating OE. OE induces
dose-dependent decreases in appetite and weight [189] with a preservation of body protein
and wasting of fat stores in rodents [190]. Moreover, weight loss is maintained for 26 days
following 2 weeks of constant OE infusion in lean rats, while obese rats regain weight
immediately following cessation of OE infusion, reflecting a deficient leptinergic system
[191]. Importantly, oral administration of OE induced loss of adipose tissue associated with
a decrease in food intake, without changing the metabolic rate [189,192]. Although the
underlying mechanism of action is not yet clear, the loss of weight can be sufficiently
explained owing to the decrease in food consumption [193]. These observations underscore
the principal advantage of OE, which is oral bioavailability, in contrast to peptide hormones,
which require intravenous or subcutaneous administration. In humans, oral OE (150–300
μmol/day) administered to morbidly obese patients over ten consecutive 21-day trial periods
followed by 2-month recovery periods induced a weight loss of 38.5 kg over 27 months
[194]. While these data were promising, subsequent randomized clinical trials failed to
demonstrate significant placebo-adjusted weight loss in obese patients [312].

Modulators of monoamine neurotransmission
Monoamine neurotransmitters, such as norepinephrine, serotonin and dopamine, are
involved in regulating an array of neuronal functions, including appetite control [195].
Drugs that target monoamine neurotransmitter levels are effective in generating weight loss
in patients. However, because of the variety of neuronal pathways that utilize these
neurotransmitters, these drugs carry risks of addiction, tolerance, hypertension and
cardiovascular adverse effects [196].

Bupropion is a dopamine and norepinephrine reuptake inhibitor, and is used as an
antidepressant and a smoking cessation aid. Naltrexone is an opioid receptor antagonist and
is used in treating opiate and alcohol addiction. The combination of the two drugs, marketed
as Contrave® (Orexigen® Therapeutics), tries to synergize their mechanisms of action:
bupropion stimulates hypothalamic POMC neurons and downstream α-MSH neurons, both
anorexigenic, while naltrexone blocks the autoinhibition of the POMC neurons by
endogenous β-endorphins [197]. Phase III clinical trials have demonstrated that patients on a
diet and exercise program achieved greater weight loss over 56 weeks with bupropion/
naltrexone (6.1 kg) than with placebo (1.4 kg) [313]. However, in February 2011, the FDA
rejected approval of the bupropion/naltrexone combination due to concerns over potential
cardiovascular risks [314].

Phentermine is a norepinephrine reuptake inhibitor. Topiramate is an antiepileptic and
anticonvulsant. Individually, phentermine and topiramate have demonstrated efficacy in
weight loss. However, the combination of topiramate and phentermine, marketed as Qnexa®

(Vivus), was rejected by the FDA as a weight-loss drug due to concerns over adverse
effects, including suicidal thoughts, heart palpitations, memory lapses and birth defects
[315].
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5-hydroxytryptamine receptor subtype 2C (5HT2C) binds serotonin and acts in the regulation
of feeding behavior, among other roles [198]. Lorcaserin (ADP-356; Arena) is a selective
5HT2C agonist that proved to be effective in inducing weight loss in Phase II/III testing
[199]. However, the FDA rejected approval for lorcaserin owing to marginal efficacy in
weight loss and the risk of breast tumors in female rats [316].

Expert commentary
A host of technical, institutional and economic issues pose grave challenges to the
development and deployment of safe and effective anti-obesity medications. The morbidity
and mortality risks accompanying anti-obesity medications have figured prominently in the
development of therapeutic agents in this field. Demonstrated safety appears as elusive a
goal as it is undeniably a prerequisite for physicians who would prescribe these drugs for
their patients, especially in light of the established safety and efficacy of many of the drugs
used to treat the comorbidities of obesity. In addition, current drug formulations are often
delivered via injection, which represents a serious impediment to patient compliance.
Developing orally active drugs is essential to success in this field. Furthermore, most
physicians prefer to limit pharmacological therapy to comorbidities, and address obesity
through lifestyle modification programs, only employing anti-obesity drugs as a last resort.
In that model, patients struggle unsuccessfully for months or years to achieve and maintain
adequate weight loss. Earlier administration of anti-obesity pharmacotherapy could provide
significant benefit in the reduction of both weight and the risk for the development of
comorbidities. Therefore, educating both patients and physicians about the safety and
efficacy of these new drugs will be paramount.

Regulatory guidelines for anti-obesity therapy represent a significant obstacle to developing
drugs for this application. The FDA mandates that weight control by new drugs must be
demonstrated over 1 year to classify a product as efficacious. These efficacy guidelines
suggest that: placebo-subtracted weight loss induced by the drug must be ≥ 5%; and the
percentage of drug-treated subjects losing ≥ 5% of baseline bodyweight must be ≥ 35% and
double the percentage from the placebo-treated subjects. Moreover, at least 3000 subjects
must be assigned to the experimental drug with no fewer than 1500 subjects assigned to
placebo for a 1-year period to satisfy safety concerns [200,317]. These regulatory guidelines
promote drug safety and efficacy and are therefore essential for the responsible and
worthwhile development of pharmacotherapy. They nonetheless demand an enormous
investment of time and resources from biopharmaceutical companies, and have contributed
to the wane of approved anti-obesity drugs that are currently available to physicians and
their patients.

Beyond regulatory considerations, there are also financial barriers for patients to consider
anti-obesity therapy. Indeed, obesity is not classified as a disease itself, a position
propagated by the FDA and its regulatory guidelines. Unfortunately, this position provides
insurance companies with a basis to consider anti-obesity drugs with cosmetic procedures as
exclusions, and decline patients reimbursement for anti-obesity medications. Thus, patients
without an indication for another comorbid condition may have to pay out-of-pocket for
anti-obesity therapy. Such costs could represent a major obstacle to patient care, especially
in low-income populations with disproportionately high obesity rates. In that context, a 1-
month supply of orlistat, for example, costs approximately US$120–140, a major hurdle for
patients of low economic status.
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Five-year view
Anti-obesity pharmacotherapeutics, leveraging a variety of pathophysiological mechanisms,
are in preclinical and clinical development, with several showing great promise to be
superior alternatives to orlistat. In the context of the pandemic into which obesity has
evolved, recent efforts have focused on the development of combination therapeutics for the
treatment of obesity, and based on the positive results achieved with these agents and the
effectiveness of combination drug therapy in treating a variety of other pathologies, new
combinations of anti-obesity drugs can be expected. Agents that target gut, pancreatic and
adipose hormone and neuropeptide signaling will also continue to be developed.
Furthermore, new delivery methods, including oral, intranasal and transdermal formulations,
will make these drugs more attractive to patients and physicians. In addition, a better
understanding of how the body regulates appetite will probably result in the discovery of
new therapeutic targets. For example, an obstacle such as obesity-related leptin resistance
may be circumvented as we further define mechanisms by which central leptin resistance
develops in obesity. Despite this progress, however, the aforementioned scientific,
regulatory and economic hurdles must be overcome to permit the rapid entry of anti-obesity
pharmacotherapeutics into mainstream clinical care.
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Key issues

• Obesity has evolved into a global pandemic associated with comorbidities
including Type 2 diabetes and cardiovascular disease. The health and economic
impacts of chronic obesity exceed those of smoking or alcohol abuse.

• Safe and effective therapies to treat obesity and induce long-term weight loss
represent an urgent unmet clinical need. Bariatric surgery is reserved for
morbidly obese patients and those with serious comorbidities, while the sole
anti-obesity drug that is US FDA-approved for long-term use, orlistat, has
limited efficacy associated with substantial gastrointestinal side effects.

• Elucidating central and peripheral mechanisms regulating appetite has produced
anti-obesity drug development programs targeting these pathways.

• Supplementation of hormonal regulators of appetite (glucagon-like peptide-1,
oxyntomodulin, peptide YY, pancreatic polypeptide and amylin) reduces
appetite associated with weight loss. Unfortunately, these regulatory peptides
require administration by injection, which is a major drawback.

• New delivery methods for these peptide hormones, including oral, intranasal and
transdermal formulations, will make these drugs more attractive to patients and
physicians. Orally active drugs targeting hormone and neuropeptide receptors
are in early development.

• Substantial scientific, regulatory and economic barriers to developing anti-
obesity pharmacotherapeutics still remain.
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Figure 1. Satiety regulation by endogenous hormones and therapeutic intervention
Appetite is regulated by integrated neuronal circuits between the hypothalamus, mesolimbic
system and DVC. Endogenous hormones regulate appetite by directly signaling to the
arcuate nucleus in the hypothalamus or indirectly to the DVC in the brainstem, which then
communicates with the hypothalamus. Appetite is also affected by reward mechanisms
predominately regulated by neuronal signaling in the mesolimbic system, which has
projections to the hypothalamus. Secretion of appetite-stimulating neurohormones, NPY and
AgRP, is activated by ghrelin and inhibited by leptin, insulin, GLP-1, OXM and PYY. The
α-MSH released from POMC/CART neurons in the arcuate nucleus is appetite-suppressing.
Leptin, GLP-1, OXM and serotonin act on POMC/CART neurons to promote α-MSH-
mediated suppression of appetite. CCK, GLP-1, PP and amylin induce satiety by activating
appetite-suppressing neurons in the DVC directly or indirectly through vagal afferents.
Hormones are color-coded by origin. Drugs targeting specific pathways are represented by
blue capsules. Solid lines: appetite-suppressing; dashed lines: appetite-stimulating.
α-MSH: α-melanocyte-stimulating hormone; AgRP: Agouti-related protein; CART:
Cocaine- and amphetamine-regulated transcript; CCK: Cholecystokinin; DVC: Dorsal vagal
complex; GLP-1: Glucagon-like peptide-1; NPY: Neuropeptide Y; OXM: Oxyntomodulin;
POMC: Pro-opiomelanocortin; PP: Pancreatic polypeptide; PYY: Peptide YY.
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