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We study the enzymatic degradation of an elastic fiber under
tension using an anisotropic random-walk model coupled with
binding-unbinding reactions that weaken the fiber. The fiber is
represented by a chain of elastic springs in series along which
enzyme molecules can diffuse. Numerical simulations show that
the fiber stiffness decreases exponentially with two distinct
regimes. The time constant of the first regime decreases with
increasing tension. Using a mean field calculation, we partition
the time constant into geometrical, chemical and externally con-
trollable factors, which is corroborated by the simulations. We
incorporate the fiber model into a multiscale network model of
the extracellular matrix and find that network effects do not mask
the exponential decay of stiffness at the fiber level. To test these
predictions, we measure the force relaxation of elastin sheets
stretched to 20% uniaxial strain in the presence of elastase. The
decay of force is exponential and the time constant is proportional
to the inverse of enzyme concentration in agreement with model
predictions. Furthermore, the fragment mass released into the
bath during digestion is linearly related to enzyme concentration
that is also borne out in the model. We conclude that in the
complex extracellular matrix, feedback between the local rate of
fiber digestion and the force the fiber carries acts to attenuate
any spatial heterogeneity of digestion such that molecular pro-
cesses manifest directly at the macroscale. Our findings can help
better understand remodeling processes during development or in
disease in which enzyme concentrations and/or mechanical forces
become abnormal.

diffusion ∣ on rate ∣ off rate ∣ cleaving

The extracellular matrix (ECM), the biological structure that
supports cells, is composed of elastic fibers such as elastin

and collagen. The complex organization of these fibers undergoes
a continuous maintenance that requires the catalytic action of
enzymes, called proteases (1). In diseases, such as pulmonary
emphysema, tissue destruction is thought to be a consequence of
the imbalance between protease and antiprotease activity leading
to degradation of elastin fibers (2). Biological tissues in vivo are
also under tension that may interfere with the enzymatic activity.
Indeed, mechanical stretch accelerates the rate of degradation
of native ECM during elastase-induced digestion of lung tissue
(3, 4), whereas it stabilizes type I collagen against in vitro diges-
tion by collagenases (5, 6).

The elastic and failure properties of single fibers have impor-
tant biological functions, and these material properties depend
on the hierarchical organization of the molecular constituents
(7). During digestion, both the molecules and the cross-links
in the fiber can be cleaved by enzymes reducing fiber stiffness.
Furthermore, following cleavage, an enzyme can unbind, diffuse,
bind at a different location and cleave again. This leads to the
question: How are the diffusion and binding processes of the
enzyme and the subsequent degradation of the fiber affected
by the presence of an external mechanical force?

Several different diffusion-reaction models have been used
to describe processes at the level of ECM, cell membranes,

macromolecules, and DNA (8–13). In addition, the random
walk is often used as a diffusion model that takes into account
the morphological details of the system. Spring network models
also provide a useful framework for analyzing the changes in the
mechanical properties of the ECM (14, 15).

Here, we study the decay of stiffness of a single fiber under
tension during enzymatic digestion using an anisotropic ran-
dom-walk model coupled with binding-unbinding reactions. The
model takes into account the simultaneous effects of enzyme
diffusion, binding and cleaving in the presence of mechanical
forces. To compare the results with experiments, we construct a
network of fibers as a macroscopic model of the digestion of an
ECM tissue under tension. The prediction of the model agrees
with experimental data obtained by measuring the decay of ten-
sile force developed by elastin sheets in the presence of enzymes.
Furthermore, the amount of fragments leaving the fibers during
digestion is analyzed through numerical simulations and com-
pared with experiments. Despite the complexity of the ECM
and the diffusion and reaction processes, it is surprising how
effectively the single fiber model describes the more complex
macroscopic system.

Results and Discussion
We use a modified random walk to mimic anisotropic diffusion
of enzyme particles along a fiber and study the digestion of the
fiber represented by a chain of springs. Our model consists of
a one-dimensional chain of Ns linearly elastic springs in series
representing an elastic fiber as in Fig. 1A. The fiber is surrounded
by two layers of sites along which particles representing enzymes
can diffuse. Periodic boundary conditions are applied in the x
direction. Both ends of the chain are subject to a constant force
F that mimics tension in the fiber. To simulate enzyme activity
along the fiber, we begin with a chain having identical initial
spring constants kðt ¼ 0Þ≡ k0. The diffusion of enzymes is in-
itiated by releasing a set of particles at random positions in the
two layers surrounding the chain. The rules of the random-walk
and reaction processes are as follows: (i) pd is the probability for a
particle to move right or left parallel to the chain and is associated
with diffusion. (ii) pon is the probability for a particle to move
up from the bottom layer or down from the top layer. This step
represents an enzyme molecule binding to a binding site on the
fiber. Only one particle can be bound to a single spring at any
time. Note that these probabilities are related by the constraint
pon þ 2pd ¼ 1. (iii) poff is the probability for a bound particle
to move up or down to the top or bottom layer, respectively. This
is related to the unbinding step from the fiber. Once a bound
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particle unbinds, the local spring constant k is reduced by a
constant factor γ, k → γk. The reason for this is as follows. The
fiber is composed of molecules in parallel and series. If the fiber is
a regular array of molecules, cleavage would decrease the number
of parallel molecules and the local spring constant would decay
as k → k − γ. This would result in a linear decrease in the spring
constant during subsequent cleavages. In reality, the molecules
overlap and are connected via cross-links in a complex way.
Hence, the degradation of the fiber is also a complex process so
that simply subtracting γ from k is not appropriate. We therefore
model the cleavage process by assuming that the decrease in
spring constant is proportional to the actual value, which corre-
sponds to a multiplicative degradation process. This assumes that
the process of degradation is far away from the rupture threshold.

The random walk is made anisotropic and time-dependent
through the probability pon that depends on the local spring
constant k,

pon ¼ 1

3
− Δpe−λðF∕kÞ; [1]

where Δp is the initial anisotropy and 1∕λ is a characteristic
length. (Eq. 1) implies the following. Because F is constant, the
local stretch increases and more binding sites appear (4, 16),
which we represent by an increase in the local pon. This introduces
anisotropy in the particle movement and makes the enzyme
activity dependent on the local k. The parameter Δp is related
to the difficulty of an enzyme to reach a binding site that depends
on the surface roughness of the fiber. Fig. 1B shows that at the
beginning of the diffusion, the number of times a spring has been
visited by particles is n ≈ 1 and initial values of both pon and pd
depend on Δp. As the diffusion progresses, pon slowly increases.
Around n ¼ 100, pon increases significantly until it approaches
the isotropic value of pon ¼ pd ¼ 1∕3. When n ≈ 800, the diffu-
sion reaches the isotropic regime in which both diffusion and
binding are equally likely. We assume that in this regime, locally
the fiber is at its unfolding limit in that the number of binding
sites remains constant.

The probability poff is determined by the molecular properties
of the specific enzyme and its substrate and is the same for each

spring for all times. A particle may remain bound for more than
one time step, with probability 1 − poff . We assume that cleavage
occurs during unbinding so that k is reduced only when the
enzyme unbinds. Thus, k for each spring is a function of time
and because it decreases as the spring is repeatedly visited by
enzymes, we can write kðtÞ ¼ γnk0, where n is the total number
of visits by time t. The stiffness KðtÞ of the fiber is calculated
as the equivalent stiffness of all Ns springs connected in series,

KðtÞ ¼ 1∕∑
Ns

i¼1

½kiðtÞ�−1: [2]

Next, we study the evolution of KðtÞ for different parameters.
We use a chain composed of Ns ¼ 104 springs while varying the
particle numbers (Np ¼ 256, 512, 1024) and the external force
F within the interval [0.1,2.5]. The Np and F are related to the
experimentally controllable macroscopic parameters of the diges-
tion process. At the microscopic level, we vary poff between
[0.1,1.0] whereas Δp is chosen from the interval [0.10,0.24].
Additionally, there are three constant parameters: λ ¼ 0.10,
γ ¼ 0.995, and k0 ¼ 1. We simulate the time course of KðtÞ for
t ¼ 2 × 105 time steps. At each time step, we attempt to move all
Np particles in the system. We repeat the simulations with 500
different realizations and average KðtÞ over all runs.

The results for hKðtÞi are plotted on a log-linear scale in Fig. 2.
In all cases, hKðtÞi shows two distinct exponentially decreasing
regimes with time constants T1 and T2 separated by a cross-over
region around t×. For fixed Np, T1 decreases monotonically as
F increases. The t× also decreases as a function of F leading
to a faster degradation of the fiber. The situation is similar when
Np is increased. As the degradation proceeds, the bound particles
reach a steady state (see Fig. S1).

To characterize the microscopic properties of the fiber, we
calculate the standard deviation hσki of all spring constants at
a fixed time and average them over all runs in Fig. 3A. Initially,
for t ≪ t1, hσki increases quickly, which is not influenced by F.
When t ≈ 2000, F starts to affect the binding process according
to (Eq. 1) and hence hσki increases faster for higher F. When
t is around t2, hσki reaches its maximum followed by a slow decay.
The behavior can be confirmed by looking at the spring constant
distributions PðkÞ in Fig. 3B. The width of PðkÞ has a maximum at
t2. For t < t2 and t > t2, PðkÞ becomes narrower. Also, the peak of
PðkÞ decreases with increasing time.

A mean field calculation of the rate change in fiber stiffness
gives the following result (see Methods and Fig. S2):

dK
dt

≃ −
K
Ns

��
1 − γ

γ

��
Np

1
pon

þ 1
poff

��
: [3]

Assuming that pon does not change during one time step, the
solution of this equation is given by KðtÞ ¼ e−t∕T , where

T ¼ γ

1 − γ

�
1

pon
þ 1

poff

��
Ns

Np

�
: [4]
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Fig. 1. (A) Schematic diagram of the chain of springs and binding sites used
in the model. The binding sites on the springs and the two layers of sites are
represented by small and big open circles, respectively. The enzyme particles
are shown as filled black circles. The particle at the bottom layer canmove up,
left, or right whereas the particle at the top can move down, left, or right.
The particle on the spring can move only up or down. (B) The binding prob-
ability pon defined by Eq. 1 and the diffusion probability pd are a function of
the number of visits n at a fixed site. Lines of different styles correspond to
Δp ¼ 0.10 (solid lines), Δp ¼ 0.16 (dotted lines), Δp ¼ 0.20 (dashed lines), and
Δp ¼ 0.24 (dash-dotted lines). The lines above and below the horizontal
dashed line at p ¼ 0.333 correspond to pd and pon, respectively. The vertical
dashed line represents the region where the isotropic behavior with
p ¼ 0.333 is reached.
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Fig. 2. Log-linear plot of the average stiffness hKi as a function of diffusion
time t for different values of F ¼ 0.1, 0.5, 2.5 and Np ¼ 256, 512 with Δp ¼
0.20 and poff ¼ 0.5. The black solid line segments at the beginning and end of
the simulations represent exponential fits to estimate the value of the time
constants T1 and T2, respectively.
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The first term involves γ, which is related to the average num-
ber of molecules in parallel and hence the geometry of the fiber.
The second term describes the specific enzyme activity at the
microscopic level via the binding and unbinding probabilities.
The third term is the inverse of enzyme concentration relative
to the binding site density, an external control parameter. Note
that the time constant T is symmetric in pon and poff . Thus, if we
assume it is the unbinding process that depends on the external
force, the results will be identical. Experiments are required to
determine if pon, poff or both depend on external force.

The asymptotic limits of (Eq. 4) can be written as:

Ti ¼
8<
:

T1 ¼ γ
ð1−γÞ

�
1

1
3
−Δpe−λF þ 1

poff

��
Ns
Np

�
if k ≈ k0

T2 ¼ γ
ð1−γÞ

�
3þ 1

poff

��
Ns
Np

�
if k ≪ k0:

[5]

To compare the numerical simulations with the analytical
calculations in the asymptotic limits, we calculate the time con-
stants in Fig. 2 for the two regimes of exponential behavior. The
T1 and T2 are estimated from nonoverlapping windows of size
Δt ¼ 5;000 as a function of F and poff in the regions KðtÞ ≈ 1
and KðtÞ ≪ 1, respectively. The results are compared to the
predictions of (Eq. 5) in Fig. 4. Generally, the numerical results
confirm the analytical calculations both as a function of F and
poff . The T1 decreases with increasing F whereas it diverges when
poff becomes less than 1∕3. Also, for fixed values of F and poff , T1

decreases with increasing enzyme concentration. Interestingly, F
has little effect on T2. This can also be seen in Fig. 2: after the
cross-over region, all curves follow the same exponential decay
for different F at a fixed value of Np, but decay slower as Np
decreases. The difference in T2 between analytical and numerical
calculations for low Np is because K , in this limit, takes signifi-
cantly more time to reach the second regime. We confirm this
with additional simulations for Np ¼ 256 for 3 × 105 time steps
and find that T2 increases by about 15%, approaching the analy-
tical results. Further simulations also suggest that for a fixed F
and poff , T1 increases as Δp increases and T2 remains constant
as a function of Δp.

Because the ECM of biological tissues is composed of net-
works of fibers, we extend our fiber model to a multiscale network
that helps understand which phenomena at the higher scale
can be deduced from the properties of the fibers and which arise
directly from network effects. We construct a random Voronoi
network of springs each behaving like a single fiber described
above. We take into account that the degradation of a fiber
depends on the force it carries because its stiffness decays expo-
nentially with a time constant T that is a function of the force on
that fiber. At the macroscopic level, the network is first stretched
uniaxially to 20% strain and the equilibrium configuration is
determined. Digestion is then initiated by allowing the spring
constants to decrease according to the force the springs carry (see
Fig. S3). The global force F is computed as the sum of the com-
ponents of the spring forces at the boundary of the network in the
direction of the stretch. Because the network is heterogeneous,
the distribution of local forces in the network creates heteroge-
neity in enzyme activity and hence degradation (see SI Text).

For comparison with experimental data, we normalize F by F0,
the force measured before enzyme digestion is initiated (experi-
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Fig. 3. (A) The standard deviation hσki of the local spring constants k as a
function of time for three values of F ¼ 0.1, 0.5, 2.5 and Np ¼ 512. In panel B,
we plot the distribution of spring constants PðkÞ at time points ti (i ¼ 1, 2, 3)
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Δp ¼ 0.20 and poff ¼ 0.5.
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ments) and before the relaxation process is started (simulations).
The force F∕F0 as a function of time is shown in Fig. 5A. The
force decays exponentially with time constants T that strongly
depend on Np. Thus, an important observation is that network
effects do not alter the nature of the exponential behavior. This
is in agreement with experimental data obtained by measuring the
force relaxation in elastin sheets during digestion with elastase
(Fig. 5B). Indeed, following a short time period over which the
force does not decrease likely due to the diffusion of the enzyme
into the tissue, the force shows a region of exponential decay for
all three enzyme concentrations. For longer times, fluctuations
arise in the experiments because the small forces developed by
the tissue are close to the detection limit of the force transducer.
These fluctuations are more pronounced for the higher concen-
trations and likely accompanied by fiber failure not considered
in the model. To estimate T from these force curves, we identify
the best regions that correspond to an exponential fit, FðtÞ ¼
F0 exp−t∕T , as indicated with straight lines in Fig. 5B. The depen-
dence of T on enzyme concentration obtained from simulations
and measured experimentally is displayed in Fig. 5 C and D,
respectively. Whereas the magnitudes are not comparable, both
results show that T linearly increases with the reciprocal of
enzyme concentration. These results are also in agreement with
the analytical calculations from Eq. 4.

Finally, as a last test of our model, we carry out further simula-
tions to predict the amount of fiber fragments released during
enzyme digestion. Because the time dependence of the released
mass is difficult to measure, we calculate the fragment release as a

function of time and enzyme concentration. Fig. 6 shows that
following an initial transient, the fragment mass increases linearly
with enzyme concentration at specific time points in excellent
agreement with experimentally determined elastin fragment
analysis (Inset).

Conclusions
We have presented a model for the enzymatic digestion of
an elastic fiber under tension. We have shown that fiber stiffness
decreases exponentially with two regimes separated by a cross-
over region. Whereas the first regime has been found experimen-
tally (3), to our knowledge, the second one has not been mea-
sured and remains a prediction of the model. Each regime can
be associated with an average value of the stiffness along the fiber
during enzyme diffusion. In the first regime, the stiffness is domi-
nated by the average local initial stiffness, whereas in the second
regime, the stiffness has decreased significantly and almost uni-
formly throughout the fiber. In the cross-over region, the stiffness
is controlled by a wide distribution of local stiffness values. The
time constant T1 displays a strong dependence on both F and Np.
Our analytical calculations confirm the presence of two regimes
and show how the time constants can be partitioned into geome-
trical, chemical, and externally controllable factors. In the first
regime, we expect that the fiber does not reach the failure limit,
but after the cross-over, the decrease in stiffness is faster and
failure is likely to occur. In future studies, a failure limit should
be included in the model with avalanche-like cascades to predict
failure stress and strain during digestion.

To predict tissue and organ behavior, we have incorporated the
properties of the single fiber into a network creating a functional
multiscale model that has become the most useful tool in char-
acterizing the hierarchical organization of ECM structure (7).
A surprising finding is that network effects do not dominate
the behavior at the macroscopic scale. Instead, the exponential
relaxation of the single fiber percolates through scales to domi-
nate the macroscopic behavior. The reason is that the rate of stiff-
ness decline is governed by the force on a fiber. Once the stiffness
of a fiber decreases below the average, the force on the fiber
decreases, which in turn slows down any further digestion. This
negative feedback acts to homogenize spatial heterogeneity in
the digestion process within the network (see Fig. S4) and hence
macroscopically the average fiber property is observed. The
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implications are that measurements of the kinetics of digestion in
a complex tissue can reveal phenomena at the molecular level.

Finally, the predictions of the model compare well with experi-
mental measurement of the force relaxation in a macroscopic
elastin sheet as well as the concentration dependence of released
elastin fragments. These results can help better understand devel-
opmental growth and maintenance of the ECM as well as the
progression of diseases in which enzyme concentrations are high
and/or mechanical forces are abnormal such as in pulmonary
emphysema or vessel aneurysm.

Methods
Analytical Calculations. To gain insight into the exponential decay of fiber
stiffness, we carry out a simple mean field calculation. The local k at time
t depends on the number of times the spring has been visited. We define
ti as the time corresponding to the i-th unbinding event along the entire
chain. Thus, K at time ti can be written as

KðtiÞ ¼
1

∑
Ns

j¼1

1
kj

≃ hki
Ns

; [6]

assuming h1∕ki≃ 1∕hki. Notice that K remains constant for ti ≤ t < tiþ1. At
time tiþ1, an unbinding event occurs at spring m and the corresponding
km is reduced to γkm. The new value of Kðtiþ1Þ is

Kðtiþ1Þ ¼
1

1
γkm

þ∑
Ns

j≠m
1
kj

≃ hki
ð1−γγ Þ þ Ns

; [7]

where we also assume that km ≃ hki. Thus, from Eqs. 6 and 7, the change
ΔK ¼ Kðtiþ1Þ − KðtiÞ in the total stiffness is written as

ΔK ¼ Kðtiþ1Þ − KðtiÞ ¼ −K
�

1

1þ ð γ
1−γÞNs

�
: [8]

Next, we consider the average waiting time hτi between two unbinding
events. During digestion, the number of particles nB that remains bound on
the fiber changes, but nB is related to the number of free particles nF because
nB þ nF ¼ Np. The rate of change of nB is the difference between the average
binding rate ponnF and the average unbinding rate poffnB, which can be
expressed as dnB∕dt ¼ ponnF − poffnB (see SI Text). Assuming that nB has
reached a steady state dnB∕dt ¼ 0, we obtain nB ¼ ponNp∕ðpon þ poffÞ.
Because the unbinding probability is per unit time, hτi can now be expressed
as

hτi ¼ 1

nBpoff
¼ 1

Np

�
1

pon
þ 1

poff

�
: [9]

Finally, we can establish a link between the two processes involved in
enzymatic digestion. From Eq. 8, K is reduced by ΔK during the interval
Δt ¼ tiþ1 − ti . We thus approximate the derivative of K by the discrete
change ΔK during the interval Δt ≃ hτi as

dK
dt

≃ ΔK
hτi ≃ −

K
Ns

��
1 − γ

γ

��
Np

1
pon

þ 1
poff

��
; [10]

where we have ignored the 1 in the denominator of Eq. 8. This equation can
be solved assuming that pon is approximately constant during one time step.

Numerical Calculation of Fragment Release. Because the fragments released by
the digestion into the bath can be measured experimentally, we carry out
simulations to predict how the fragment mass released varies with time
and particle concentrationNp. We assume that the fiber is composed of many
molecules arranged such that enzymes can cleave the molecules and frag-
ments of the fibers are released without separating the fiber into two pieces.
To mimic this process, we define a fragment as follows. After a specific spring
on the chain has been visited, we examine whether the left or right neigh-
boring spring has been visited the same number of times. The spring that

meets this condition constitutes a fragment having unit mass. We continue
counting the fragments as the diffusion and reaction processes proceed and
the total fragment mass is defined as the sum of all fragments that leave the
fiber. We run 500 simulations for each Np and a fixed strain of 20% as in the
experiments.

Network Model. To better understand how the relations derived for the decay
in stiffness of a single fiber relate to the decrease in stiffness of an elastin
sheet held under fixed strain while being digested by elastase, we consider
a two-dimensional (2D) network of fibers held under a fixed strain. To mimic
the geometry of the real elastin sheet where the fibers are arranged in a
random orientation, we consider a network in which a rectangle represent-
ing the elastin sheet is split into Voronoi cells.

We start with a set of points arranged in a regular triangular lattice with
line element length L. The position of each of these points is perturbed
by adding to its x and y coordinates a random number r that is uniformly
distributed between 0 and L. The Voronoi diagram corresponding to this
lattice is then computed. When r ¼ 0, the resulting Voronoi will be a perfect
hexagonal lattice. As r increases, the resulting network deviates from a
regular geometry and becomes a random network. Each line element in this
network represents a single fiber made of springs as shown in Fig. 1A.

Initially, all springs in the network are assigned the same stiffness and
the entire network is stretched uniaxially in the x direction and the sides
corresponding to maxðxÞ and minðxÞ are fixed in x and y directions. The rest
of the network is allowed tomove in both x and y directions. The equilibrium
configuration of the stretched network is calculated by minimizing the total
energy of the network using a steepest descent algorithm. From the single
fiber model, we know that the stiffness of each fiber in the network decays
exponentially with a time constant T that is a function of the force carried by
the fiber, f , the number of enzyme particles, Np, and the rate of decay in
stiffness in the absence of force, T0. We obtain this relationship by fitting
the T1-F curves in Fig. 4 with low order polynomials, T1 ¼ ϕðf ;Np;T0Þ, which
are then used to control the degradation process separately for each fiber in
the network. We simulate the decay in stiffness in steps of dt, where at each
step every spring constant in the network is decreased as Kðt þ 1Þ ¼
KðtÞð1 − dt∕T1Þ, where T1 varies for each spring depending on the force it
carries. The network is then allowed to reach equilibrium before the next
time step begins.

Experiments
Tissue Culture. The ECM constructs containing principally elastin
and proteoglycans were obtained as described by Morris and
Stone (17). Briefly, the constructs were acquired from neonatal
rat aortic smooth muscle cells (NNRSMC) isolated from Spra-
gue–Dawley rats, 1–3 d of age. The NNRSMCs were then grown
in culture containing 3.1 mg∕mL sodium bicarbonate, 1% so-
dium pyruvate, 1% penicillin and streptomycin (DV3.7), and
20% fetal bovine serum. The samples were maintained for 6 wk,
and the media was changed twice a week. The cells were killed by
using 5% sodium azide in Puck’s solution and the constructs were
stored at 4 °C. A gelatin solution was then added to the cultures
that allowed the constructs to be lifted from the dish intact.

Mechanical Testing. Tissue mechanics were tested by using a meth-
od similar to that described by Black et al. (18). Tissue strips, with
dimensions 8 × 5 mm, were attached to metal plates with cyanoa-
crylate glue. The plates were then attached to steel wires con-
nected to a force transducer (model 403A; Aurora Scientific)
and a lever arm (model 300B; Aurora Scientific). The sample
bath was filled with 22 mL of phosphate-buffered saline (PBS),
and the entire apparatus was placed on a heat stand until the gel
melted at 45 °C, leaving only the ECM strip in the stretching
system. The PBS was then removed, and the bath was refilled with
fresh PBS and maintained at 37 °C. Samples were preconditioned
by application of three triangular displacement signals peaking
at 10% strain defined as displacement divided by the initial length
of the sample. The samples were stretched uniaxially to 20%
strain and kept for 5 min for equilibration, then porcine pancrea-
tic elastase was added to the bath. The force was recorded up to
60 min. Five different concentrations of elastase (0.003, 0.006,
0.009, 0.012 and 0.015 μg∕μL) were used in each group of five
samples. The thickness of the ECM sheets was determined by
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using a laser scanning confocal microscope (FV-1000; Olympus).
The thickness of the sample at 0% strain was approximately
11� 2 μm.

Biochemical Analysis. After mechanical testing was completed on
each sample, the contents of the PBS bath were transferred to a
50-mL tube, dried, and stored at 4 °C. The residue within each
tube was resolubilized with 2 mL of Milli-Q water and subjected
to dialysis (1-kDa molecular weight cut off, GE Healthcare). The
amount of soluble elastin in each sample was determined using
the Fastin Elastin assay kit (Biocolor). Soluble elastin was preci-
pitated using trichloroacetic acid and HCl, and dye reagent
(5,10,15,20-tetraphenyl-21,23-porphine tetrasulfonate) added.
The tubes were vortexed to suspend the precipitated elastin with
the dye reagent and allowed to incubate on an orbital mixer (150
rpm, 90 min) at room temperature. At the end of the reaction
period, the insoluble elastin-dye complex was separated from

the soluble dye by centrifugation (10;000 × g, 10 min). A 250-
μL quantity of dye dissociation reagent containing guanidine
hydrochloride and 1-propanol was added to each tube to release
the bound dye into solution. The quantity of dye in solution was
determined by measuring absorbance at 513 nm on a SpectraMax
190 microplate reader (Molecular Devices). Replicate samples
were averaged and corrected by subtracting the blank average,
and elastin content was determined from a standard curve con-
structed using five concentrations (5–25 μg) of α-elastin. The
amount of elastin released into the bath from enzyme digestion
of the ECM strip was calculated by multiplying the elastin content
of the sample by a ratio of the volume after dialysis to the volume
used in the Fastin Elastin assay (500 μL).
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