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We experimentally demonstrate the feasibility of an aqueous Paul
trap using a proof-of-principle planar device. Radio frequency
voltages are used to generate an alternating focusing/defocusing
potential well in two orthogonal directions. Individual charged
particles are dynamically confined into nanometer scale in space.
Compared with conventional Paul traps working in frictionless
vacuum, the aqueous environment associatedwith damping forces
and thermally induced fluctuations (Brownian noise) exerts a fun-
damental influence on the underlying physics. We investigate the
impact of these two effects on the confining dynamics, with the
aim to reduce the rms value of the positional fluctuations. We find
that the rms fluctuations can be modulated by adjusting the
voltages and frequencies. This technique provides an alternative
for the localization and control of charged particles in an aqueous
environment.

ac electrophoretic effect ∣ aqueous trapping ∣ virtual nanopore

Trapping a single molecule or colloidal particle offers an unique
opportunity to study the intrinsic individual characteristics

rather than the averaged ensemble properties (1). Over the last
decades, various techniques have been developed to achieve trap-
ping in liquids, including optical tweezers (2), acoustic tweezers
(3), and magnetic tweezers (4). Electrical forces for manipulating
small objects in an aqueous solution include electrophoresis (EP)
and dielectrophoresis (DEP) (5). Electrophoretic forces arise
from the interaction of the object’s fixed charge and an external
electric field, whereas DEP arises from the object’s polarizability
in a spatially inhomogeneous electric field. To date, the electrical
trapping of objects in solution has been done primarily by DEP
(6, 7). Even though most macromolecules (DNA molecules, for
example) suspended in aqueous solutions develop net electric
charges (by either the dissociation of chemical groups or the
adsorption of ions or molecules from the solution), utilization
of the direct charge-field interaction to trap objects in aqueous
solution has been rarely explored. It was realized five decades
ago that charged particles (e.g., ions) can be trapped and con-
fined in inhomogeneous, oscillatory electric fields. The best-
known examples are quadrupole Paul traps (8), which have been
used in many fields, such as mass spectrometry (9), analytical
chemistry (10), and quantum information processing (11). More-
over, nanoscale Paul traps may be capable of trapping a single
electron (12), ions in aqueous solutions (13), as well as a long
DNA polymer (14). In contrast to the 3D Paul traps, a linear Paul
trap is compatible with standard microfabrication technology and
can thus be mass produced (15). Linear Paul traps confine the
ions radially by a 2D rf field and transport the ions axially by
an applied axial electric field (16). However, all Paul traps and
the variants (11, 15, 17) experimentally realized so far have only
been operated either in vacuum or in gaseous phase. An aqueous
Paul trap remains an unexplored area. In fact, there are contra-
dictory predictions whether a Paul trap is applicable in an aqu-
eous environment (13, 17, 18).

This work serves as a first step toward realizing an aqueous
Paul trap. We use a planar Paul trap device to experimentally
demonstrate the feasibility of trapping charged particles in an

aqueous solution, as previously predicted by molecular dynamic
simulations (13). Our device functions similarly to a conventional
linear Paul trap (16), with the addition of an advantageous damp-
ing term due to the fluid viscosity. We also investigate the impact
of the Brownian noise on the confining dynamics, aiming to
reduce the rms value of the positional fluctuations. We find that,
by using finely tuned driving parameters, the rms fluctuations can
be significantly modulated and minimized.

Materials and Methods
The planar aqueous Paul trap (PAPT) devices are produced by conventional
microfabrication methods on an insulating SiO2 substrate. Quadruple micro-
electrodes define the confinement region (Fig. 1 A and B; 2R0 denotes
the device’s physical size, which varies between 2 and 8 μm in this work).
The devices are assembled with polydimethylsiloxane microfluidic chambers
to form the functional devices (Fig. 1C). Detailed fabrication process is
presented in the SI Appendix, section S1. The assembled devices are wire-
bonded and mounted onto a printed circuit board. Voltages in the form
of �ðU − V cosΩtÞ are used to perform the trapping experiments (Fig. 1A).
Here U is the dc voltage in series with the time-varying rf sinusoidal voltage
of amplitude V and angular frequency Ω (¼2πf , and f is the frequency in
hertz). The carefully controlled fabrication process results in smooth elec-
trode sidewall profiles (Fig. 1B). Particles in the microfluidic chamber move
freely in the x-y plane but are constrained mechanically in the z direction by
the chamber height (2.5 μm in this experiment, molded using SU-8 2002)
(Fig. 1C). Future designs could incorporate an additional electric field perpen-
dicular to the trapping field, if the particle translocation through the trap is
desired.

The basic principle of the PAPT device is shown in Fig. 1 D and E. At time
t ¼ 0, the applied voltage creates a saddle shape potential such that positive
charges will be pushed into the center of the device along the y direction but
will be pulled away from the center along the x direction (Fig. 1D). After half
an rf cycle (t ¼ π∕Ω), the polarity of the potential is reversed and the positive
charges are subject to opposite forces (Fig. 1E). The focusing/defocusing
forces alternate between x and y directions with the applied sinusoidal vol-
tage. If the polarity of the voltage changes fast enough, charged particles
become stuck in a rapid back-and-forth motion. Note that this mechanism
also works for negatively charged particles in a similar way. Because the elec-
tric field intensity is at a minimum in the trap center (x ¼ y ¼ 0), an effective
pseudoforce will push the charged particles (either positively or negatively
charged) toward the center, where they become confined in the x-y plane.

The motion of the charged particles is monitored by an optical microscope
(Olympus BX51) and the video is taken by a high-sensitivity digital CCD cam-
era (Olympus DP70) with the highest shutter speed as fast as 1∕44;000 s
(Fig. 1F). Video processing is performed using the National Institutes of
Health ImageJ platform (see SI Appendix, section S2 for details).

Charged particles used to verify the working principles are polystyrene
beads (Polysciences) of two diameters (0.481� 0.004 μm and 0.982�
0.013 μm). The surfaces of these particles are functionalized with carboxylate
groups (-COOH). These COOH surface groups are the origin of the negative
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charges (−COOH ⇄ COO− þ Hþ). SEM reveals that all the particles have a pro-
nounced spherical shape.

The solutions used in our experiment are repeatedly washed with deio-
nized (DI) water (milli-Q grade, resistivity 18 MΩ · cm) to obtain a low solu-
tion conductivity. The detailed protocol of solution preparation is described
in the SI Appendix, section S3. A lower solution conductivity is preferred for
the Paul trap effect (which is an ac electrophoretic effect) to dominate over
the DEP effect (see SI Appendix, section S4 for a detailed discussion).

Results and Discussion
Confinement. Fig. 2 presents the trapping results with PAPT de-
vices. Inset A of Fig. 2 shows a typical image for a single trapped
charged bead (of mean radius 490 nm). Individual particles can
be stably held in the center of the device for up to 4 h (due to
insignificant change over this time, we did not explore longer).
Trapping mostly occurs for a single particle (instead of ensem-
bles) due to interparticle Coulomb repulsion. The orange curve
in Fig. 2 describes the time trace of the particle trajectory in the x
direction when trapped under conditions of V ¼ 1.5 V, U ¼ 0 V,
and f ¼ 2.5 MHz. The blue curve depicts the Brownian motion
when the trap is off (no electrical connection). We observe that
the particles are not stationarily trapped but trapped with fluctua-
tions (inset B of Fig. 2). Inset C shows the normal distribution of
displacements derived from the orange trajectory in Fig. 2. A
Gaussian fit yields an effective trap stiffness k ¼ kBT∕δ2 in the
x direction as 4 pN∕μm (kB is Boltzmann constant and T is
the absolute temperature). The motion in the y direction shows
a similar property. Note that the confinement into 32-nm range is
achieved with a 2R0 ¼ 8 μm device. We note that the trap stiff-
ness of 4 pN∕μm is not a characteristic value of this Paul trap. In
fact, the Paul trap stiffness depends on the operation frequency,
voltage, charge, and mass of the objects.

Most importantly, the rms fluctuations of the trapped particles
can be tuned by externally applied voltages (U and V ) and fre-
quencies (f ). Fig. 3 A and B shows the x-y positions of a trapped
particle and the radial probability distributions at a fixed fre-
quency (f ¼ 3 MHz) and three different ac voltages. By adjusting

the voltage, the degree of the radial confinement can be modu-
lated. We observe a decrease of rms fluctuations with increasing
the ac voltages (V ) within ranges we can experimentally achieve.
Fig. 3 C and D shows the x-y positions of a trapped particle and
their radial probability distributions under a fixed voltage
(V ¼ 1.2 V) and three different frequencies. A slight decrease
of rms fluctuations when increasing the frequency is visible for
the data presented. However it is not necessarily true that in-
creasing the frequency will reduce the rms fluctuations. As a mat-
ter of fact, because of the complexity of achieving an impedance
match for the rf circuit, it is very difficult to maintain a fixed
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Fig. 1. PAPT devices and experimental platform. (A) SEM of PAPT devices before integration with a microfluidic interface. The ac/dc voltages are applied such
that the potentials of any two adjacent electrodes are of samemagnitude but opposite sign. The physical size of the device is denoted 2R0. (B) Finely controlled
processing results in smooth sidewalls of the electrodes, which helps to minimize the stray electric fields. (C) Sketch of a functional device with microfluidics
integrated (not drawn to scale). PDMS, polydimethylsiloxane. (D and E) Illustration of working principles for the device shown inA under a pure ac case (U ¼ 0).
The x and y axes are normalized by R0. The z axis is normalized by V. At t ¼ 0, the resulting electric forces (dashed arrows) will focus positively charged particles
along the y direction and defocus them along the x direction. Half an rf period later, the potential polarity is reversed and opposite electric forces are thus
generated. If the ac potential changes at the right frequency, the charged particles become stuck in this rapid back-and-forth motion. (F) Schematic of the
experimental setup. The whole setup is built around a microscope. A LabVIEW (National Instruments) program controls the function generator (FG) to create
the ac/dc voltages. The real voltage applied to the device is measured by an oscilloscope (OSC) and recorded by the same LabVIEW program. The electrical
connections are through Bayonet Neill-Concelman cables (dashed lines). The videos taken by CCD are stored in personal computer (PC) memory in real time.
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Fig. 2. Particle trajectories when the trap is on (orange line) and off (blue
line) in the x direction. Inset A shows a snapshot of a single particle confined
in the center of the device. Inset B shows a magnification of fluctuations.
Inset C is the histogram of the displacements for the orange curve. A Gaussian
fit yields a trap stiffness of 4 pN∕μm.
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voltage for various frequencies during the experiments. There-
fore, the frequency dependence can not be decoupled from
the voltage dependence (Fig. 3A and B). We do not have a con-
clusive trend for the frequency dependence at the current stage.
Nevertheless, we can experimentally achieve a tight or loose con-
finement by adjusting the applied voltages and frequencies
(Movie S1). In addition, we are also able to repel a confined par-
ticle from the trap and to resume confinement after the particle
escapes from the trap (Movie S1).

Theoretical Modeling.Unlike the case of charged particles in a va-
cuum Paul trap, which has been extensively studied and described
by Mathieu equations (16), the motion of charged particles in an
aqueous environment is governed not only by the external electric
fields but also by additional damping forces and thermally in-
duced fluctuations (i.e., Brownian motion). The last two forces
always appear together according to the fluctuation-dissipation
theorem (19). This kind of system, as suggested by Arnold et
al. in their study of trapping microparticles in the atmosphere
near standard temperature and pressure, necessitates a stochastic
approach (20).

Assuming an ideal planar rf/dc quadrupole electric potential,
resulting from the applied voltages as shown in Fig. 1A,

φðx;y;tÞ ¼ ðU − V cosΩtÞ x
2 − y2

2R2
0

; [1]

the motion of a homogeneous charged particle with mass M,
radius rp, and net charge Q in the presence of a stochastic force

can be written as ( ~r is the particle radial position vector in x-y
plane, ~r ¼ x~iþ y~j),

M
d2 ~r
dt2

¼ −ξ
d ~r
dt

þQð−∇φÞ þ ~NðtÞ: [2]

The three terms on the right-hand side of Eq. 2 are the damping
force, the electric driving force, and the Brownian noise force,
respectively. The Stokes’ drag coefficient ξ can be approximated
by ξ ¼ 6πηrp, where η is the dynamic viscosity of the aqueous so-
lution. ~NðtÞ is a random force due to thermal fluctuation, with the
properties h ~NðtÞi ¼ 0 and h ~NðtÞ ~Nðtþ τÞi ¼ 2kBTξδðτÞ, where
δðτÞ is the Dirac delta function.

Rewriting Eq. 2 into a parametric dimensionless form, the mo-
tion in the x and y direction takes the form of a Langevin equa-
tion,

d2x
dτ2

þ b
dx
dτ

þ ða − 2q cos 2τÞx ¼ gðτÞ; [3a]

d2y
dτ2

þ b
dy
dτ

− ða − 2q cos 2τÞy ¼ gðτÞ; [3b]

where τ ¼ Ωt∕2 is a dimensionless scaled time, a ¼ 4QU∕MR2
0Ω2

is the scaled dc voltage, q ¼ 2QV∕MR2
0Ω2 is the scaled ac voltage,

b ¼ 2ξ∕MΩ is the scaled damping coefficient, and gðτÞ is the
scaled thermal fluctuation force, following a Gaussian distribu-
tion with zero mean and standard deviation of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32kBTξ

p
∕MΩ2.
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Fig. 3. Effect of the applied voltages and frequencies on the confinement of particles. Experiments are performed with 491-nm radius particles and R0 ¼ 4-μm
devices. No dc voltages are applied (U ¼ 0). (A) The x-y positions of a single particle trapped under a fixed frequency (f ¼ 3 MHz) and three different voltages.
(B) Radial probability histograms (r ¼
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p
) corresponding to the datasets in A. PðrÞ is defined such that ∫ PðrÞ2πrdr ¼ 1. (C) The x-y positions of a single

490-nm radius particle trapped under a fixed voltage (V ¼ 1.2 V) and three different frequencies. (D) Radial probability histograms corresponding to the
datasets in C.
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It is worth noting that the geometry of our PAPT devices is not
an ideal 2D structure, which would require high aspect ratios for
the four electrodes (16). However, 3D calculations (SI Appendix,
section 6) show that the analysis will not be affected significantly
as long as the particle remains within the height of the electrodes.
Above the electrodes, the potential changes as if the device radius
R0 is increased. As a result, we can deal with this nonideal 2D
situation by adopting an effective device radius R�

0. Moreover,
the potential profile of the PAPT device is not exactly an ideal
quadruple field because of the existence of higher-order compo-
nents. Taking these two effects into account, a correction factor Γ
should be introduced in the expression of a and q,

a ¼ 4QU
ΓMR2

0Ω2
and q ¼ 2QV

ΓMR2
0Ω2

: [4]

The solutions of Eq. 3 will determine the dynamics of particles
inside the trap. As is well known for Paul traps in vacuum [b ¼ 0
and gðτÞ ¼ 0], stable trapping will only occur when parameters
ðq;aÞ are within certain regions in the q − a diagram (where
Eq. 3 has convergent solutions) (8). If a viscous medium is present
(b > 0, for example, air or water), the stable region in the q − a
diagram will not only be shifted but also be extended (21). The
deterministic damped Mathieu equation without taking thermal
fluctuations into consideration reads as the homogeneous part of
Eq. 3 [with gðτÞ ¼ 0]. With this deterministic system, the particles
should settle toward the center of the device (x ¼ y ¼ 0) and
eventually be trapped without moving when time t → ∞ if the
ðq;aÞ parameters are inside the stability region. This prediction
is, however, not true in our experiment, where positional fluctua-
tions are observed (Fig. 2). The fluctuations of the trapped par-
ticles confirm the necessity to include the stochastic Brownian
effect to study the PAPT device. The questions that arise are
how this white Brownian noise affects the stability of the trapping
dynamics and the rms value of the position fluctuations. We will
address these two aspects in the following discussion.

Brownian Noise Effect on Trapping Stability. Zerbe et al. (22) theo-
retically showed that the variance of position displacement fluc-
tuations remains bounded for ðq;aÞ parameters that are located
within the stability zones of the damped deterministic equation
[Eq. 3 with gðτÞ ¼ 0]. As a result, the trapping stability is solely
determined by the behavior of the deterministic system and the
Brownian noise would not affect the stability boundaries. The
ðq;aÞ stability region for various damping factors b can be numeri-
cally determined using Hasegawa and Uehara’s method (21). It is
thus very interesting to experimentally map out the stability
boundary and compare it with the theoretical predictions. The
principal problem here is that, unlike atomic ions, the particles
are neither identical in mass nor charge. Therefore, the boundary
mapping requires that all points in the stability boundary be de-
rived from a specific single bead throughout the experiment. We
are able to record each boundary point in ðV;UÞ coordinates suc-
cessfully without losing the single trapped particle by carefully
adjusting the ac and dc voltages at a fixed frequency and by re-
cognizing when the motion is on the verge of no longer being
stable. Eq. 4 translates the measured boundary from ðV;UÞ co-
ordinates into ðq;aÞ coordinates by using a fitting parameter
Q∕ΓM (effective charge to mass ratio), where Γ is the correction
factor mentioned above.

As shown in Fig. 4A, the resulting measured limits of the ðq;aÞ
stability boundary reproduce the theoretical calculated boundary
very well. This remarkable agreement between the theoretical
boundary and experimental data strongly proves that the trapping
dynamics are dominated by the Paul trap mechanism, because a
DEP trap would not have such a ðq;aÞ stability boundary. The
DEP forces only contribute small perturbations near the ðq;aÞ ori-
gin (SI Appendix, section 7.1). Determination of boundary points

becomes difficult for large a values because this requires higher
dc voltages, and we find experimentally that dc voltages beyond
2.2 V (corresponds to a ¼ 1.34 using Q∕ΓM ¼ 4 × 10−6 e per
atomic mass unit and R0 ¼ 4 μm) will result in detrimental elec-
trochemical reactions of the metal electrodes. Surface modifica-
tions or passivations of the electrodes may improve the tolerance
of high dc voltages.

By using the fitting techniques described above, we are able to
evaluate the distribution of effective charge to mass ratio (Q∕ΓM)
for a collection of beads. We analyzed a total of 121 beads from
the same suspension solution and extracted the Q∕ΓM for each
single bead. Fig. 4B shows a Gaussian distribution for the ex-
tracted Q∕ΓM, with a mean value of 4.77 × 10−6 e per atomic
mass unit. This value corresponds to around 106 elementary
charges on a single bead, which is two orders of magnitude lower
than the number of carboxylate surface groups. This discrepancy
may be due to the partial dissociation of carboxylate groups in
solution and the charge renormalization effect (23).

Brownian Noise Effect on rms Fluctuations. Although the serial dc
voltages (U) can be used to tune the trapping stability and thus
the dynamics in PAPT devices (Fig. 4A), a pure ac field (U ¼ 0) is
experimentally favorable due to the obvious advantages of an ac
over a dc electric field in solution. In particular, electroosmosis
flow does not develop in the bulk, and electrochemical reactions
can be avoided. Thermal convection can also be suppressed
because the heating effect of an ac field is less (24). As a result,
ac fields are of more practical interest in the context of aqueous
solutions.

The rms fluctuation in the x and y directions for the ac only
case (a ¼ 0) can be expressed as (25),

ffiffiffiffiffiffiffiffi
hx2i

q
¼

ffiffiffiffiffiffiffiffi
hy2i

q
¼ ΘIðb;qÞ; [5]

where Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16kBTξ∕M2Ω3

p
and Iðb;qÞ is a function of dimen-

sionless parameters b and q. The rms fluctuations as a function
of applied ac voltages (V ) at a fixed frequency (f ¼ 2 MHz)
observed in the experiment is given in Fig. 5. Because Iðb;qÞ
can be approximated as Iðb;qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ b2Þ∕4bq2

p
for small q

(20) (note that the working parameter b and maximum possible
q are calculated to be 2.83 and 0.604, respectively), the rms
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fluctuations thus have the dependence on the ac voltage asffiffiffiffiffiffiffiffi
hx2i

p
¼

ffiffiffiffiffiffiffiffi
hy2i

p
∝ 1∕q ∝ 1∕V for a fixed frequency (fixed damp-

ing factor b) in small q region. The linear fitting curve in Fig. 5
demonstrates a remarkable agreement with the predicted linear
dependence of rms fluctuations on 1∕V . We perform this experi-
ment under several frequency conditions and all of them show the
same linear dependence (SI Appendix, section 8). This depen-
dence is intuitively correct (stronger field gives a tighter trap).
However, it is not necessarily true for the whole ac voltage range.
Theoretical studies showed that there always exists a minimal
rms fluctuation if proper working parameters q are chosen within
the stability region (25). By taking the experimental parameters
as f ¼ 2 MHz, Q∕ΓM ¼ 4 × 10−6 e per atomic mass unit, and
b ¼ 2.83, we can calculate that the minimal rms fluctuations cor-
responds to q ¼ 2.78 and V ¼ 9 V. This ac voltage is beyond our
instrument’s ability (Vmax ¼ 5 V) and therefore we only experi-
mentally observe a decrease of rms fluctuations when increasing
ac voltages are within ranges we can achieve (Fig. 3 A and B).

The rms fluctuation dependence on the driving parameters
when a ¼ 0 is theoretically studied in several works (22, 25–
27). The magnitude of the minimal fluctuation (which determines
the size of a virtual nanopore) can be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBT∕MΩ2

p
,

which is dependent only on the environment temperature T,
the particle mass M, and the tunable working frequency Ω. This

minimal fluctuation will happen when q ¼ 0.751
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ b2

p
(25).

The existence of such a minimum in the positional fluctuation
of the stochastically confined motion is of considerable impor-
tance because one can significantly reduce the thermal noise
effect on the positional uncertainty of the motion. It is note-
worthy that the operating parameters ðq;aÞ must be inside of
the stability region to achieve this minimal fluctuation. The mini-
mal fluctuation for the particle shown in Fig. 5 would be 0.63 nm
(withM ¼ 520 fg and working frequency f ¼ 2 MHz). It is appar-
ent that higher frequency can be adopted to suppress the posi-
tional uncertainty to the greatest extent for the reduced M, if
the parameters q, a, and b are kept within the stability region.
For example, for a 1,000-bp dsDNA (650 Da∕bp, charge to mass
ratio 3 × 10−3 e per atomic mass unit), when the working fre-
quency is increased to 442 MHz, the minimal achievable fluctua-
tion is around 2 nm (close to the size of a physical nanopore;
refs. 28–30). By careful rf circuit design, this frequency could
be experimentally achievable. The practical limits of the confine-
ment is determined by the highest frequency that can be applied
without causing detrimental heating or device damage.

Conclusions
In summary, we experimentally demonstrate the feasibility of a
Paul-trap-type planar device working in aqueous solutions. An
oscillating quadrupole electric field generates a pseudopotential
well and the charged particles are dynamically confined to a nan-
ometer scale region, whose size can be externally tuned by driving
parameters (voltages and frequencies). This technique opens
up the possibility of spatially controlling the object in a liquid
environment and can lead to lab-on-a-chip systems controlling
single molecules that often appear charged when submerged in
water. Further investigations such as the impact of variation of
the solution’s ionic composition, concentrations, and pH on the
trapping performance are needed for a better understanding for
biomolecular applications.
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Fig. 5. Dependence of the standard deviation of position fluctuations of
trapped bead on ac voltage at fixed frequency (2 MHz). The reduced χ2 value
for the linear fitting is calculated as 1.4.
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