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Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential
or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy
in many circumstances are species-specific training and the incompleteness of reference databases. Lately,
comparative genome analysis has attracted increasing attention. Several analysis tools that are based on
human/mouse comparisons are already available. Here, we present a program for the prediction of
protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of
homologous genomic sequences. In contrast to most existing tools, the accuracy of sGpP-1 depends little on
species-specific properties such as codon usage or the nucleotide distribution. sGP-1 may therefore be applied
to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter
training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate
gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between
predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at

http:/ / soft.ice.mpg.de/sgp-l. The source code, written in ANSI C, is available on request from the authors.

Given homologous genomic sequences from two species,
their local alignment usually shows a patchwork pattern of
conserved and less conserved segments. Generally, coding se-
quences tend to be more conserved than noncoding se-
quences. Highly conserved fragments may sometimes also be
attributed to gene regulatory (Hardison et al. 1997) or other
DNA elements, such as clade-specific repeats. Although the
level of sequence similarity depends strongly on the evolu-
tionary distance of the compared species, recent studies (Roest
Crollius et al. 2000; Wiehe et al. 2000; R. Guigo, L. Duret, and
T. Wiehe, unpubl.) suggest that homology-based gene predic-
tion can be very reliable over a fairly wide spectrum of species
and evolutionary divergence times. Gene prediction has re-
ceived considerable attention from computer scientists and
biologists during the past decade (for reviews, see Burge and
Karlin 1998; Claverie 1998). These efforts have led to consid-
erable progress, but the problem is still far from a satisfactory
solution (Guigo et al. 2000). Current methods can be roughly
grouped into two main categories, ab initio and homology-
based methods. The former methods recognize signals or
compositional features in a single input sequence by pattern-
matching, probabilistic, or statistical methods. An example is
Genscan (Burge and Karlin 1997). The homology-based
methods use external information such as comparison of the
query sequence with protein, EST, or cDNA databases. Ex-
amples are BLASTX (Altschul et al. 1990) and the more sophis-
ticated spliced alignment algorithms Procrustes (Gelfand et
al. 1996) or Genewise (www.sanger.ac.uk/Software/Wise2).
Lately, gene prediction tools have become available that infer
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gene structures from alignments of anonymous genomic se-
quences and the resulting pattern of conserved segments. For
instance, ExoFish (Roest Crollius et al. 2000) predicts human
exons by comparison with a database of random sequences
from Tetraodon nigroviridis. Batna and Huson (2000) and Bat-
zoglou et al. (2000) have developed programs for gene predic-
tion by pairwise comparison of human and mouse homolo-
gous sequences. SGP-1 is a similar gene prediction tool, but it
is not species specific. It is designed for large-scale genomic
sequences, such as complete bacterial artificial chromosomes
(BACs), of vertebrates and plants.

Today we are in a situation where analysis programs need
to cope with low sequence quality of published draft ge-
nomes. Whereas classical tools are sensitive to sequence qual-
ity, similarity-based tools are much less so, because similarity
levels are less affected by sequencing or assembly errors.
Rather, such errors may even be rectified with the help of
sequence comparison programs.

For gene prediction in SGP-1, two lines of reasoning are
combined (Fig. 1). First, a pairwise local alignment is com-
puted. This may be done either on a DNA level (e.g., with
BLASTN or SIM96 [Huang and Miller 1991]) or on an amino
acid level (e.g., with TBLASTX [Altschul et al. 1990]). The evo-
lutionary distance of the compared sequences is an important
criterion to choose between the methods. Generally, we ob-
tained better results with DNA-based alignments for closely
related sequences and with amino acid-based alignments for
distantly related sequences (Wiehe et al. 2000). If computa-
tion speed is a main concern, a BLAST-like alignment is pref-
erable over a dynamic programming algorithm such as
SIM96. In any case, a postprocessing step to reduce noise may
be applied to the resulting local alignment. Second, for both
sequences we generate separate lists of potential exons,
termed precandidates. A subroutine called £ilter retains only
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Figure 1 Flowchart of sGp-1.

those precandidates that are compatible with the alignment.
Subsequently, exons are rescored and then assembled into a
gene model.

Because the two tasks, computation of the alignment
and gene prediction, are separated from each other, SGp-1
can work with the (possibly reformatted) output of an arbi-
trary alignment program. Furthermore, run time of the pro-
gram can be significantly reduced, if a precomputed align-
ment is provided as input.

We applied sGp-1 to several sets of homologous se-
quence pairs from vertebrates and from plants. Unlike pro-
Gen (Novichkov et al. 2000) or ExoFish (Roest Crollius et al.
2000), sGpP-1 emphasizes similarity and is therefore particu-
larly suited for well-conserved genes or sufficiently closely
related species. For instance, good results can be obtained for
species that are evolutionarily at least as close as Homo sapiens
and Gallus gallus (R. Guigd, L. Duret, and T. Wiehe, unpubl.).
Finally, we show how SGP-1 may be useful for verifying gene
structure annotations.

RESULTS

Algorithm

Gene prediction with SGP-1 proceeds in two separate steps,
calculation of a pairwise alignment and processing of se-
quence and alignment files. This modularity makes the tool
very fast and versatile: given a suitable format-conversion
tool, sSGP-1 may be combined with any pairwise alignment
program. We successfully ran SGP-1 on alignments produced
by simM96 (Huang and Miller 1991), BLASTN, TBLASTX
(Altschul et al. 1990), BLASTZ (W. Miller, pers. comm.), and
MUMMER (Delcher et al. 1999). Given two sequences and their
alignment as input, the program calls subroutines for (1)
alignment postprocessing, (2) generating exon precandidates,
(3) filtering, (4) rescoring, and (5) gene assembly and output.
The subroutine with the highest time complexity is filter
(see Methods). A very rough bound for its run time is given by
O(nm), where n and m are the lengths of the input query
sequences. This is due to the fact that the size of the two exon
precandidate lists depends linearly on n and m, respectively,
but pairs of precandidates, one from each list, have to be

processed. For all other subroutines the time requirement is
subquadratic. Memory space is dynamically allocated in all
subroutines. An upper bound for the required memory space
is also given by O(nm), because lists with pairs of exon pre-
candidates have to be stored and handled. However, absolute
running times and space requirements also depend on se-
quence properties such as the level of similarity. For instance,
gene prediction with sGp-1 for two homologous sequences
from the human and mouse HOX regions (176 kb and 214 kb,
respectively) took 10.5 sec CPU time on a Linux PC (RedHat,
distribution 7.0) with a 400 MHz Pentium II processor and
256 Mb RAM. Memory size was sufficient for the program to
run without swapping. In detail, the time requirements for
the individual subroutines (1) to (5) were 0.3 sec, 2.6 sec, 4.5
sec, 1.9 sec, and 1.2 sec, respectively. In contrast, calculation
of the pairwise alignment with BLASTZ, a heuristic alignment
method (W. Miller, pers. comm.), for these two sequences
took 89 sec. To take advantage of the modularity, the Web
server provides the possibility of uploading precomputed
alignment files.

Evaluation of Test Sets
To measure gene-prediction accuracy of SGpP-1, we generated
several test sets from human/rodent (§1, S2) and plant (T1)
homologous sequences. S1 is the set originally used by Batzo-
glou et al. (2000) as a test set for Rosetta. $2 is a set of large
homologous chromosomal fragments that contains multiple
genes in both species. Accuracy is measured in terms of sen-
sitivity and specificity (Burset and Guigo 1996; see Methods).
The results for SGP-1 on set SI of single genes are comparable
to those of Genscan and Rosetta (Table 1), Genscan being
slightly inferior and Roset ta being slightly superior to sGp-1
on nucleotide level accuracy. Data set SI contains several ex-
ons with nonstandard splice sites, which are not detected in
the current version of SGP-1. This explains the low sensitivity
on exon level (Sy) of SGP-1 compared with Rosetta in set S1.
Similarity-based programs tend to be more accurate than con-
ventional methods for large-scale sequences with multiple
genes (Guigo et al. 2000; Wiehe et al. 2000). This property was
also found when we evaluated test set S2. Because the diver-
gence between two species may considerably vary along their
genomes (Fig. 2), measures have to be taken to cope with
different levels of conservation. For less conserved sequences,
SGP-1 performs better if it is based on an amino acid align-
ment; for highly conserved sequences it performs better if it is
based on a DNA alignment. More generally, this pattern was
found both for vertebrate and for plant sequences. On set T1,
the performance of SGP-1 on nucleotide level was better
when based on a DNA alignment; on exon level the perfor-
mance was better when based on an amino acid alignment
(Table 1). In both cases, SGP-1 performed better than Gen-
scan, which was in particular due to a higher specificity.
When comparing duplicated regions within a single spe-
cies, the same dependence of prediction accuracy on conser-
vation levels is observed. Genome duplication is particularly
common among plants. For example, the most recent large-
scale duplication events in Arabidopsis thaliana are estimated
to have occurred between 50 and 100 Myr B.P. (Vision et al.
2000). In such cases, similarity-based gene prediction can be
useful to detect genes even if a homologous sequence of a
second species is not available. For an example, we tested a
pair of duplicated segments residing on chromosomes 3 and 5
in Arabidopsis thaliana. Sensitivity and specificity results are
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Table 1. Evaluation of Gene Prediction Accuracy

Nucleotide level Exon level
Test set S, S AC S Sp (Sn + Sp)/2 ME WE
Set ST (human/rodent single genes)
SGP s1M' 0.94 0.96 0.94 0.70 0.76 0.73 0.12 0.04
SGP TBLASTX' 0.87 0.96 0.90 0.64 0.73 0.68 0.15 0.03
Rosetta? 0.95 0.97 0.96 0.84 0.84 0.84 0.04 0.05
Genscan 0.97 0.89 0.92 0.79 0.74 0.76 0.06 0.13
Set 52 (human/rodent multiple genes)
ERCC2
SGP s1M 0.91 0.96 0.93 0.72 0.80 0.76 0.15 0.06
SGP TBLASTX 0.89 0.97 0.92 0.69 0.84 0.77 0.18 0.00
Genscan 0.99 0.71 0.83 0.79 0.70 0.74 0.05 0.16
MHC
SGP sIM 0.79 0.99 0.88 0.60 0.80 0.70 0.28 0.02
SGP TBLASTX 0.67 1.00 0.83 0.45 0.69 0.57 0.38 0.00
Genscan 0.93 0.73 0.82 0.72 0.58 0.65 0.14 0.31
HOX
SGP s1M 0.86 0.86 0.85 0.62 0.50 0.56 0.10 0.23
SGP TBLASTX 0.51 0.91 0.69 0.24 0.33 0.29 0.33 0.07
Genscan 0.94 0.77 0.85 0.67 0.30 0.44 0.05 0.47
MeCP2
SGP s1M 0.99 0.93 0.96 0.92 0.89 0.91 0.08 0.11
SGP TBLASTX 0.72 0.85 0.78 0.46 0.50 0.48 0.19 0.21
Genscan 0.97 0.73 0.83 0.80 0.73 0.76 0.07 0.21
Set T1 (plant single genes)
SGP s1M 0.93 0.99 0.94 0.57 0.63 0.60 0.12 0.00
SGP TBLASTX 0.88 0.97 0.91 0.64 0.76 0.70 0.18 0.00
Genscan 0.92 0.90 0.87 0.61 0.57 0.59 0.09 0.15

"Alignment of SGP-1 with sTM96 (DNA alignment) and with TBLASTX (amino acid alignment).
“Rosetta results on ST provided by S. Batzoglou; results on S2 and T7 are not available.

S, =0.87 and S, = 0.84 (nucleotide level), and Sy = 0.62 and
Sp = 0.65 (exon level), respectively. Comparing a pair of BACs
from Oryza sativa and Zea mays that contain orthologous
genes for AdHI (rice and maize) and the paralogous AdHII
gene (rice), SGP-1 detects these three genes with S, =0.94
and S, = 0.98 on nucleotide level, and Sy = 0.65 and S, = 0.72
on exon level. Finally, we also applied—without specific train-
ing—sGP-1 to the complete chloroplast genomes of Oryza
sativa and Zea mays. Sensitivity and specificity on nucleotide
level are both 0.80. For comparison, Genscan with standard
settings for nuclear genes in Zea mays yielded sensitivity and
specificity of 0.01 and 0.38, respectively, for the chloroplast
genome of Zea mays. Not surprisingly, both programs do very
poorly in terms of exon level accuracy (0.01). However, it
would be a relatively simple task to provide sGp-1 with a
splice-site profile that is adequate for organellar instead of
nuclear genes and to enhance the exon level accuracy.

Codon Bias Versus Splice-Site Conservation

Codon bias can vary to a large extent among species within
the same taxonomic group, and even among genes within the
same species (Sharp et al. 1995). On the other hand, the av-
erage splice-site profile, that is, the nucleotide distribution
around splice sites, appears to be more conserved. In particu-
lar, this is true for human/rodent comparisons. Codon bias is
on average much lower in mice and rats than in humans,
which is perhaps due to the different rates of neutral evolu-
tion in the two lineages: an acceleration in the rodent lineage
and a slow-down in the primate lineage (Britten 1986, Li et al.
1987). We calculated codon bias (Peden 1997) individually for
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the human and rodent genes in set (SI1) of single human/
rodent genes and then determined the difference in codon
bias for each pair of homologous genes. Applying a two-tailed
t-test (level a = 0.01) to the differences, we rejected the null
hypothesis that the difference is zero (p = 4.5x 107°, Fig. 3).

Similarly, we calculated the difference of the scores of
homologous human and rodent acceptor and donor sites. The
distribution of both the acceptor and donor score differences
is more symmetrical around zero than is the distribution of
the codon bias difference (Fig. 3). In fact, the null hypothesis
of the difference being zero cannot be rejected in a two-tailed
t-test (level a = 0.05).

Application to Gene Structure Validation

Annotations of gene structures submitted to sequence data-
bases such as GenBank (www.ncbi.nlm.nih.gov), EMBL (www.
ebi.ac.uk), or DDBJ (www.ddbj.nig.ac.jp) can sometimes be
erroneous. SGP-1 provides an option to compare a CDS (cod-
ing sequence) annotation with the gene prediction result.
This feature may be helpful for cross-checking and validating
annotations because discrepancies between the given anno-
tation and the prediction are highlighted. To that end, anno-
tated and predicted exons are written (in GFF [General Fea-
ture; http://www.sanger.ac.uk/Software/formats/GFF] format)
into an HTML file that can be viewed with any Web browser.
Such potential annotation errors may include sequencing er-
rors, wrongly annotated start or stop codons, or wrongly an-
notated splice sites. Figure 4 shows a discrepancy between
GenBank annotation and prediction in the mouse preproin-
sulin gene II (Accession Number X04724). Donor site of exon
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Figure 3 Distributions of score differences in data set S7. Shown is
the distribution for the scores of acceptors (a) and donors (d) and for
the codon bias (c). Codon bias was calculated with Codonw (Peden,
1997) separately for each pair of homologous coding sequences in set
$1. To bring the numerical values for a,c, and d on the same scale, we
divided the numbers obtained by the respective sample standard
deviation o, i = a,d,c. Based on a two-tailed Student’s t-test, the hy-
pothesis that the mean of the distribution is zero is not rejected for
acceptors nor for donors. However, it is rejected for codon bias
(P=4.5x107).

1 and acceptor site of exon 2 are wrongly annotated. As a
consequence, the inferred intron phase would differ from that
of the homologous human intron.

DISCUSSION

Genome analysis has entered a stage in which comparative
methods play an increasingly important role, not only for
computational gene finding but also for determining gene
regulatory regions and delineating gene function. Various
programs (Bafna and Huson 2000; Batzoglou et al. 2000; Roest
Crollius et al. 2000; Novichkov 2000) have already been pub-
lished or are under development. Here, we present a method
that is based on DNA or amino acid pairwise alignments to
predict coding regions and exon-intron structure of multiple
genes, and to validate gene-structure annotations. One of the
shortcomings of traditional gene prediction tools has been
that they are extremely species specific and that their accu-
racy may drop dramatically when they are applied to species
for which they have not been trained. In contrast, compara-
tive gene prediction may rely exclusively or primarily on the
pattern of conservation between a pair of species, exploiting
the fact that functional (which here means amino acid cod-
ing) parts of the genome are generally more conserved than
nonfunctional parts. Therefore, such programs should be
more versatile and perform well across a wide spectrum of
species, no matter whether bacterial, animal, or plant ge-
nomes are compared. In practice, however, there is probably
no single tool that works equally well regardless of the evo-
lutionary divergence between the compared sequences. Un-
derprediction and overprediction, depending on the evolu-
tionary distance, are common problems. Furthermore, predic-
tion accuracy is sensitive not only to the choice of an
appropriate species pair, but may also vary considerably along
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the genome within a particular species pair. SGP-1 is designed
for comparative analysis in evolutionarily closely related spe-
cies such as Homo sapiens and Mus musculus, Arabidopsis
thaliana and Brassica oleracea, Caenorhabditis elegans and Cae-
norhabditis briggsae, or more closely related species. A central
strategy of SGP-1 is to rely as little as possible on species-
specific DNA characteristics, such as nucleotide composition,
isochore distribution, codon bias, or repetitive elements.
Therefore, the precandidate exons (see Methods) do not re-
ceive scores that depend on the coding potential or codon
usage. Rather, scoring at the initial step relies exclusively on
splice-site quality. Splice profiles are generally less variable
within a taxonomic group than is codon usage. SGP-1 is an
alignment-based method. Ideally, the alignment is computed
with dynamic programming such as that implemented in
S1M96, and which guarantees an optimal alignment to be
found. Often, however, the time requirement is prohibitive
for such a method to be applicable. The current Web-server
version of SGP-1 provides alternative alignment options:
BLASTN, TBLASTX, or the possibility to upload a precomputed
alignment. sGp-1 relies on local rather than global align-
ments. It is well known (Doolittle 1990) that local alignments
are more appropriate to identify short regions of similarity
that may be embedded in regions of high dissimilarity—as is
the case with coding regions embedded in large intragenic
stretches. With a global alignment program, such short con-
served stretches may only be detected if the gap penalties are
extremely well adapted to the problem, which would pose a
severe restriction on program versatility. The generally ac-
cepted strategy to individually anchor highly conserved, but
possibly short, stretches is to produce a set of suboptimal local
alignments rather than a single, global alignment. Further-
more, global alignments necessarily yield a colinear similarity
pattern. Therefore, particularly in the absence of colinearity,
two sequences may sensibly be compared only in terms of a
local alignment. The currently distributed version of SGp-1 is
designed for nuclear eukaryotic DNA sequences as input. A
parameter file, which is easily accessible by the user and
which describes splice profiles and/or genetic code, needs to
be edited to treat nonnuclear DNA.

When comparing sGp-1 with other, not similarity
based, gene finders, one of the most remarkable features is the
generally much higher specificity. SGP-1 also performs well
in large-scale genomic sequences. In particular, in problem
zones, such as unusually large introns, SGP-1 may be superior
to other gene-finding programs: the prediction of sGp-1 of
the Human MeCP2 gene structure is correct around intron 2
(size 60 kb), whereas Genscan returns a number of false-
positive results in this region. We compared sGp-1 with other
similarity-based gene finders such as Rosetta and ProGen
(see Table 1). ProGen uses an amino acid alignment rather
than a DNA alignment. Its strength is in detecting more dis-
tant relationships, such as seen when, for example, Human
and Fugu sequences are compared. Rosetta is primarily de-
signed for human/rodent comparisons (Batzoglou et al.
2000). ExoFish (Roest Crollius et al. 2000) compares a hu-
man query sequence with a sequence database of the puffer-
fish T. nigroviridis; it is designed for gene prediction in hu-
mans, not in arbitrary species. Prediction accuracy of SGp-1
does not depend on the availability of ESTs or CDSs or the
completeness of EST or CDS databases. Given two homolo-
gous genomic sequences, SGP-1 is expected to be superior to
programs that rely on extrinsic information, and spliced
alignment programs of the first generation, such as pPro-
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#annotated and predicted exons on sequence HUMINSPR
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Figure 4 Example of potential annotation errors. Comparison of GenBank annotation (CDS field) and SGP-1 prediction for human and mouse
insulin genes (accession nos. M10039 and X04724). From left to right, the fields are identifier (1), source (2), feature (3), sequence positions of
beginning and end of a coding exon (4 and 5), score (6), strand (7), reading frame (8), grouping (9), and sequence (10). Discrepancies between
annotation and prediction are marked by black circles around murine donor and acceptor positions and reading frame for exon 2. Capital letters

indicate the coding sequence.

crustes (Gelfand et al. 1996), which were designed for a
particular species. Even if homologous BACs of two or more
species are not available, gene prediction by homology may
still yield reliable results. We applied SGP-1 to a self-aligned
340-kb genomic BAC of Oryza sativa (Accession Number
AF172282). The rice AdH region is known (Tarchini 2000) to
have undergone several micro duplication events. In prin-
ciple, duplicated genes may be identified by homology-based
programs. Again, accuracy depends on the time when the
duplication event occurred and on the speed of divergence.
Comparing the rice AdH (AdHI and AdHII) genes with that in
Arabidopsis thaliana and assuming that the split between Di-
cotyledons and Monocotyledons occurred about 100 Myr
ago, we estimate the duplication event between AdHI and
AdHII in rice at about 44 Myr B.P. SGP-1 correctly predicts the
gene structures of AdHI and AdHII, except for the terminal
exon. More generally, members of a gene family may be iden-
tified by comparing a single gene, or even only a CDS, with an
entire chromosome or genome of the same or a related organ-
ism. The question of whether two genes are an orthologous or
paralogous pair is per se irrelevant for gene identification by
similarity. What matters, however, is the time and speed of
their divergence. In addition to local duplications, extant or-
ganisms carry traces of a history of genome or chromosome
duplications. This is particularly common in plants that may
have undergone several rounds of genome duplication. This
fact can be usefully applied to homology-based gene predic-
tion by aligning two chromosomes of a single organism. For
example, chromosome 3 and 5 of Arabidopsis thaliana contain
syntenic regions over large parts of the chromosomes (Blanc
et al. 2000; Vision et al. 2000). Applying sGP-1 to two 230-kb
regions (Fig. 5) in the two chromosomes, related genes and
gene families are identified. Clearly, unique genes will be
missed by such an approach. Therefore, values of prediction
accuracy, in particular sensitivity, for sGp-1, or any other
homology-based program, are not very informative in such a
region. This is aggravated in the preceding example by the

fact that most of the annotated genes in this region are not
experimentally confirmed but are only computer predicted.

In the future, we will see an increasing need not only for
computerized prediction of gene structures, but also of regu-
latory regions in particular, and for reliable statements about
inferred gene function in the absence of experimental valida-
tion. Comparative genome analysis will undoubtedly play an
important role in accomplishing these tasks.

METHODS
Algorithm

Sequence Alignment

SGP-1 requires a pairwise local alignment of two genomic
sequences, such as produced by s1M96 (Huang and Miller
1991), MUMMER (Delcher et al. 1999), BLASTN, or TBLASTX
(Altschul et al. 1990). Because alignment calculation is com-
putationally intensive, this task can be skipped if a precom-
puted alignment is available. Thus, in addition to two se-
quence files, an alignment file (the admissible formats are
described in soft. ice.mpg.de/sgp-1/man) can be uploaded to
the Web server.

Given the alignment, it is postprocessed to select high-
scoring segments. The user may choose among three options.
The first generates a monotonic set of aligned segments such
that all segments are disjoint and that the sum of their align-
ment scores is maximized (Myers and Miller 1995). This op-
tion is adequate if the two sequences are colinear in the sense
that they are inversion-free and that gene order is preserved.
The second option generates a set of disjoint but not neces-
sarily monotonic segments. This option is adequate for se-
quences that are duplication free but that may contain inver-
sions or translocations. The third option does nothing and
hands all segments from the original alignment to the next
subroutine. This option is adequate for sequences that con-
tain duplications. Time complexity and space requirement to
perform the first or second option are subquadratic and de-
pend only on the number of aligned blocks given as input.
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Generating Precandidates

Input DNA sequences are scanned for patterns such as start
codons and stop codons and splice sites. The patterns are
represented in a tree-like data structure, known as keyword
tree (Aho and Corasick 1975; Gusfield 1997). Thus, the input
sequence is scanned for multiple patterns in a single pass.
Furthermore, it is easy to achieve a significant acceleration of
the scanning process because at each position the cursor is
maximally advanced (i.e., from one occurrence of a pattern to
the next), and intermediate sequence positions are skipped
whenever possible. The required computation time scales lin-
early with the length of the input sequence (Gusfield 1997).
Each pattern has an associated likelihood profile (for an ex-
ample, see http://soft.ice.mpg.de/sgp-1/example/profile)that
is derived from the nucleotide distribution in a reference set.
Hence, to each pattern hit a score can be assigned by evalu-
ating the likelihood profile for the sequence segment under
consideration. Evaluation at any given position takes a con-
stant amount of time and does not increase time complexity.
Scanning of an input sequence results in a list of so-called
precandidate exons. A precandidate exon is a sequence stretch
with a well-defined reading frame, without internal stop
codon, which is delimited at each end by an admissible pat-
tern: acceptor, donor, start codon, or stop codon. The score of
a precandidate is the sum of the scores of both flanking pat-
terns as given by their likelihood profiles. The profiles are
based on reference sets of annotated and validated exons,
extracted from GenBank (release 117). Currently, SGP-1 pro-
vides two sets of profiles, one for vertebrates and one for cru-
cifers. When running the program, the user can select a pro-
file via a command line switch. It should match the origin of
the input sequence.

Because stop codons are distributed roughly uniformly
along a DNA sequence, exon precandidates cannot become
arbitrarily long. Therefore, the required memory space to
store all precandidates scales linearly with the length of the
input sequence.

Filtering

The subroutine FILTER checks whether begin and end posi-
tions of any pair of precandidates are contained in the post-
processed alignment. If there is a discrepancy, a pair is dis-
carded. Optionally, the filter can be relaxed to allow for an
offset between alignment and exon precandidate. There are
two parameters: x, the number of base pairs by which locally
aligned segments are extended, and d, the maximal distance
(in bp) by which the ends of two paired precandidates may be
separated (Fig. 6). The parameter values can be selected by the
user via a command line switch. Computation time depends

on parameter settings. For the general case one has as upper
limit

Oo(f - U+x)+d) 1, +5),

where [, and [, are the sizes of the precandidate lists, fis the
number of aligned segments, [ is their average length, and s is
the total sequence length. An even coarser upper bound for
time complexity is given by O(nm), where n and m are the
input sequence lengths.

Rescoring

The output of FILTER consists of pairs of precandidates, where
each one is uniquely characterized by its position, strand label
(“+” or “—") and reading frame. Hence, translation is unam-
biguous and for each pair of amino acid sequences a similarity
score can be computed, for example, by a dynamic program-
ming method similar to the Needleman and Wunsch (1970)
algorithm. In addition to the splice-site score, each precandi-
date receives a second score: its similarity score. The score
depends on the amino acid substitution matrix. The user may
select from a list of matrices via a command line switch, with
BLOSUM80 being the default. Time and space requirements for
the module rescore are essentially linear in the number of
pairs to be rescored. The final score attached to each candi-
date is a weighted combination of the splice-site quality and
amino acid similarity. We found a ratio of amino acid to
splice site weight of 4:1 to be optimal on our training set (see
following). We use this value as default; other weights can be
selected on the command line. The output of rescore con-
sists of two lists of exon candidates, one list for each query
sequence. Precandidates have now turned into candidates.

Gene Assembly

Assembly is performed independently for both species. Here,
we use the method described by Guigd (1998). It is based on
one-dimensional chaining and runs in linear time (O[k], k the
number of candidate exons). The assembly program attempts
to build complete gene models consisting of either a single
exon or one initial exon, an arbitrary number of internal ex-
ons, and one terminal exon. Multiple genes, on either strand,
may be assembled.

Evaluating Gene Prediction Accuracy

Prediction accuracy is measured by the quantities S,, (“sensi-
tivity”) and S, (“specificity”), as defined by Burset and Guigo
(1996). On the level of nucleotides, sensitivity is

(a) fe(‘::z);ue!"";w«»‘iu:fs:

radius of ‘fuzzyness’: d bp

P
Species 1 Sn= TP FN
and specificity
Species 2 TP
S = TP+ P’

exon pre-candidates

where TP (true positives) is the number of coding
nucleotides predicted as coding, FP (false posi-
tives) is the number of noncoding nucleotides in-

(b) Mzi‘:i?llfi»s:;—(f;li!li)iz

Species1  correctly predicted as coding, and FN (false nega-

tives) is the number of coding nucleotides that
Species 2

alignment extension: x bp

];awi

aligned base pairs

Figure 6 Relaxed filtering of precandidates. (a) A blunt end, but complete coverage
by the alignment. (b) A blunt end and partial coverage by the alignment. Setting
parameters d and/or x to a value >0 retains precandidates with unaligned splice sites.

are predicted as noncoding. Similarly, on the
level of complete exons one defines

number of correctly predicted exons
N =

number of real exons

and
number of correctly predicted exons

number of predicted exons

p=
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The quantity approximate correlation, AC, has been
introduced to summarize sensitivity and specificity in a single
measure. It is defined as

1 TP TP TN TN ) 1

AC= o\ TP+ N TP+ PP TN+ FP T TN IN

On exon level, the average (Sy + S;)/2 is used instead. Further-
more, the quantities ME (number of exons that are missing in
the prediction) and WE (number of incorrectly assigned ex-
ons) are recorded.

Output and Visualization of Results

The program returns an ASCII file with predicted genes in GFF
format. The file also contains the amino acid sequence (in
FASTA format) of the predicted proteins. Optionally, gene
prediction results may be visualized via an annotated two-
dimensional dotplot (Abril et al. 1999). The Web server con-
tains a switch to produce such a graphical output (see Fig. 2).
It is in PostScript or PDF format and can be saved to a local
file. Furthermore, an HTML file can be generated. It contains
a list of the DNA sequences of predicted and annotated exons.
Special features, such as splice sites or start or stop codons, are
highlighted along the sequence (see Fig. 4).

Test Sets

Gene prediction accuracy is evaluated on several test sets. A
problem with available test sets is that they often contain
only sequences with single genes. However, the analysis of
megabase-sized draft sequences is a routine task in many labo-
ratories, and gene finders need to perform well also with large-
scale sequences that may include multiple genes on both
strands.

Human/ Rodent

A set (1) of 116 homologous human/rodent single gene se-
quences was kindly provided by S. Batzoglou. A further hu-
man/rodent test set of 57 pairs was compiled by N. Jarborg
and is available at www.sanger.ac.uk/Software/Alfresco/
mmbhs.shtml. Because the two sets are not disjoint, we gener-
ated a disjoint subset from the latter, comprising 39 homolo-
gous sequence pairs, which we then used as a training set to
optimize program parameters. Set $2 consists of four homolo-
gous human/rodent pairs of partially unfinished BACs. They
include the human and mouse MHC-II (accession numbers
X87344; AF100956, AF027865), ERCC2 (accession numbers
L47234; 147235) and MeCP2 regions (accession numbers
AF030876, 247046, Z47066; AF121351), and the HOX cluster
(accession numbers AC009336; L1084). Parameter optimiza-
tion was done manually on a low-dimensional discrete grid.
Parameters to be tuned were ¢, the lower score cutoff for exon
precandidates; d, the radius of fuzziness; x, the alignment ex-
tension (both in module FILTER); the weight w of splice site-
versus similarity-score (module RESCORE); and s, a value by
which the entire distribution of candidate scores is shifted
(module AssemBLY, Guigd 1999).

Plants

Aset (T1) of 20 homologous nuclear gene pairs of Brassicaceae
was obtained from U. Gobel (pers. comm.). In each pair, one
species is Arabidopsis thaliana and the other is Brassica oleracea
or Brassica napus. This set was generated by first searching
SWISS-PROT (release 39.0) for the taxon name Brassicaceae.
Sequences were then clustered into species. Each possible pair
of sequences from different species was globally aligned (GAP
in GCG package [1999]). Pairs with a minimum protein iden-
tity of 30% were considered further and their respective DNA
entry was extracted from GenBank, release 117. If the Gen-
Bank entry contained the keyword “gene” or “complete cds”
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in the DEFINITION line, the pair was retained; otherwise it
was discarded. The remaining entries were manually checked
for complete annotation. We also analyzed (set T2) several
BACs of Arabidopsis thaliana (AC002291, AC009465,
ACO009177; AC007123, AF007271), Oryza sativa (AF172282),
and Zea mays (AF123535), which are known to contain sev-
eral sets of duplicated genes. Finally, we applied the program
to the complete chloroplast genomes of Oryza sativa
(NC_001320) and Zea mays (NC_001666).

Implementation

The program is written in ANSI C. The source is available
under the general GNU license agreement from the authors
on request. Furthermore, a Web server is accessible at http://
soft.ice.mpg.de/sgp-1. Memory requirement depends on the
size of the sequences to be analyzed and on the chosen op-
tions. Running the program on a Linux PC with a single Pen-
tium II processor, we found 256 Mbyte RAM generally to be
sufficient for analyzing sequences in the range of up to 200
kb.
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