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Abstract

Background: Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and
wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of
parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while
biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses
and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the
evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms.

Principal Findings: Comparing parabasalid EF1a, a-tubulin, enolase and MDH protein-coding genes with information from
the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated
genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other
eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T.
vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids,
diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba
and Malawimonas.

Conclusions/Significance: The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1
insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are
consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also
resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an
attractive tool for evaluating more extensive relationships within Parabasalia.
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Introduction

Parabasalia belongs to the supergroup Excavata, subgroup

Metamonada [1,2,3,4,5,6], and consists of single-celled flagellated

eukaryotes that include parasites and commensals of vertebrate

hosts, commensals and endosymbionts of invertebrates, and a few

described free-living species. Among the parasitic parabasalids,

several are important agents of human urogenital, subgingival,

oral, bronchial and gastrointestinal infections. Historically, Para-

basalia were divided into two groups based upon morphological

characters observed mainly by light microscopy. Large (,200 mm)

multiflagellated forms typically found in termite and cockroach

hindguts are commonly referred to as ‘‘hypermastigotes’’ and

smaller (,10–20 mm) flagellates, found in both vertebrate and

invertebrate hosts, are called ‘‘trichomonads’’. However, recent

morphological and molecular phylogenetic analyses recover six

parabasalid groups [7,8,9,10,11]: Trichomonadea, Tritrichomo-

nadea, Hypotrichomonadea, Cristamonadea, Spirotrichonym-

phea and Trichonymphea. The relationships within and among

the six groups are not fully resolved [11].
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Genetic markers are powerful tools for rapid identification of

parasites and other microbes from patient specimens and

environmental samples. Studies in Parabasalia have fallen behind

those in other organisms partly due to problems with obtaining

robust genetic markers. There is a pressing need for more

informative genetic markers in the Parabasalia and their relatives

in the supergroup Excavata, since a stronger phylogenetic

framework would improve our understanding of the biology of

the diverse species found within this group. An improved

parabasalid phylogeny will also help advance comparative

genomics within this group, and serve as a guide in the choice

of which parabasalids to target for genome sequencing. Here we

present a critical examination of recent molecular phylogenetic

analyses of Parabasalia and implement a new molecular

phylogenetic marker for resolving the evolutionary relationships

within Parabasalia and its relatives.

Parabasalids are interesting since they include species of medical

and veterinary importance, and ecologically relevant models of

host-symbiont coevolution. Parabasalia is a highly diverged lineage

of eukaryotic microorganisms [5,12] whose members exhibit

unusual definitive metabolic and cytoskeletal properties such as the

presence of hydrogenosomes (derived from mitochondria), and a

parabasal apparatus consisting of the Golgi body attached to

striated fibers near the karyomastigont (a structure comprised of a

nucleus and four basal bodies, that anchor the three anterior and

one recurrent flagellum). In this group, the Trichomonadea,

Tritrichomonadea and Hypotrichomonadea are of primary

concern to parasitologists; however, their evolutionary relation-

ships are not well resolved. Trichomonas vaginalis causes the most

prevalent non-viral sexually transmitted infection in humans

worldwide, and a draft genome was recently published [13,14].

Trichomonas tenax infects the human oral cavity, usually in the

subgingival space [15]. Cases of human respiratory and pulmo-

nary infections involving T. tenax, T. vaginalis, Tetratrichomonas sp.

and Pentatrichomonas hominis have been reported [16,17,18,19,20].

Dientamoeba fragilis causes human gastrointestinal disease [21,22].

In addition, Tetratrichomonas gallinarum and Trichomonas gallinae are

found in the digestive tract of birds [23,24,25]. Trichomonas gallinae

is an etiological agent of avian trichomonosis, a disease especially

affecting pigeons and raptors [26,27], while Tetratrichomonas

gallinarum is disputed as a primary pathogen [28,29] as it is often

found together with another parabasalid, Histomonas meleagridis, in

the caecum and liver of naturally infected chickens and turkeys

[30,31]. Tritrichomonas foetus causes sexually transmitted infections

in cattle that result in spontaneous abortion. T. foetus and P. hominis

also cause diarrhea in domestic cats and dogs [32,33,34,35].

Monocercomonas and Trichomitus have a broad host range including

amphibians, reptiles, mammals and arthropods, and Hypotrichomo-

nas acosta is found in the gastrointestinal tracts of snakes and several

lizard species [36]. Most other reported non-parasitic parabasalids

live in the hindguts of termites or cockroaches, except for a few

free-living species such as Pseudotrichomonas keilini and Monotricho-

monas carabina [11,37].

Evolutionary relationships of parabasalids are under constant

revision [8,10,11,38]. Historically, genes encoding the 18S and

5.8S ribosomal RNA subunits (rDNA) have been used to infer

parabasalid relationships at the greatest taxonomic breadth

[39,40,41], but many parts of these molecular phylogenies are

unresolved [9,11,42]. A cartoon consensus of recent 18S rDNA

phylogenies of a number of parabasalids is summarized in

Figure 1. Cloned degenerate polymerase chain reaction (PCR)

products of several genes encoding proteins such as glyceraldehyde

3-phosphate dehydrogenase (GAPDH) [8,9,43], malate dehydro-

genase (MDH) [44], enolase [45], a- and b-tubulin [7,11,46] have

also been used to infer the evolutionary relationships, albeit of a

less taxonomically-broad representation of the six parabasalid

groups. However, these markers are not ideal: parabasalid enolase

genes exhibit recombination [45], and MDH and GAPDH genes

appear to be most closely related to bacterial homologs via lateral

gene transfer [43,44,47,48]. In contrast, a- and b-tubulin genes

are more similar to eukaryotic homologs [7,46], making these two

and rDNA the only genes available until now for comparison of

parabasalids to other eukaryotes. However, all of these protein-

coding genes can be found duplicated in various parabasalid

genera, and individually lack resolution at different taxonomic

levels, while their phylogenies do not strongly corroborate one

another [7,43,46,49]. In spite of this, both GAPDH and 18S rRNA

genes typically converge upon the same six monophyletic groups

[8,9] and thus probably contribute most of the signals to published

analyses of concatenated parabasalid genes. These data suggest

that an alternate eukaryotic protein-coding gene that has not

undergone recombination, horizontal gene transfer, or duplication

might be more useful to resolve the relationships within

Parabasalia and between parabasalids and other eukaryotes.

Parabasalids tend to exhibit large genome sizes in contrast with

other parasites [50], consistent with widespread gene duplication

and the presence of families of transposable elements, as revealed

in the ,160 Mb genome sequence of T. vaginalis [13,51,52,53].

The widespread presence of duplicated genes makes it more

difficult to select phylogenetically informative protein-coding genes

for comparison at the same taxonomic breadth as rDNA markers

in this phylum, and further restricts our ability to resolve

relationships between species and conspecific isolates of para-

basalids. The highly repetitive nature of genomes in this group,

together with an inability to establish pure cultures of diverse

representative parabasalids make it likely that any taxonomically-

broad molecular phylogenetic survey of Parabasalia will continue

to rely on using a degenerate PCR technique (rather than whole

genome or transcriptome surveys) to gather sequence data from

genes chosen to elucidate the species tree. Furthermore, single-

copy genes are useful cytogenetic tags for distinguishing chromo-

somes, and would be useful to eventually establish genetic maps in

parabasalids [54,55]. A protein-coding genetic marker for

parabasalids that is easily isolated and unlikely to evolve by gene

duplication, horizontal gene transfer or gene loss is needed to: (i)

compare and corroborate with the morphological and rDNA

molecular phylogeny; (ii) improve our resolution of relationships

among and within major groups; and (iii) enable reliable species-

level identification of field isolates.

Consequently, the goal of this study was to investigate the

evolutionary relationships of a few representative cultivable

parasitic parabasalids relative to T. vaginalis lab strain G3, in

order to test several previous classifications, and evaluate the

genetic distance of candidates for further comparative genomic

analyses. The relationships of some of these organisms are unclear

from analyses of the loci conventionally used to compare diverse

parabasalids. While useful markers in many ways, single-copy

genes in the T. vaginalis genome [13] are not always conserved

enough among eukaryotes to be suitable candidates for the design

of degenerate primers for PCR (ref. [56] illustrates phylogenies of

a few variable but conserved exemplar proteins). Conventionally

used multicopy genes may be easier to amplify with apparent high

yields by degenerate PCR than single-copy genes, especially from

scarce uncultivable specimens, however they may also lack

resolution at various taxonomic levels. In Parabasalia these genes

exhibit difficulty both in resolving conspecific isolates and in

resolving the relationships between the most distantly related

members of the group. In this study we examine whether a well-

Evaluation of Markers for Parabasalid Phylogeny
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conserved single-copy gene corroborates the phylogenetic rela-

tionships of parasitic parabasalids determined by conventional

markers, using similar analytical methods.

Rpb1, a ubiquitous eukaryotic gene coding for the largest

subunit of RNA polymerase II, is a single-copy gene in T. vaginalis

isolate NIH:C1 as demonstrated by Southern blot analysis [57], a

single-copy gene in the complete genome sequence of T. vaginalis

isolate G3 [13], and also a single-copy gene in most eukaryotes

[58]. These characteristics and its large (,5 kb) intronless state in

T. vaginalis [57], indicate potential utility of Rpb1 sequence data for

inferring the phylogeny of groups within Parabasalia. Pms1, a mutL

homolog, is another potentially useful (and likely single-copy)

genetic marker in T. vaginalis that is ubiquitous in other eukaryotes

[54,56]. Here we report revised phylogenetic analyses of new and

existing parabasalid data from conventionally used protein-coding

genes, and the first phylogeny of Rpb1 proteins from a few

parasitic and free-living parabasalids and related microorganisms

in the Excavata. We encourage other investigators to begin using

single-copy Rpb1 and Pms1 genes to improve the phylogenetic

resolution of additional parabasalids and their relatives, following

this study.

Results and Discussion

Recent analyses of 18S rDNA [10], GAPDH [8,9], and

concatenated a- and b-tubulin, enolase, glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH) protein and 18S rDNA [7,11,49]

sequence data converge on dividing Parabasalia into six groups

(Figure 1). Membership within, and the relationships between,

these six groups are ambiguous, depending on the taxon sampling

and chosen outgroup; for example, Monotrichomonas is not always

resolved as a member of the Trichomonadea, and the position of

Hypotrichomonadea relative to Trichomonadea varies from one

analysis to the other. Here, we present the first phylogeny of

parabasalid Rpb1 sequences, in addition to updated analyses of

our new parabasalid GAPDH, Pms1 and EF1a sequences

compared to published data, and compare these results with

revised phylogenetic analyses of published a-tubulin, malate

dehydrogenase (MDH) and enolase sequence data.

Rpb1 resolves the phylogeny of three groups of
Parabasalia

We isolated Rpb1 genes from 19 parabasalids and six other

members of the Excavata by PCR using degenerate primers, and

hemidegenerate reactions using one degenerate and one specific

primer. All parabasalid primary PCR products were gel-isolated

and sequenced directly without cloning, except for Monotrichomonas

carabina Rpb1, where the template DNA quantity was low

(,10 ng/ml) and derived from a non-axenic culture. Generally,

the products from our simple PCR protocols were only cloned if

the yield from PCR was insufficient for direct sequencing, usually

attributed to a relatively scarce quantity of template DNA.

Consistent with the single-copy status of the Rpb1 gene in

Trichomonas vaginalis isolates G3 and NIH:C1, the Rpb1 genes we

sequenced from other organisms also appear to be single-copy.

Eight cloned PCR products of Monotrichomonas carabina Rpb1 had

identical sequences, consistent with a single-copy gene. No

sequence ambiguities (double peaks in the electropherograms)

were identified in any of the Rpb1 PCR products directly

sequenced from each parabasalid isolate with degenerate or

specific sequencing primers.

Our analyses of parabasalid Rpb1 proteins generated a fully

resolved phylogeny of various isolates, species and genera

(Figure 2A), within three classes that are consistent with prior

rDNA studies [37], and concatenated a- and b-tubulin, enolase

and GAPDH analyses of a few of the organisms [7,11]. All

Trichomonas specimens from three species form a monophyletic

group, and are included in the Trichomonadea together with

Tetratrichomonas, Pseudotrichomonas, Pentatrichomonas and Monotricho-

monas. Interestingly, Rpb1 resolves the evolutionary relationships

of some avian isolates consistent with the 18S rDNA and a-tubulin

phylogenies of these isolates relative to T. vaginalis, T. gallinae, T.

tenax, Trichomonas sp. and Tetratrichomonas gallinarum [59], and

analyses of 5.8S rDNA and internally transcribed spacers [60]. In

the Tritrichomonadea, Dientamoeba fragilis is most closely related to

Tritrichomonas foetus, and this group is most closely related to

Monocercomonas colubrorum and Monocercomonas sp. Ns-1PRR. Tricho-

mitus batrachorum and Hypotrichomonas acosta are clearly united as

members of the Hypotrichomonadea. Parabasalid Rpb1 sequences

exhibit two conserved amino acid insertions (Figure 2B), which

lend further support to the phylogenetic tree. One of these rare

genomic events unites Trichomonadea, and the other is unique to

Tritrichomonadea.

Comparative biochemistry of parabasalid Rpb1 proteins

indicates that resistance to the transcription elongation inhibitor

a-amanitin is limited to the genus Trichomonas, with variation in the

degree of a-amanitin sensitivity of other Trichomonadea,

Tritrichomonadea and Hypotrichomonadea [57,61]. Conserved

Figure 1. Cartoon of parabasalid evolutionary relationships summarized from published phylogenies. The consensus backbone
phylogenies shown are derived from (A) 18S rDNA [10,37], and (B) concatenated 18S rDNA genes and enolase, GAPDH, a- and b-tubulin proteins [11].
Dotted lines indicate prior results without 18S rDNA [7].
doi:10.1371/journal.pone.0020774.g001
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substitutions to glycine and valine at T. vaginalis Rpb1 amino acid

positions 780 and 781 in the domain typically involved in

polymerase translocation during transcription elongation in all

eukaryotes (Figure 2C, details in Figure S1) suggest that

parabasalid a-amanitin resistance evolved in the last common

ancestor of the genus Trichomonas, and can be attributed to these

two amino acid positions in the Rpb1 ‘‘a-amanitin binding

pocket’’ described previously [62,63,64,65,66]. Typical eukaryotic

a-amanitin sensitive Rpb1 proteins [65,66,67,68] usually encode

alanine and cysteine residues at those positions instead. We can

Figure 2. Rpb1 proteins resolve monophyletic Trichomonadea, Tritrichomonadea and Hypotrichomonadea, and species and
isolates within these groups. All data are from this study, except T. vaginalis isolates G3 and NIH:C1. (A) The phylogenetic tree topology
calculated by PhyML 3.0 from 1014 unambiguously aligned amino acids spanning conserved regions A to G of Rpb1 is shown (see Figure S1).
Thickened lines indicate the nodes supported by a Bayesian posterior probability of 1.00. Numbers at the nodes correspond to Bayesian posterior
probabilities, followed by percent bootstrap support $50% given by PhyML and RAxML (1000 replicates each), with LnL = 214857.5, a= 1.38,
pI = 0.21. Scale bar represents 0.1 amino acid substitution per site. *Asterisks indicate relationships also supported by insertions. ‘‘S’’ indicates a-
amanitin sensitivity, while ‘‘R’’ indicates resistance to a-amanitin [61]. (B) Conserved insertions in Rpb1 region A, with one unique insertion uniting
Trichomonadea and another unique insertion only found in Tritrichomonadea. 100% identical aligned amino acids are shown in bold, gaps in the
alignment indicated by dashes and #. (C) Conserved region E of Rpb1, which exhibits sensitivity to a-amanitin [67,68]. Arrows indicate glycine and
valine residues (A780G and C781V substitutions) that probably confer a-amanitin resistance to members of the Trichomonas genus. The complete
Rpb1 alignment is provided in the Dataset S1. GenBank accession numbers are shown at the left for each taxon.
doi:10.1371/journal.pone.0020774.g002
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infer from the Rpb1 phylogeny that P. keilini, M. carabina,

Monocercomonas sp. Ns-1PRR, D. fragilis, and H. acosta would likely

be sensitive to a-amanitin since their closest relatives are sensitive

[61], and where the data are available these organisms lack the

A780G and C781V substitutions found in Trichomonas.

Interestingly, our data indicates that Rpb1 genes are intronless in

the regions spanning conserved Rpb1 domains A through G in

metamonads, Parabodo caudatus, Diplonema sp. 2 and Percolomonas

cosmopolitus, while abundant predicted spliceosomal introns inter-

rupt the open reading frames of Naegleria gruberi, J. libera and

Malawimonas Rpb1 genes. This characteristic makes a ,3.1 kb

PCR amplicon from the Rpb1-coding sequence a good target

genetic marker for total DNA specimens from the intron-sparse

subgroups of the Excavata, while future work may benefit from

cDNA amplification of Rpb1 from intron-rich organisms. Howev-

er, additional data from intron containing excavate Rpb1 genes is

necessary for deducing patterns of intron loss or gain since the last

common ancestor of all excavates.

Our phylogenetic tree of Rpb1 from parabasalids and other

excavates rooted with Jakoba libera (Discoba) as the outgroup is

shown in Figure 3 (inferred from data in Dataset S1). Similar to

recent phylogenies of multiple concatenated proteins [5], this

analysis of Rpb1 also resolves Metamonada (Parabasalia, Pre-

axostyla (not shown) and Fornicata, represented here by the

diplomonads Giardia and Spironucleus) distinct from the Discoba.

Analyses of Rpb1 with and without constant sites, and with

different outgroups also recover Metamonada in the majority-rule

consensus topology, indicating that Discoba are at least as good as

any other outgroup to Metamonada (Figure S2 and Dataset S2,

and results not shown). The rooted analysis of Rpb1 in Figure 3
indicates that Hypotrichomonadea is more closely related to

Tritrichomonadea than it is to Trichomonadea, a specific

relationship that remains to be borne out once additional Rpb1

data is acquired from fresh isolates of uncultivable parabasalids

from Cristamonadea, Spirotrichonymphea and Trichonymphea.

While the relationship of Tritrichomonadea to Hypotrichomona-

dea shown in Figure 3 is inconsistent with results of our analyses

of GAPDH and other proteins (Figures 4 and 5), it is consistent

with relationships seen with some enolase and MDH paralogs

(Figure 5).

Morphology
The relationship between Tritrichomonadea and Hypotricho-

monadea that we observe in the Rpb1 phylogeny (Figure 3) is

also consistent with one morphological (synapomorphic) character

shared only by some members of both of these groups. The

undulating membranes of Tritrichomonas foetus (Tritrichomonadea)

and Trichomitus batrachorum (Hypotrichomonadea) are both sup-

ported by a costa comprised of A-type fibers [69,70], while other

members of these groups have a reduced costa (Hypotrichomonas

[71]) or lack a costa altogether (Monocercomonas [72], Dientamoeba

[73]), and the costae of Trichomonadea (e.g., Pentatrichomonas, [74])

are structurally arranged as B-type fibers though also considered

homologous [36]. If the hypothesis that some devescovines (within

Cristamonadea) also have a remnant A-type costa is correct

(discussed by [11] and references therein), then it is possible that A-

type costae were ancestral to the group comprised of Tritricho-

monadea, Cristamonadea and Hypotrichomonadea. Further

ultrastructural and molecular phylogenetic analysis of putative

basal lineages in this group such as Trichocovina, which has a costa

[75], might support this hypothesis. Simpson and Patterson

noticed a striking similarity between the arrangement of B-type

fibers in the parabasalian costa and the C-fibers of the jakobid

flagellar apparatus, and proposed the hypothesis that these

structures are homologous, a synapomorphy uniting the Para-

basalia with Excavata [1,76]. This hypothesis is now supported by

phylogenomic studies that support the position of Parabasalia in

Excavata [2,5,6]. Further conclusions are precluded pending

scrutiny of ultrastructural characters of a more diverse sample of

Tritrichomonadea and Hypotrichomonadea in comparison with

basal free-living lineages of the Trichomonadea (i.e., Monotrichomo-

nas).

Trichomonadea, Hypotrichomonadea, and GAPDH
We sequenced GAPDH from Pentatrichomonas hominis (Trichomo-

nadea) and analyzed all available parabasalid GAPDH predicted

protein sequences in GenBank, with and without an outgroup

(Dataset S3). Our GAPDH analyses assign the same genera to

the six groups of Parabasalia as previously published GAPDH

analyses [7,8,9,49], with modest to high support for the

monophyly of each group, and usually for the relationships of

genera within the groups (Figure 4A). We also analyzed

parabasalid GAPDH homologs rooted with their closest relatives

in Preaxostyla and Bacteria, with constant sites removed (Figure
S3), hoping to identify the position of the root of the parabasalid

tree. Relationships between the six parabasalid groups were

unsupported except by Bayesian analysis in the rooted tree, except

for the resolution of Cristamonadea as most closely related to

Tritrichomonadea. Hypotrichomonadea often appear to be

related as a sister to the Trichomonadea in molecular phylogenies

of 18S rDNA, GAPDH, enolase, a-tubulin and analyses of

concatenated sequences [7,8,9,11,38], a relationship also recov-

ered in the majority-rule consensus topology of our rooted

analysis. The addition of GAPDH from Pentatrichomonas hominis

(Figure 4A) has changed the unrooted tree topology, and we no

longer see this specific sister relationship between the Trichomo-

nadea and Hypotrichomonadea. Instead, the unrooted GAPDH

phylogeny resolves Trichomonadea as the closest relative to a

clade comprised of the Cristamonadea and Tritrichomonadea

with some support (Figure 4A). This relationship merits further

attention by expanding the taxon sampling of GAPDH in

Trichomonadea beyond three genera to include basal free-living

lineages such as Pseudotrichomonas and Monotrichomonas. Our

unrooted phylogeny of GAPDH also differs markedly from the

most recent concatenated analysis of 18S rDNA and GAPDH,

enolase, and a- and b-tubulin proteins in the close relationship of

the Spirotrichonymphea and Cristamonadea (with less than 50%

support) [11]. The results of the unrooted phylogeny (Figure 4A)

indicate that Spirotrichonymphea is a sister to the Trichonymphea

with moderate support, consistent with prior analyses of GAPDH.

Pms1 is a useful genetic marker in preliminary analyses
Figure 4B illustrates our phylogenetic analysis of another

protein coded by a single-copy gene, Pms1, which is a mismatch

repair protein homologous to prokaryotic mutL and is conserved

in all eukaryotes [56]. We sequenced Pms1 genes from Trichomonas

tenax, Pentatrichomonas hominis and Tritrichomonas foetus. We recently

demonstrated that Pms1 genes in T. vaginalis isolates commonly

cultured in the laboratory are genetically diverse and useful for

phylogenetic analysis of conspecific isolates [54]. Our phylogenetic

analysis of more diverse parabasalid Pms1 proteins rooted with

diplomonads as the outgroup indicates that Pms1 will also be a

useful genetic marker for resolving parabasalid relationships at the

genus and species level, and provides modest support for

distinguishing Trichomonadea as a group apart from Tritrichomonas

foetus in this pilot study. Unlike Rpb1 genes, we did not amplify

Pms1 genes from parabasalids using universal eukaryotic degen-

erate PCR primers. However, we did isolate the T. tenax Pms1 gene

Evaluation of Markers for Parabasalid Phylogeny
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using degenerate oligonucleotides designed from the specific

amino acid sequences of T. vaginalis Pms1 in conserved regions

of a eukaryotic Pms1 multiple sequence alignment. Inspection of

Pms1 amino acid sequences of Trichomonadea and T. foetus

aligned with Pms1 from diplomonads Giardia intestinalis (syn.

lamblia) and Spironucleus vortens (Dataset S4) indicates that future

genetic studies might exploit conserved parabasalid Pms1 amino

acid motifs DNG(P/C)GI and PWNCPGH for the design of

specific parabasalid degenerate forward and reverse Pms1 PCR

primers for an approximately 1.5 kb amplicon, but that experi-

ment is beyond the scope of this study.

EF1a preliminary analyses reveal paralogy
We identified homologs of EF1a genes from the databases and

by degenerate PCR, to evaluate the usefulness of this ubiquitous

protein-coding gene for resolving the relationships of T. vaginalis

isolates and different species and genera of parabasalids

(Figure 5A and Dataset S5). We isolated and sequenced eight

EF1a genes by PCR and assembled three others from expressed

sequence tags (from dbEST). Tritrichomonadea was resolved as a

monophyletic group but Trichomonadea was not. Relationships of

EF1a paralogs and orthologs from five T. vaginalis isolates (G3,

C1:NIH, T1, B7RC2 and ATCC30326) were poorly resolved with

this gene. EF1a genes appear to be recently duplicated within the

lineages of Tritrichomonas foetus, Pentatrichomonas hominis and T.

vaginalis. Since our degenerate PCR amplicons always yielded

several distinct sequences including these paralogs, and the

phylogeny did not resolve P. hominis among the Trichomonadea,

we did not develop EF1a further as a phylogenetic marker for

Parabasalia.

Other protein-coding genes
We re-analyzed published sequences of available homologs of

other protein-coding genes conventionally used to infer para-

basalid phylogenies available as of June 2010, to evaluate their

usefulness for phylogenetic resolution especially at the species and

isolate level. These revised analyses of published a-tubulin genes

and MDH and enolase amino acid sequences offer somewhat

better resolution than prior analyses of these genes with fewer

organisms, but they do not resolve the six monophyletic

parabasalid groups (Figure 5 and Datasets S6, S7 and S8).

We examined the relationships of multiple copies of these genes

encoded in the genome sequence of Trichomonas vaginalis G3 (all on

different scaffolds) with available data from other T. vaginalis

isolates that lack a complete genome sequence. Recent analyses of

b-tubulin continue to reveal pervasive duplication in diverse

parabasalids and fail to resolve the six parabasalid groups [49,77],

consistent with our b-tubulin analysis (not shown). Thus a- and b-

tubulin, MDH and enolase sequences do not appear to be useful

for resolving the relationships of T. vaginalis isolates since they

appear prone to phylogenetic artifacts arising from comparisons of

non-orthologous paralogs unless all the paralogs from each isolate

Figure 3. Rooted parabasalid Rpb1 phylogeny shows that Hypotrichomonadea are closer to Tritrichomonadea than to
Trichomonadea. New sequences for this study are indicated in bold type, *indicates free-living species, and $indicates data from a publicly
available genome sequence. This tree topology was calculated by PhyML 3.0 from 936 unambiguously aligned amino acids spanning conserved
regions A to G of Rpb1. Thickened lines indicate the nodes supported by a Bayesian posterior probability of 1.00. Numbers at the nodes correspond
to Bayesian posterior probabilities from the best post burn-in 9500 trees, followed by percent bootstrap support $50% given by PhyML and RAxML
(1000 replicates each), and parsimony (100 replicates, PAUP*). LnL = 226857.70, a= 1.43, pI = 0.088. Removal of constant sites did not change the
topology or support in an additional RAxML analysis (results not shown). Metamonada is also recovered in majority-rule consensus topologies when a
different outgroup is used (Figure S2). Scale bar represents 0.1 amino acid substitution per site. The complete Rpb1 alignment is provided in the
Dataset S1. GenBank accession numbers or Joint Genome Institute locus ID are shown at the left for each taxon.
doi:10.1371/journal.pone.0020774.g003
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are identified and sequenced. The genes encoding these proteins

usually are not variable enough to permit the design of paralog-

specific PCR primers. Since most investigations into the

relationships among isolates rely on high-throughput sensitive

and accurate PCR-based approaches to isolating and sequencing

orthologous loci, these genes appear impractical for further pursuit

Figure 4. (A) GAPDH resolves six monophyletic parabasalid groups, but exhibits multiple nonidentical gene copies per taxon, while
(B) Pms1 resolves Trichomonadea. The consensus tree topologies of the sets of best trees calculated by Bayesian inference are shown. Data
generated in this study is highlighted by bold type. Scale bar represents 0.1 amino acid substitution per site. Thickened lines indicate the nodes
supported by a Bayesian posterior probability of 1.00. Numbers at the nodes correspond to Bayesian posterior probabilities, followed by percent
bootstrap support $50% given by PhyML and RAxML (1000 replicates each). The alignments are provided in Dataset S3 (GAPDH) and Dataset S4
(Pms1). (A) GAPDH. This consensus topology of the 8750 best trees calculated by Bayesian inference was constructed from 324 aligned amino acids.
LnL = 27323.20, a= 1.06 (0.72,a,1.48), pI = 0.14 (0.053,pI,0.22). (B) Pms1. This consensus topology of the 9500 best trees was calculated by
Bayesian inference from 538 aligned amino acids. LnL = 27126.44, a= 3.54 (2.70,a,3.98), pI = 0.040 (0.011,pI,0.071). GenBank accession numbers
or Joint Genome Institute locus ID are shown at the left for each taxon.
doi:10.1371/journal.pone.0020774.g004
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in that direction. Enolase is known to exhibit phylogenetic

discordance because of recombination [45]. While prior analyses

with fewer genera indicated that a- and b-tubulin paralogy does

not interfere with their ability to resolve the relationships among

parabasalid genera in concatenated analyses [7], our analysis

indicates that increased taxon sampling does not improve the

resolution among genera or classes at a level comparable to Rpb1,

GAPDH or rDNA phylogenies.

Conclusions
Genetic analysis of eukaryotic microorganisms is an increasingly

common technique for establishing their relationships, with major

impacts on their taxonomy. The use of a small unique part of the

genome, such as a single-copy gene, as a genetic marker offers a

straightforward approach for elucidating the phylogenetic position

of diverse parabasalids. Rpb1 amino acid sequences proved useful

in resolving parabasalid relationships at various levels of

taxonomic resolution, i.e., isolate, species, genus and upward.

Improved taxon sampling of Rpb1 genes from metamonads and

other protists will help resolve the placement of Parabasalia in the

evolutionary tree of eukaryotes with even greater confidence.

GAPDH is also useful for resolving relationships beyond the genus

level within Parabasalia, and could be a useful marker for

determining the position of the root of the Parabasalid tree with

expanded taxon sampling and using closely-related Preaxostyla as

the outgroup. Pms1 genes are also potentially useful for resolving

higher taxonomic levels within the Parabasalia. Owing to

pervasive duplication or recombination, genes coding for tubulin,

Figure 5. Phylogenetic analyses of parabasalid EF1a, a-tubulin, enolase and MDH exhibit discordant topologies and multiple
nonidentical gene copies per taxon. The consensus tree topologies of the sets of best trees calculated by Bayesian inference are shown.
Thickened lines indicate the nodes supported by a Bayesian posterior probability of 1.00. Numbers at the nodes correspond to Bayesian posterior
probabilities, followed by percent bootstrap support $50% given by PhyML and RAxML (1000 replicates each). The alignments are provided in the
Datasets S5 (EF1a), S6 (a-tubulin), S7 (enolase) and S8 (MDH). (A) EF1a. T. foetus, P. hominis and T. vaginalis EF1a sequences determined in this
study are indicated in bold. 1230 nucleotides partitioned by codons were analyzed, giving this consensus topology of the 9250 best trees.
LnL = 25053.71, a= 2.66 (1.21,a,5.26), pI = 0.043 (0.0015,pI,0.13). Scale bars represent 0.05 nucleotide substitution per site. (B) a-tubulin. This
consensus topology of the 8000 best trees was drawn from 1041 aligned nucleotides that were partitioned by codons. LnL = 210690.49, a= 1.27
(1.02,a,1.59), pI = 0.018 (0.00083,pI,0.049). Scale bar represents 0.1 nucleotide substitution per site. *indicate the same Trichomonas sp. from
which we also obtained Rpb1 genes. (C) Enolase. Analysis of 331 aligned amino acids gave this consensus topology of the 8250 best trees.
LnL = 29781.32, a= 0.84 (0.70,a,1.00), pI = 0.013 (0.00034,pI,0.044). Scale bar represents 0.1 amino acid substitution per site. (D) MDH. 308
amino acids were analyzed, giving this consensus topology of the 9000 best trees. LnL = 26019.55, a= 1.48 (1.07,a,2.07), pI = 0.049
(0.0032,pI,0.11). Scale bar represents 0.1 amino acid substitution per site. GenBank accession numbers are shown at the left for each taxon.
doi:10.1371/journal.pone.0020774.g005
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MDH, EF1a and enolase proteins [45] should be abandoned as

phylogenetic markers within the Parabasalia, and efforts shifted

towards Rpb1, which is also useful to compare Parabasalia with all

other eukaryotes. Rpb1 and Pms1 genes behave like a single-copy

gene in all of the parabasalids included in the study, regardless of

their genome size. Furthermore, Rpb1 exhibits specific conserved

insertions diagnostic of Trichomonadea and Tritrichomonadea.

Our recent analysis of microsatellites and other single-copy genes

demonstrated genetic diversity among T. vaginalis isolates [54],

consistent with results presented here. Thus far, Rpb1 is the only

protein-coding gene that has been isolated and sequenced directly

using degenerate primers (without requiring cloning) from diverse

cultivable Parabasalia. Rpb1 exhibits enough informative substi-

tutions between isolates, species, and beyond that it should be

useful for inferring the evolutionary relationships of other

genetically diverse parabasalids, and their close relatives.

Materials and Methods

Database searches
Keyword searches of the National Center for Biotechnology

Information (NCBI) protein and nucleotide non-redundant

database revealed homologs of Rpb1, GAPDH, enolase, MDH,

a- and b-tubulin, Pms1 and EF1a. Their DNA and inferred

protein sequences were used as queries for BLASTn and BLASTp

searches [78] of parabasalid homologs in the database of non-

human non-mouse expressed sequence tags (dbEST-other) and the

NCBI nonredundant database. These BLASTP searches were

extended to the publicly available databases of the Joint Genome

Institute (Spironucleus Rpb1 and Pms1, and Emiliania and

stramenopile Rpb1), the Broad Institute (Capsaspora and Thecamonas

Rpb1) and NCBI to retrieve representative outgroup sequences for

Rpb1, GAPDH and Pms1 proteins.

We also obtained partial gene sequence data for Pentatrichomonas

hominis and Tritrichomonas foetus Rpb1, EF1a, Pms1 and P. hominis

GAPDH genes from preliminary 2.56 coverage genomic shotgun

sequencing (Roche 454 Technologies) at NYU Langone Medical

Center’s Genome Technology Core. We used DNA and inferred

protein sequences from GenBank or our own degenerate PCR

results as queries for local BLASTn and tBLASTn searches of the

nucleotide sequence assemblies to identify sequences.

Sources of DNA templates
Study organisms are summarized in Table 1. Cells of

Tritrichomonas foetus KV-1 (American Type Culture Collection

(ATCC) #30924, Mannassas VA, USA) were cultured axenically

at 37uC in Diamond’s TYM medium [79] pH 7.2 supplemented

with 10% fetal bovine serum and 0.1 U/ml penicillin-streptomy-

cin (Invitrogen, Carlsbad CA, USA). T. vaginalis isolates CI6 [54]

and B7RC2 were cultured similarly in TYM medium [79] at

pH 6.2 and supplemented with 10% horse serum (Invitrogen,

Carlsbad CA, USA) instead. Total DNA was extracted by

disrupting the cells in UNSET buffer followed by phenol-

chloroform extraction and isopropanol precipitation [80]. Geno-

mic DNA was prepared using the same method from P. hominis

cultured axenically by Shelby Bidwell at 37uC in Diamond’s LYI

medium [15] supplemented with 10% bovine serum and 0.1 U/

ml penicillin-streptomycin (Invitrogen, Carlsbad CA, USA). Total

DNA was similarly prepared directly from frozen stabilates of H.

acosta, T. batrachorum, M. colubrorum and Monocercomonas sp. Clonal

cultures of T. gallinae/Racing pigeon/Austria/8855-C3/06 and T.

gallinarum/Turkey/Germany/4114-C5/05 were established, axe-

nized, propagated and DNA prepared as described [60,81,82].

Dr. Patricia Johnson (University of California – Los Angeles)

provided genomic DNA for T. tenax, and T. vaginalis isolate T1. Jeff

Cole and Robert Molestina (ATCC) provided the genomic DNA

of M. carabina, P. caudatus, Diplonema sp. 2, J. libera, P. cosmopolitus

and Malawimonas. Dr. Naoji Yubuki (University of British

Columbia) provided genomic DNA of freshly isolated P. keilini

[37]. Dr. John Ellis (University of Technology – Sydney, Australia)

provided genomic DNA from D. fragilis [83]. Rick Gerhold and

Dr. Larry McDougald (University of Georgia) provided genomic

DNA of U.S. T. gallinae isolate COHA4 and Trichomonas sp. isolates

WWDO1200 and CGDO1 [59].

PCR conditions and amplicon sequencing
Rpb1 amino acid sequences were obtained from GenBank,

aligned using MUSCLE v. 3.7 [84,85] and alignments adjusted

manually using MacClade 4.08 [86] (Datasets S1 and S2). We

designed degenerate forward and reverse oligonucleotides (Ta-
bles S1 and S2) based upon conserved amino acid sequence

motifs in the multiple sequence alignment (Figure S1), with

reference to published Rpb1 PCR primers [58]. Relative to T.

vaginalis, degenerate primers Rpb1AF1 vs Rpb1GR1 correspond to

a ,3.1 kb PCR product in Parabasalia. We designed PCR

primers specific to T. vaginalis Rpb1 from isolates NIH:C1 and G3

(NCBI GI# 1143739 and 154414042, and Table S1). Once we

collected Rpb1 sequences from a few parabasalid genera, amino

acid sequences were aligned and additional internal degenerate

and specific primers designed to use for sequencing reactions and

PCR (Table S1). Degenerate and specific primers listed in Table
S2 were used to amplify and sequence P. caudatus, Diplonema sp. 2,

J. libera, P. cosmopolitus and Malawimonas Rpb1 genes. Amplicons

obtained by primary degenerate PCR were often extended by

hemidegenerate PCR to obtain longer Rpb1 sequences.

Combinations of degenerate and T. vaginalis-specific primers

were used to amplify parabasalid Rpb1 homologs by PCR. The

most useful primer combinations for primary PCR amplification

of diverse new parabasalid Rpb1 genes were degenerate primers

Rpb1AF1 vs Rpb1GR1 (,3.1 kb amplicon), and degenerate

Rpb1AF1 vs T. vaginalis-specific TvRpb1DR (,1.2 kb amplicon).

If the Rpb1AF1 vs TvRpb1DR combination proved more useful,

then after sequencing the PCR product we paired Rpb1GR1 vs. a

specific forward primer designed from the 39 end of the PCR

product to amplify the remaining ,1.8 kb by hemidegenerate

PCR.

Trichomonas vaginalis Pms1 degenerate oligonucleotides

TvPms1dF2 (forward, 59 ATGAAGACGCTGRGYAARCAYGA

39) vs. TvPms1dR1 (reverse, 59 GTCGGTCTACCGTGCGGR-

CARTTCCANGG 39) were used to generate and then sequence

an ,1.6 kb PCR amplicon of the Trichomonas tenax Pms1 gene.

Reverse primers TtxPms1SR1 (59 GACTGGTTCCATTGTCC

39) and TtxPms1SR2 (59 GAATTAGTCGTTGGTGACGC 39)

were used for internal sequencing. EF1a genes were amplified and

sequenced with described degenerate primers 1XF vs. 10XR [87].

We amplified genes from total DNA by PCR with 5Prime

MasterTaqTM DNA polymerase (Hamburg, Germany) and Strata-

gene Cloned PfuTM DNA polymerase (La Jolla CA, USA), as

recommended by the manufacturers, with ,10–40 ng DNA,

250 mM each dNTP (Fermentas, Glen Burnie MD USA),

1.5 mM MgCl2 and 1 mM each primer (synthesized by Eurofins

MWG Operon [Hunstville AL, and Ebersberg, Germany], or by

Integrated DNA Technologies (IDT), Coralville IA, USA) per

reaction. We amplified Rpb1 genes of T. gallinae 8855-C3/06 and T.

gallinarum 4114-C5/05 isolates from 20 ng of total DNA with the

Qiagen HotStarTaqTM Master Mix Kit (Vienna, Austria), as

directed by the manufacturer. Reaction conditions were 95uC for
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3 minutes followed by 40 cycles at 94uC for 30 seconds, 45, 50 or

55uC for 1 minute and 72uC for 2 or 3 minutes+6 seconds/cycle,

then ending at 72uC for 10 minutes. M. carabina, Diplonema sp. 2, J.

libera and P. cosmopolitus Rpb1 thermocycling conditions were 95uC
for 3 minutes followed by 40 cycles at 92uC for 90 seconds, 45, 50,

55 or 60uC for 90 seconds and 72uC for 3 or 5 minutes+6 seconds/

cycle, then ending at 72uC for 10 minutes. We fractionated PCR

products by agarose gel electrophoresis (0.8% agarose with 16TAE

buffer run for 60 minutes at 110 V), visualized by ethidium bromide

staining, excised, and then purified them with the Promega

WizardTM Gel Isolation Kit (Madison WI, USA) and QIAquickTM

Gel Extraction Kit (Qiagen, Vienna, Austria).

Internal sequencing primers were typically necessary since most

amplicons were too large to be adequately covered by only

sequencing their ends. We sequenced most PCR products directly

by primer walking using BigDyeTM 3.1 technology (Applied

Biosystems (ABI), Foster City CA, USA). Sequencing reactions

were purified using CleanSeqTM magnetic beads (Beckman-

Coulter, Beverly MA, USA), and run on an ABI 3130xlTM or

ABI 3730TM instrument (ABI, Foster City CA, USA). T. gallinae

isolate 8855 clone C3/06 and T. gallinarum isolate 4114 clone C5/

05 PCR products were sequenced similarly by Eurofins MWG

Operon (Ebersberg, Germany).

A few Rpb1 PCR amplicons obtained from DNAs of low

concentration (,10 ng/ml) that were prepared from non-axenic

cultures were cloned, since the PCR amplicon yield was too low to

be sequenced directly. These included Rpb1 genes of a single

parabasalid (M. carabina) and six other excavates.

Prior to sequencing, we cloned Rpb1 PCR amplicons from M.

carabina (conserved regions D through G, ,1.8 kb), and various

overlapping degenerate and hemidegenerate Rpb1 PCR amplicons

from P. caudatus, Diplonema sp. 2, J. libera, P. cosmopolitus and

Malawimonas. We fractionated PCR amplicons electrophoretically

in 0.5–0.75% low melt: 0.5–0.75% NuSieveTM GTG agarose

(Fisher, Pittsburgh PA, and BioWhittaker, Walkersville MD,

USA), excised bands and cloned them directly into the pSC-

ATM vector (StrataCloneTM kit, Stratagene, La Jolla CA, USA)

according to the manufacturer’s instructions. We screened

transformants by the size of their plasmid inserts by PCR with

M13 forward vs reverse primers, cycling at 94uC for 2 minutes

followed by 30 cycles at 94uC for 1 minute, 57uC for 2 minutes

and 72uC for 90 seconds, then ending at 72uC for 5 minutes [88].

PCR reagents were as indicated above, including Taq DNA

polymerase from New England Biolabs (Ipswich MA, USA) and

Fisher (Pittsburgh PA, USA). We isolated (Eppendorf FastPlas-

midTM Kit, Hamburg Germany) and sequenced selected clones as

described above using M13 forward and reverse and gene-specific

primers (IDT, Coralville IA, USA).

We assembled sequences and annotated putative open reading

frames by using SequencherTM 4.8 (Genecodes, Ann Arbor MI,

USA) with reference to pairwise comparisons made by BLASTx of

GenBank and to multiple sequence alignments of homologous

proteins made with MUSCLE v. 3.7 [84,85]. Where applicable,

vector and PCR primer sequences were excluded from the

assemblies. All sequences determined in this study have been

deposited in GenBank and assigned accession numbers

Table 1. Study organisms used in this project.

Species Isolate Availability Isolated from Xenic/axenic Ref.

Trichomonas vaginalis B7RC2 ATCC #50167 human vagina, Greenville NC USA axenic [102]

Trichomonas vaginalis T1 Jane Carlton human vagina, Taipei, Taiwan axenic [103]

Trichomonas vaginalis CI6 BioMed Diagnostics human vagina, Puerto Rico axenic [54]

Trichomonas sp. RWG-2007-2 WWDO1200 Rick Gerhold white winged dove, USA axenic [59]

Trichomonas sp. RWG-2007-1 CGDO1 Rick Gerhold common ground dove, USA axenic [59]

Trichomonas tenax Hs-4:NIH ATCC #30207 human mouth axenic [15]

Trichomonas gallinae COHA4 Rick Gerhold Cooper’s Hawk, USA axenic [59]

Trichomonas gallinae 8855-C3/06 Michael Hess, VMU racing pigeon, Austria axenic [60]

Tetratrichomonas gallinarum 4114-C5/05 Michael Hess, VMU turkey, Germany axenic [82]

Pentatrichomonas hominis Hs-3:NIH ATCC #30000 human intestine, Korea axenic [104]

Pseudotrichomonas keilini NY0170 ATCC #PRA-328 free-living, mangrove sediments, Japan. xenic [37]

Monotrichomonas carabina QBSA-1 ATCC #50700 free-living xenic [41]

Monocercomonas colubrorum W-453-73 ATCC #30225 lizard (Tupinambis teguixin), ON Canada axenic [105]

Monocercomonas sp. Ns-1PRR ATCC #50210 snake (Natrix sipedon), MD USA axenic [105]

Tritrichomonas foetus KV-1 ATCC #30924 Bos taurus, Czech Republic axenic [106]

Dientamoeba fragilis G John Ellis, U. of Sydney human stool, Australia (culture died) xenic [83]

Trichomitus batrachorum G 11 ATCC #30066 snake (Elaphe obsolete), Bronx Zoo, NY USA axenic [105]

Hypotrichomonas acosta 5 (L5) ATCC #30070 snake Crotalus sp., Argentina axenic [105]

Diplonema sp. 2 IIIGPC ATCC #50224 free-living, marine aquarium MD USA axenic [107]

Parabodo caudatus RCP ATCC #50361 free-living, sediment near shore, MD USA xenic [108]

Percolomonas cosmopolitus AE-1 ATCC #50343 free-living, marine aquarium MD USA xenic [109]

Jakoba libera CB ATCC #50422 free-living, deep marine sediments xenic [110]

Malawimonas jakobiformis AF2 ATCC #50310 free-living, Lake Malawi enriched sediment xenic [111]

‘Malawimonas californiana’ CA-1 ATCC #50740 free-living, California enriched sediment NK [5]

doi:10.1371/journal.pone.0020774.t001
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HM016222–HM016241, HQ436408–HQ436411, HQ834947

and HQ834948 for Rpb1, HM071003 for GAPDH, HQ595807–

HQ595809 for Pms1, and HM217351–HM217359 for EF1a.

Phylogenetic analysis
We used phylogenetic analyses to infer the evolutionary

relationships of Rpb1 and other protein-coding genes. We initially

constructed multiple alignments of amino acid sequences using

MUSCLE v. 3.7 [84,85], then inspected and adjusted them

manually using MacClade 4.08 [86]. We only used unambiguously

aligned amino acid sites or codons for phylogenetic analyses.

Alignments including our new data are provided in Datasets S1,
S2, S3, S4, S5, S6, S7 and S8.

We used MrBayes v. 3.12 [89,90], PhyML [91,92], and

RAxML v. 7.0.4 or 7.2.7 [93,94] for phylogenetic analyses, hosted

by the University of Oslo Bioportal ([95], http://www.bioportal.

uio.no/), the CIPRES Science Gateway Portal v. 1.0, v. 2.2, and v.

3.1 at the San Diego Supercomputer Center ([96], http://www.

phylo.org/portal/), or the South of France Bioinformatics

Platform (http://www.atgc-montpellier.fr/phyml/). We ran

MrBayes for 107 generations, with four incrementally heated

Markov chains, a sampling frequency of 103 generations and the

temperature set at 0.5. Among-site substitution rate heterogeneity

was corrected using an invariable and eight gamma-distributed

substitution rate categories and either the general time reversible

(GTR) model of nucleotide substitutions or the WAG model for

amino acid substitutions [97], abbreviated herein as GTR+I+8c or

WAG+I+8c. The consensus tree topology, the arithmetic mean

log-likelihood (lnL) for this topology, and branch support were

estimated from the set of sampled trees with the best posterior

probabilities. Means and 95% confidence intervals for the gamma

distribution shape parameter (a) and the proportion of invariable

sites (pI) were also estimated for each alignment that was analyzed.

We analyzed Rpb1 proteins with PhyML v. 3.0 for 1000 bootstrap

replicates using the LG model for amino acid substitutions [98,99]

(LG+I+8c); other proteins were analyzed similarly or using

WAG+I+8c in PhyML v. 2, for Figures 4 and 5. Amino acid

sequence phylogenies computed using RAxML v. 7.0.4 or

RAxML v. 7.2.7 utilized the WAG+I+8c or LG+I+8csubstitution

models for 1000 bootstrap replicates at the CIPRES Science

Gateway Portal v. 1.0 or v. 3.1 at the San Diego Supercomputer

Center ([100], http://www.phylo.org/portal/). Protein-coding

nucleotide sequence alignments of EF1a and a-tubulin were

analyzed using the GTR+I+8c substitution model in all three

programs. Finally, the Rpb1 amino acid alignment comprised of

parabasalids, diplomonads and Discoba was also subject to 100

bootstrap replicates of maximum parsimony analysis using PAUP*

v. 4.0b10 with the default settings [101].

Supporting Information

Figure S1 Alignment of Parabasalid Rpb1 proteins
indicating conserved regions A–H. Conserved regions A–H

are underlined. 100% identical amino acid residues indicated in

bold, conserved insertions highlighted in grey, and the a-amanitin

sensitive region highlighted by a black box. Dashes indicate gaps

or missing data. Arrows indicate the positions of PCR primers.

Amino acid positions are indicated numerically in parentheses.

(PDF)

Figure S2 Rooted eukaryotic Rpb1 phylogeny with
constant sites removed recovers monophyletic Metamo-
nada topology. New sequences from this study are indicated in

bold type. This tree topology was calculated by RAxML 7.2.7

from 857 unambiguously aligned amino acids spanning conserved

regions A to G of Rpb1, with constant sites removed. Thickened

lines indicate the nodes supported by a Bayesian posterior

probability of 1.00. Numbers at the nodes correspond to Bayesian

posterior probabilities from the best post burn-in 1500 trees

(chains run for 26106 generations), followed by percent bootstrap

support $50% given by PhyML (100 replicates) and RAxML

(1000 replicates). LnL = 256091.16, a= 1.33, pI = 0.0013. Scale

bar represents 0.1 amino acid substitution per site. The alignment

is provided in the Dataset S2. GenBank accession numbers, Joint

Genome Institute or Broad Institute locus IDs are shown at the left

for each taxon.

(PDF)

Figure S3 GAPDH phylogeny rooted with Preaxostyla
and Bacteria does not resolve interrelationships of six
parabasalid groups. This consensus topology of the 9500 best

trees calculated by Bayesian inference was constructed from 254

unambiguously aligned amino acids, with constant sites removed.

LnL = 28779.10, a= 1.52 (1.25,a,1.83), pI = 0.0039 (0.000094

,pI,0.014). Scale bar represents 0.1 amino acid substitution per

site. Thickened lines indicate the nodes supported by a Bayesian

posterior probability of 1.00. Numbers at the nodes correspond to

Bayesian posterior probabilities, followed by percent bootstrap

support $50% given by PhyML and RAxML (1000 replicates

each). Data generated in this study is highlighted by bold type. The

alignment is provided in the Dataset S3. Genbank accession

numbers are shown at the left for each taxon.

(PDF)

Table S1 Primers used to amplify and sequence
fragments of parabasalid Rpb1 genes. Primers are listed

from 59 to 39 positions within the gene.

(PDF)

Table S2 Primers used to amplify and sequence
fragments of Discoba Rpb1 genes. Primers for Parabodo

caudatus, Diplonema sp. 2, Percolomonas cosmopolitus, Jakoba libera and

Malawimonas are listed from 59 to 39 positions within the gene.

(PDF)

Dataset S1 Complete alignment of excavate Rpb1
protein sequences in FASTA format.

(FASTA)

Dataset S2 Alignment of Rpb1 data used for Figure S2,
in NEXUS format with MrBayes command block.
Ambiguously aligned or constant sites are removed.

(NEXUS)

Dataset S3 Complete alignment of GAPDH protein
sequences from Parabasalia, Preaxostyla and Bacteria,
in NEXUS format.

(NEXUS)

Dataset S4 Complete alignment of metamonad Pms1
protein sequences in FASTA format.

(FASTA)

Dataset S5 Complete alignment of parabasalid EF1a
nucleotide sequences in FASTA format.

(FASTA)

Dataset S6 Complete alignment of parabasalid a-tubu-
lin nucleotide sequences in NEXUS format.

(NEXUS)

Dataset S7 Complete alignment of parabasalid enolase
protein sequences in FASTA format.

(FASTA)
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Dataset S8 Complete alignment of parabasalid MDH
protein sequences in FASTA format.
(FASTA)
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