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Abstract

Concurrent chemoradiation with 5-fluorouracil (5-FU) is widely accepted for cancer treatment. However, the interactions
between radiation and 5-FU remain unclear. Here, we evaluated the influence of local irradiation on the pharmacokinetics of
5-FU in rats. The single-fraction radiation was delivered to the whole pelvic fields of Sprague-Dawley rats after computerized
tomography-based planning. 5-FU at 100 mg/kg was prescribed 24 hours after radiation. A high-performance liquid
chromatography system was used to measure 5-FU in the blood. Matrix metalloproteinase-8 (MMP-8) inhibitor I was
administered to examine whether or not RT modulation of 5-FU pharmacokinetic parameters could be blocked. Compared
with sham-irradiated controls, whole pelvic irradiation reduced the area under the concentration versus time curve (AUC) of
5-FU in plasma and, in contrast, increased in bile with a radiation dose-dependent manner. Based on protein array analysis,
the amount of plasma MMP-8 was increased by whole pelvic irradiation (2.8-fold by 0.5 Gy and 5.3-fold by 2 Gy) in
comparison with controls. Pretreatment with MMP-8 inhibitor reversed the effect of irradiation on AUC of 5-FU in plasma.
Our findings first indicate that local irradiation modulate the systemic pharmacokinetics of 5-FU through stimulating the
release of MMP-8. The pharmacokinetics of 5-FU during concurrent chemoradiaiton therapy should be rechecked and the
optimal 5-FU dose should be reevaluated, and adjusted if necessary, during CCRT.
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Introduction

Radiation therapy (RT) is used as an effective local treatment

modality to inhibit cell proliferation, induce cell death and suppress

tumor growth [1]. To improve the treatment outcome, in terms of both

locoregional control and survival, the concurrent use of chemotherapy

during radiation therapy (CCRT) is now the standard treatment for

various malignancies, especially locally advanced cancers. Among the

drugs used to enhance RT effect, 5-fluorouracil (5-FU) is one of the

most commonly used chemotherapeutic agents of CCRT [2,3,4,5].

In the past, RT was solely used as a local treatment and its effect was

estimated by local effect model [6]. However, growing evidence shows

that irradiation has direct DNA damage-dependent effects as well as

sending signals to neighboring cells. The reactions of non-irradiated

cells responding to signals produced by neighboring irradiated cells are

termed the bystander effect [7,8]. Furthermore, longer-range effects

occurring within or between tissues are also reported and are termed

abscopal, out-of-field or distant bystander responses [9]. Several

molecules play roles in bystander signaling that involve stress responses

and cell-cell signaling, however, none of them is specific to radiation

exposure. Several studies show the alterations of plasma substance

levels responding to radiation, such as interleukin 6 (IL-6) [10], IL-8

[11], transforming growth factor-beta 1 (TGF-b1) [12], tumor necrosis

factor a (TNF-a) [13], reactive oxygen species [14] and reactive

nitrogen species [15]. Yet, no strong evidence for causal relationships of

these molecules is provided. Recently, we reported that abdominal

irradiation could significantly modulate the systemic pharmacokinetics

of 5-FU at 0.5 Gy, off-target area in clinical practice, and at 2 Gy, the

daily treatment dose for target treatment in an experimental rat model

[16]. Additionally, the results from a clinical investigation showed that

colorectal cancer patients with lower AUC of 5-FU during adjuvant

chemotherapy had lower disease-free survival [17]. Taken together,

these lines of evidence support the importance and necessity to search

for the mediators responsible for the unexpected effect of local RT on

systemic pharmacokinetics of chemotherapeutic agents, such as 5-FU.

In the present study, we investigated possible soluble mediators

involved in the effect of localized whole pelvic RT, with liver sparing,

on the pharmacokinetics of 5-FU in rats.

Results

Plasma pharmacokinetic parameters of 5-FU and whole
pelvic irradiation

To verify that local RT modulated the systemic pharmacoki-

netics of 5-FU, we established an experimental model using CT-

based planning and pelvic irradiation in rats, and integrated it into
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a pharmacokinetic assay system. Intriguingly, we found that pelvic

irradiation markedly reduced the AUC of 5-FU in rats by 17.6%

at 0.5 Gy (P = 0.019) and 21.5% at 2 Gy (P = 0.008) (Fig. 1A). Of

special interest, the radiation at 2 Gy to the rat whole pelvis

simulated the daily treatment dose to a human, whereas the low-

dose radiation (0.5 Gy) simulated the dose deposited in the

generous, off-target area in clinical practice. As shown in Table 1,

pelvic irradiation significantly decreased mean residence time

(MRT), and by contrast, increased the clearance value of 5-FU

when compared to non-irradiated controls. There was no

significant difference in the values of half-life (T1/2), maximum

observed plasma concentration (Cmax) or volume of distribution

at steady state (Vss) within the tested groups.

Bile pharmacokinetic parameters of 5-FU and whole
pelvic irradiation

We found that pelvic irradiation markedly increased the AUC

of 5-FU in bile of rats by 25.1% at 0.5 Gy and 30.6% at 2 Gy

(Fig. 1B). Pelvic irradiation significantly decreased Cmax and

clearance value, and in contrast, increased MRT and Vss of 5-FU,

when compared to non-irradiated controls. Of interest, 2-Gy

irradiation decreased Cmax, and in contrast, increased MRT

(P = 0.008) and Vss (P = 0.015) of 5-FU to an extent greater than

that of the 0.5-Gy group. There was no statistically significant

difference between the 0.5-Gy and control groups for Cmax and

Vss. Furthermore, no significant difference in T1/2 was noted

among the three groups (Table 2).

Hepatic function after RT or 5-FU treatment
The serum concentrations of alanine aminotransferase (ALT)

levels were no significant difference between the 5-FU-treated,

2Gy-treated, 0.5 Gy followed by 5-FU-treated and 2 Gy followed

by 5-FU-treated and control groups (Fig. 2).

The cytokines respond to RT or 5-FU in the plasma
Compared with the control group, there were no significant

differences between the RT 2Gy alone, 5-FU alone, RT 0.5 Gy

followed by 5-FU and RT 2 Gy followed by 5-FU group in the

levels of transforming growth factor-beta 1 (TGF-b1) and tumor

necrosis factor a (TNF-a) (Fig. 3A and 3B).

Alteration of soluble factors in plasma caused by whole
pelvic irradiation

To assess the changes in profile of soluble factors involved with

whole pelvic irradiation, rat plasma samples were collected and

subjected to a cytokine antibody array assay (Fig. 4). In

comparison with control (untreated) group (Fig. 4A) and 5-FU

alone group (Fig. 4C), the observable dose-dependent changes in

plasma levels of soluble factors included matrix metalloproteinase-

8 (MMP-8), monocyte chemoattractant protein 1 (MCP-1),

cytokine-induced neutrophil chemoattractant -1 (CINC-1) and

tissue inhibitor of metalloproteinase-1 (TIMP-1). Among these

factors, only the increase in MMP-8 level was consistent in

triplicate experiments. Compared with control groups, RT 2Gy

Figure 1. The area under the concentration vs. time curve (AUC) of 5-fluorouracil (5-FU) 100 mg/kg administered to rats in the
control, 0.5-Gy and 2-Gy groups. The transverse axis illustrates time in minutes and the vertical axis represents the concentration of 5-FU. (A)
Plasma. (B) Bile. Each group’s data was collected from six rats.
doi:10.1371/journal.pone.0021000.g001

Table 1. Plasma pharmacokinetics of 5-fluorouracil (100 mg/
kg, i.v.) in rats after whole pelvic irradiation with or without
0.5 Gy or 2 Gy.

Parameters Controls Whole pelvic irradiation

0 Gy 0.5 Gy 2 Gy

AUC (min mg/mL) 47256402 38936329* 37116484*

t1/2 (min) 34.769.6 24.763.5 29.967.1

Cmax (mg/mL) 164636 167623 179619

MRT (min) 36.563.0 30.963.7* 25.064.8*

CL (mL/kg/min) 21.361.9 25.862.0* 27.363.6*

Vss (mL/kg) 778688 7756116 670660

AUC: area under the plasma concentration vs. time curve; t1/2: terminal
elimination phase half-life; Cmax: maximum observed plasma concentration;
MRT: mean residence time; CL: total plasma clearance; Vss: volume of
distribution at steady state.
*The mean difference is significant at the 0.05 level in comparison to the control
group.
doi:10.1371/journal.pone.0021000.t001

RT Modulate the PK of 5-FU
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alone could increase the expression of MMP-8 by factors of 3.8

(Fig. 4B). When compared with 5-FU alone group, the plasma

levels of MMP-8 increased in both the RT 0.5 Gy followed by 5-

FU (Fig. 4D) and RT 2 Gy followed by 5-FU groups (Fig. 4E) in a

dose-dependent manner by factors of 2.8 and 5.3, respectively.

Intracellular 5-FU levels with or without recombinant
MMP-8 by high performance liquid chromatography

We examined the role of recombinant MMP-8 on intracellular

concentration of 5-FU in HepG2 (Human liver tumor-derived

cells possessing biochemical profiles characteristic of normal

hepatocytes) without receiving radiation. There were no significant

effect on the AUC of 5-FU between the recombinant MMP-8 plus

5-FU and 5-FU alone groups (Fig. 5). We found that recombinant

MMP-8, not induced by irradiation, will not influence intracellular

concentration of 5-FU in liver cells, mimicking a pharmacokinetic

changes at cellular level.

Modulation of 5-FU pharmacokinetic by irradiation was
reversed by MMP-8 inhibitor

We next examined the role of MMP-8 on the effect of RT on 5-

FU pharmacokinetics using an MMP-8 inhibitor. Neither the

MMP-8 inhibitor alone nor its vehicle had a significant effect on

Table 2. The bile of 5-Fluorouracil (100 mg/kg, i.v.)
pharmacokinetics in rats after whole pelvic irradiation with
and without 0.5 and 2 Gy.

Parameters Controls Whole pelvic irradiation

0 Gy 0.5 Gy 2 Gy

AUC (min mg/mL) 1180649 1477678* 15406101*

t1/2 (min) 9.260.4 10.360.5 12.962.8

Cmax (mg/mL) 129622 120614 9366.0*{

MRT (min) 8.961.1 11.160.5* 13.961.3*{

CL (mL/kg/min) 84.863.6 67.963.6* 65.164.3*

Vss (mL/kg) 7546102 753625 903655*

AUC: area under the plasma concentration vs. time curve; t1/2: terminal
elimination phase half-life; Cmax: maximum observed plasma concentration;
MRT: mean residence time; CL: total plasma clearance; Vss: volume of
distribution at steady state.
*The mean difference is significant at the 0.05 level in comparison to the control
group.
{The mean difference is significant at the 0.05 level between the 0.5 and 2 Gy
groups.

doi:10.1371/journal.pone.0021000.t002

Figure 2. Plasma alanine aminotransferase (ALT) levels in rats of the control, 5-FU-treated only, 2Gy-treated only, 0.5 Gy followed
by 5-FU-treated and 2 Gy followed by 5-FU-treated groups. The serum concentrations of alanine aminotransferase (ALT) levels were not
significantly different between all tested groups. N = 5 for each group.
doi:10.1371/journal.pone.0021000.g002
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the AUC of 5-FU in comparison with the controls (Fig. 6). We

found that pretreatment with MMP-8 inhibitor significantly

attenuated the decline in AUC of 5-FU caused by pelvic

irradiation (AUCirradiation versus AUCMMP-8 inhibitor+irradiation was

3305 versus 3963 min mg/mL, P,0.05). Moreover, the decreased

MRT and increased clearance value caused by irradiation were

completely reversed by use of the MMP-8 inhibitor (Table 3).

Discussion

After proof of the concept that local RT affected systemic

pharmacokinetics of chemotherapeutics using 5-FU as a model, we

next screened for possible soluble factors responsible for this effect,

which was identified as MMP-8. MMP-8, also known as

collagenase-2 or neutrophil collagenase, is a member of the zinc-

dependent interstitial collagenase subgroup of the MMP family of

neutral proteinases [18]. We demonstrated that MMP-8 possessed

unexpected bioactivity in modulating the pharmacokinetics of 5-

FU.

Polymorphonuclear neutrophils (PMNs) are the main source of

MMP-8 in humans and mice [19,20]. MMP-8 is stored in the

granules of PMNs and is released upon degranulation [21]. Fisher

et al. [22] reported that MMP-8 protein levels in human skin were

increased approximately 4-fold within 8 h and remained elevated

for 24 h after ultraviolet irradiation. Radiation treatment at tumor

bearing sites induces inflammation in the irradiated field and

recruits T lymphocytes, neutrophils, lymphocytes, macrophages,

plasma cells and dendritic cells [18,23,24]. Additionally, irradia-

tion induces up-regulation of the genes of the main proinflamma-

tory chemokines [25]. In the present study, we irradiated the

whole pelvis of rats, which could have delivered a radiation dose to

circulating neutrophils, tissue and bone marrow macrophages and

within the pelvis. Collectively, this raises the possibility that pelvic

irradiation could stimulate neutrophils and/or the other inflam-

matory cell ontogeny, induce inflammatory stress, and enhance

the secretion of MMP-8 (Fig. 4) as well as various other

proinflammatory mediators. Additionally, several studies show

the alterations of plasma substance levels responding to radiation,

such as TGF-b1 [12] and TNF-a [13]. Moreover, TGF-b could be

a target for 5-FU via c-Jun NH2-terminal kinase/activator

protein-1 activation in human fibroblasts [26]. In addition,

TNF-a involves in the regulation of fluoropyrimidine-activating

enzymes, Uridine phosphorylase (UPase), which induces UPase

gene expression with consequent improvement of 5-FU antipro-

liferative activity [27]. However, in the current study, the levels of

TGF-b1 and TNF-a are not increased in the RT alone, 5-FU

alone or RT followed by 5-FU groups when compared with

control group (Fig. 3A and 3B). These data suggest that MMP-8

appears to play a major role in local RT-induced modulation of

systemic 5-FU pharmacokinetics but not through these cytokines.

Harty MW et al. [28] reported that polymorphonuclear cell-

derived MMP8 plays an important role for liver repair in their

reversible biliary obstruction model. The current study shows that

the application of pelvic RT or 5-FU would not cause the damages

of liver function. Thus, the response of MMP-8 induced by RT in

RT-PK phenomena would not be the process of inflammatory

infiltration to liver such as severe damage caused by biliary

obstruction. Besides, there are no differences of viability (data not

show) and intracellular 5-FU levels (Fig. 5) for 5-FU-treated HepG2

with or without recombinant MMP-8. HepG2 cells maintain many

of the morphological and biochemical characteristics of normal

hepatocytes, such as the secretion of most plasma proteins expected

from liver cells, including apolipoprotein B [29]. The result suggests

that recombinant MMP-8, not induced by irradiation, will not

influence the PKs of 5-FU in liver cells and has no significant

toxicity to human hepatoblastoma-derived cell line, HepG2. Taken

together, MMP-8 may not modulate the liver function.

Another important issue is the similar, but lesser, effect of low-

dose RT on 5-FU pharmacokinetics (Fig. 1). Body distribution of

low-dose RT (0.5 Gy, for example) in clinical practice becomes

greatly generous with advanced radiotherapy techniques and

modalities, such as intensity-modulated radiotherapy, helical

Figure 3. The cytokines respond to irradiation (RT) and 5-fluorouracil (5-FU) in plasma for control, RT 2 Gy alone, 5-FU alone, RT 0.5
Gy followed by 5-FU and RT 2 Gy followed by 5-FU groups. (A) The level of transforming growth factor beta 1 (TGF-b1) in plasma. (B) The level
of tumor necrosis factor alpha (TNF-a) in plasma. Each group’s data was collected from five rats.
doi:10.1371/journal.pone.0021000.g003

RT Modulate the PK of 5-FU
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tomotherapy, rapid arc radiotherapy, volumetric modulated arc

therapy and others, in comparison with conventional RT. While

accepting the benefits of targeting the tumors and sparing the

critical organs by using these advanced techniques [30,31], that

one remains cautious the generous, low-dose irradiation could

produce unexpected or unwanted biological effects. Clinically, we

previously observed that low-dose, off-target radiation delivered by

highly conformal tomotherapy could cause severe toxicity to the

critical organs around the targets, such as lungs, and cause

radiation pneumonitis [32]. Yet, the medical community has no

comprehensive understanding regarding the biological effects of

generous, low-dose RT. We hope this study will increase our

knowledge of these effects and provide an experimental model to

understand the biological effects of generous, low-dose RT in the

era of highly conformal RT.

About 80% of 5-FU is catabolyzed by the liver via the

dihydropyrimidine dehydrogenase (DPD) pathway to generate

toxic 5-fluoro-5,6-dihydro-uracil, whereas the anabolic pathway,

via orotate phosphoribosyl transferase, produces active metabolites

including 5-fluorouridine-59-monophosphate, 5-fluorouridine, and

5-fluoro-29-deoxyuridine [33,34]. The overall toxicity was twice as

high in patients with profound DPD deficiencies (,45% of the

mean DPD activity of a control population) when compared to

patients with moderate DPD deficiencies (between 45% and 70%

of the mean DPD activity of a control population), as reported by

Milano and the coauthors [35]. Because 10% to 20% of 5-FU is

excreted unchanged in the urine [36], for patients with renal

dysfunction, the plasma concentration of 5-FU on nondialysis days

is significantly higher than on dialysis days, and this may be due to

the removal of some factors from plasma by hemodialysis, which

inhibit DPD activity [37]. In addition, 5-FU has a relatively

narrow therapeutic index, a strong correlation is described

between exposure to 5-FU and both hematologic and gastrointes-

tinal toxicity [38]. Thus, if the liver or kidneys fall into the

Figure 4. Cytokine profile of rat plasma treated with whole pelvic irradiation. The amount of matrix metalloproteinase-8 (MMP-8)
increased in 0.5-Gy and 2-Gy irradiated groups when compared with the control group. A map of the locations of cytokine antibodies spotted onto
the protein chip is shown on the up side of the Figure. Dotted squares indicate the location of MMP-8. Each cytokine is represented by duplicate
spots in the locations shown. Cytokine antibody arrays assay of (A) untreated control group, (B) whole pelvic irradiation (RT) with 2 Gy only, (C) 5-
fluorouracil (5-FU) alone, (D) RT with 0.5 Gy followed by 5-FU and (E) RT with 2 Gy followed by 5-FU. The cytokine array image represents results of
one of three independent experiments, which show similar patterns of expression.
doi:10.1371/journal.pone.0021000.g004
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irradiated volume,[16] DPD, a rate limiting step in the catabolism

of 5-FU [39], may be affected by radiation injury to liver or

kidneys. However, in the current study, the liver and kidneys are

excluded from the whole pelvic irradiation field (Fig. 7). In

addition, the ALT levels were not significantly different between

the control, 5-FU-treated, or pelvic RT groups with or without 5-

FU. (Fig. 2) Thus, the effect of RT on AUC of 5-FU noted in this

study may not be caused by direct modulation of liver function by

RT or 5-FU.

Compared with the control group, whole pelvic irradiation

decreased the AUC of 5-FU in the plasma to a statistically

significant level (Fig. 1A). In contrast, irradiation increased the AUC

of 5-FU in the bile significantly (Fig. 1B). It was accompanied by a

reduction in MRT and increase in clearance value in the plasma,

but an increase in MRT and reduction of clearance value in the bile.

With respect to pharmacokinetics, this suggests that pelvic

irradiation could facilitate the excretion of 5-FU.

Given that the concurrent use of chemotherapeutics in

combination with localized conformal RT improves clinical

treatment outcomes for an increasing number of malignancies

[2,3,4,5], our results show that both localized target-in and generous

target-off irradiation could affect 5-FU pharmacokinetics, and

provides a reason for considering the adjustment of chemothera-

peutic administration during the RT course. The effect of localized

RT on systemic pharmacokinetics of chemotherapeutic agents or

the other drugs clearly needs further clinical evaluation.

Materials and Methods

Materials and reagents
The 5-FU and high-performance liquid chromatography

(HPLC)-grade methanol were purchased from Sigma Chemicals

(St. Louis, MO, USA) and Tedia Company, Inc. (Fairfield, OH,

Figure 5. Intracellular 5-fluorouracil (5-FU) levels for 50 mM 5-FU treated HepG2 (Human liver tumor-derived cells possessing
biochemical profiles characteristic of normal hepatocytes) with or without 10 mg/mL recombinant MMP-8 by high performance
liquid chromatography.
doi:10.1371/journal.pone.0021000.g005

Figure 6. The plasma concentration versus time curve (AUC) of
5-FU post irradiation was reversed by the matrix metallopro-
teinase-8 (MMP-8) inhibitor. The area under the plasma concentra-
tion versus time curve (AUC) of 5-FU 100 mg/kg administered to rats in
the control group without solvent, control group with solvent, whole
pelvic 2-Gy irradiation with solvent, and whole pelvic 2-Gy irradiation
with solvent and MMP-8 inhibitor. The transverse axis illustrates time in
minutes and the vertical axis represents the concentration of 5-FU in
the plasma. Each group’s data was collected from four rats.
doi:10.1371/journal.pone.0021000.g006

RT Modulate the PK of 5-FU
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USA), respectively. Milli-Q grade water (Millipore, Bedford, MA,

USA) was used for the preparation of solutions and mobile phases.

Animals and sample preparation
Adult, male Sprague-Dawley rats (300620 g body weight) were

provided by the Laboratory Animal Center at National Yang-

Ming University (Taipei, Taiwan). They were housed in a specific

pathogen-free environment and had free access to food (Labora-

tory Rodent Diet 5001, PMI Nutrition International, LLC, MO,

USA) and water. All experimental animal surgery procedures were

reviewed and approved by the animal ethics committee of Mackay

Memorial Hospital, Taipei, Taiwan (MMH-A-S-98011).

Table 3. The plasma of 5-Fluorouracil (5-FU) (100 mg/kg, i.v.) pharmacokinetics in rats treated with and without MMP-8 inhibitor
then delivered to whole pelvic irradiation with 2 Gy.

Parameters

Controls
(without
solvent)

Controls (with
solvent)

Whole pelvic
Irradiation 2 Gy

with solvent
with solvent and MMP-8
inhibitor

5-FU

AUC (min mg/mL) 42856215* 42856141* 3305628 39636427*

t1/2 (min) 33.3616.1 27.863.0 31.068.8 32.369.9

Cmax (mg/mL) 151617 146635 132651 122629

MRT (min) 3761.7* 3663.7* 2663.8 3662.1*

CL (mL/kg/min) 23.461.1* 23.460.8* 30.360.3 25.462.8*

Vss (mL/kg) 859622 836697 7846110 9116127

AUC: area under the plasma concentration vs. time curve; t1/2: terminal elimination phase half-life; Cmax: maximum observed plasma concentration; MRT: mean
residence time; CL: total plasma clearance; Vss: volume of distribution at steady state.
*The mean difference is significant at the 0.05 level in comparison to the whole pelvic irradiation with solvent and 5-FU group.
doi:10.1371/journal.pone.0021000.t003

Figure 7. Computed tomography was used for simulation of the whole pelvic field. The cranial margin was set at the top of bilateral iliac
crest for the whole pelvic field. Conventional radiotherapy was used to deliver the radiation dose via the anterior-posterior (AP) and PA portals.
doi:10.1371/journal.pone.0021000.g007

RT Modulate the PK of 5-FU
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The rats were anesthetized with urethane 1 g/ml and a-

chloralose 0.1 g/ml (1 ml/kg by intraperitoneal injection), and

were immobilized on a board when undergoing computed

tomography for simulation of the whole pelvic field. The cranial

margin was set at the top of the bilateral iliac crests for the whole

pelvic field (Fig. 7). Conventional radiotherapy was used to deliver

the radiation dose via the anterior-posterior (AP) and PA portals.

The experimental animals were randomized to the control, 2-Gy

alone, 5-FU alone, 0.5-Gy followed by 5-FU, and 2-Gy followed

by 5-FU groups. Each group’s data was collected from six rats.

Allometric scaling of the radiation doses (0.5 and 2 Gy) between

humans and rats, respectively, was an important consideration in

the study. The reason for the use of 0.5 and 2 Gy for the rats was

to simulate the relevant dosage range for daily treatment of the

human torso, for safety and workability, as previously reported

[16]. Briefly, there was no direct comparison of allometric scaling

using whole pelvic irradiation. Nonetheless, the allometric scaling

of the lethal dose (LD50) (Gy) of total-body irradiation for humans

and rats is 4 Gy and 6.75 Gy, respectively [40]. Given that this

difference is moderate, we decided to use 0.5 and 2 Gy for rats to

simulate the relevant dose range for daily treatment of the human

torso.

Ambre et al. [41] studied the elimination of 5-FU and its

metabolites after intravenous administration of 5-FU at 15 and

150 mg/kg to rats. The results of that study suggested that

saturation of the catabolic pathway occurred after the higher dose.

Jarugula et al. [42] proved that the dose-normalized area under the

curve (AUC) was significantly higher after administration of

100 mg/kg (mean 6 standard deviation, SD, 1.1460.55 mg?h/

L/mg) than after 50 mg/kg (mean 6 SD, 0.5060.16 mg?h/L/

mg) or 10 mg/kg (mean 6 SD, 0.4360.11 mg?h/L/mg). Thus,

we chose 100 mg/kg as a feasible 5-FU dose in rats for

examination of 5-FU pharmacokinetic parameters, based on

previous reports [16,41,42].

Twenty hours after RT, the rats were administered 100 mg/kg

of 5-FU in 2 mL of normal saline by intravenous infusion into the

femoral vein over a 2-min period [42]. A 150-mL blood sample

was withdrawn from the jugular vein with a fraction collector

according to a programmed schedule at 5, 15, 30, 45, and 60 min,

and 1.5, 2, 2.5, and 3 h following drug administration. The blood

samples were immediately centrifuged at 33006g for 10 min. The

resulting plasma (50 mL) was added to 1 mL of ethyl acetate in a

clean tube, vortexed for 5 min, and centrifuged at 59006g for

10 min. After centrifugation, the upper organic layer containing

the ethyl acetate was transferred to a new tube and evaporated to

dryness under flowing nitrogen. The dried residue was reconsti-

tuted with 50 mL of Milli-Q water (Millipore). A 20-mL aliquot of

the solution was injected to the high performance liquid

chromatography-ultraviolet (HPLC-UV) detection system.

High performance liquid chromatography
Chromatographic analysis was performed on a Model LC-

20AT HPLC system (Shimadzu, Tokyo, Japan) equipped with a

Model SPD-20A wavelength UV detector, SIL-20AC autosam-

pler, and an LC Solution data processing system. A LiChroCART

RP-18e column (Purospher, 250 mm, 5 mm, Merck, Darmstadt,

Germany) with a LiChroCART 4-4 guard column was used for

separation. The mobile phase comprised 10 mM potassium

phosphate-methanol (99:1, v/v, pH 4.5 adjusted by 85% phos-

phoric acid), and the flow rate of the mobile phase was 1 ml/min.

The detection wavelength was set at 266 nm. Under these

conditions, the retention time of 5-FU was 5.4 min. The linearity

of calibration curves was demonstrated by the good determination

coefficients (r2) obtained for the regression line. Good linearity was

achieved over the range of 0.01–5 mg/ml, with all coefficients of

correlation greater than 0.998. All samples were freshly prepared,

including the standard solutions, from the same stock solution

(5 mg/mL). The 0.01-mg/mL limit of quantification was defined

the lowest concentration on the calibration curve that could be

measured routinely with acceptable bias and relative SD. The

overall mean precision, defined by the relative SD, ranged from

0.2% to 11.0%. Analytical accuracy was expressed as the

percentage difference of the mean observed values compared to

known concentrations varying from 210.0% to 14.0%. The

recovery results for concentrations of 0.1–10 mg/mL were 92.0%–

94.0%

Evaluation of hepatic functions
The plasma levels of alanine aminotransferase (ALT) were

measured to check the influence of different modalities for hepatic

function by a standard colorimetric method using a Synchron

LX20 spectrophotometer (Beckman Coulter) and manufacturer-

supplied reagents.

Serum cytokine analysis
The plasma levels of cytokines (transforming growth factor beta

1 (TGF-b1) and tumor necrosis factor alpha (TNF-a)) obtained

from the mouse blood samples were analyzed using enzyme-linked

immunosorbent assay (ELISA) (R&D Systems) according to the

manufacturer’s instructions.

Cytokine antibody array
The rat plasma samples were analyzed using the a cytokine

antibody array (RayBioH Mouse Cytokine Antibody Arrays II,

RayBiotech, Inc., Norcross, Ga.) according to the manufacturer’s

instructions and as previously described [43] to detect possible

mediators of the 5-FU–RT interaction. This particular array

simultaneously detects 34 murine cytokines. (Fig. 4) Briefly,

cytokine array membranes were blocked in 2 ml of 16 blocking

buffer for 30 min and then incubated with 1 ml of plasma sample

at room temperature for 1–2 h. Samples were then decanted from

each container, and the membranes were washed three times with

2 ml of l6wash buffer I, followed by two washes with 2 ml of l6
wash buffer II at room temperature with shaking. Membranes

were then incubated in 1:250 diluted biotin-conjugated primary

antibodies at room temperature for 1–2 h and washed as

described above, before incubation in 1:1000 diluted horseradish

peroxidase (HRP)-conjugated streptavidin. After incubation in

HRP-conjugated streptavidin for 30–60 min, membranes were

washed thoroughly and exposed to a peroxide substrate (detection

buffers C and D, RayBiotech, Inc.) for 5 min in the dark before

imaging. Membranes then were exposed to X-ray film (Kodak X-

OMAT AR film) at room temperature for 1 minute. Signal

intensities were analyzed with Fuji Film Multi Gauge V2.1. Biotin-

conjugated IgG served as a positive control at six spots, where it

was used to identify membrane orientation and to normalize the

results from different membranes that were being compared. For

each spot, the net optical density was determined by subtracting

the background optical density from the total raw optical density

and the optical density of each cytokine was represented as a

percentage of the positive control.

Determination of intracellular 5-FU levels with or without
recombinant MMP-8 by high performance liquid
chromatography

To examine the effect of MMP-8 on normal liver cells, a human

hepatoblastoma-derived cell line, HepG2, was used to simulate
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normal liver cells in our additional experiments. After treatment

with 10 mg/mL recombinant MMP-8 plus 50 mM 5-FU or 50 mM

5-FU alone, HepG2 (Human hepatocellular carcinoma cell line)

cells were collected every 10 min until 60 min and washed twice in

phosphate-buffered saline (PBS) followed by centrifugation at

13000 rpm for 5 min. To extract intracellular 5-FU, an extraction

solution containing 0.1% Triton X-100 in dimethyl sulfoxide was

added to the cell pellets, and this suspension was vortexed and

centrifuged at13000 rpm for 5 min. The resulting solution was

mixed with an equal volume of acetonitrile for deproteination.

The protein precipitates were removed by centrifugation

(13000 rpm for 5 min), and a 20 mL aliquot of the supernatant

was subjected to high performance liquid chromatography analysis

as mention before.

Mediator inhibitor preparation and experiment
MMP-8 inhibitor I (Calbiochem, La Jolla, CA) was adminis-

tered to the rats to examine whether or not RT modulation of 5-

FU pharmacokinetic parameters could be blocked. Briefly, MMP-

8 inhibitor I was dissolved in PEG400/ethanol [4:1 (v/v)] solution,

yielding a final concentrations of 5 mg/mL. Two hours before

irradiation, 10 mg/kg of MMP-8 inhibitor I was infused into the

rat’s tail vein over a 2-min period. After that, the rats were

anesthetized with urethane 1 g/ml and a-chloralose 0.1 g/ml

(1 ml/ kg by intraperitoneal injection), and were immobilized on a

board to undergo computed tomography for simulation of the

whole pelvic field and received irradiation, as described previously.

The experimental animals were randomized to control without

PEG400/ethanol [4:1 (v/v)] solution (0 Gy), control with solvent

(0 Gy), whole pelvic irradiation (2 Gy) with solvent and whole

pelvic irradiation (2 Gy) with MMP-8 inhibitor and solvent groups,

respectively. After RT sham RT 20 hrs, all rats received 5-FU

(100 mg/kg) injections and the pharmacokinetic parameters of 5-

FU were analyzed. Each group’s data was collected from four rats.

Pharmacokinetics and data analysis
Pharmacokinetic parameters including the AUC for concentra-

tion versus time, terminal elimination phase t1/2, Cmax, MRT,

total plasma clearance and Vss were calculated using the

pharmacokinetics calculation software WinNonlin Standard

Edition, Version 1.1 (Scientific Consulting, Apex, NC, USA)

using a compartmental method.

Statistical methods
The results are presented as means 6 standard deviations.

Differences in actuarial outcomes between the groups were

calculated using one-way analysis of variance (ANOVA), with

post hoc multiple comparisons. All analyses were performed using

the SPSS, version 12.0 (SPSS, Chicago, IL, USA).
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