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The genetic dissection of complex traits may ultimately require a large number of SNPs to be genotyped in
multiple individuals who exhibit phenotypic variation in a trait of interest. Microarray technology can enable
rapid genotyping of variation specific to study samples. To facilitate their use, we have developed an automated
statistical method (ABACUS) to analyze microarray hybridization data and applied this method to Affymetrix
Variation Detection Arrays (VDAs). ABACUSprovides a quality score to individual genotypes, allowing
investigators to focus their attention on sites that give accurate information. We have applied ABACUSto an
experiment encompassing 32 autosomal and eight X-linked genomic regions, each consisting of ∼ 50 kb of
unique sequence spanning a 100-kb region, in 40 humans. At sufficiently high-quality scores, we are able to
read ∼ 80% of all sites. To assess the accuracy of SNP detection, 108 of 108 SNPs have been experimentally
confirmed; an additional 371 SNPs have been confirmed electronically. To access the accuracy of diploid
genotypes at segregating autosomal sites, we confirmed 1515 of 1515 homozygous calls, and 420 of 423 (99.29%)
heterozygotes. In replicate experiments, consisting of independent amplification of identical samples followed by
hybridization to distinct microarrays of the same design, genotyping is highly repeatable. In an autosomal
replicate experiment, 813,295 of 813,295 genotypes are called identically (including 351 heterozygotes); at an
X-linked locus in males (haploid), 841,236 of 841,236 sites are called identically.

The central goal of human genetics is to identify, characterize
and ultimately understand the specific DNA variants that
contribute to human phenotypes in general, and human dis-
ease in particular (Lander and Schork 1994; Chakravarti 1999;
Zwick et al. 2000, 2001; On-line Mendelian Inheritance in
Man 2001). The genetic approach to this problem is, in prin-
ciple, straightforward. First, we identify individuals showing
phenotypic variation for the trait of interest. Second, we
genotype genetic variants, such as microsatellites or SNPs, in
all of the individuals in a study. Third, we perform appropri-
ate statistical tests to identify any genetic variants correlated
with variation in the phenotype. Finally, if such variants are
found, we perform additional experiments to demonstrate a
causal relationship.

Step two poses a question: What genetic variants should
be examined? The answer to this question must balance tech-
nological and practical considerations. Nevertheless, in the
best of all worlds, a researcher would be able to determine the
genotype of every base in every sample, that is, a complete
resequencing of the entire genome of all individuals under
study. No technology currently exists to do this in an eco-
nomical manner. Moreover, any technology used for this pur-
pose must be capable of extraordinary resequencing accuracy.

Nucleotide diversity in the general human population is

∼ 8 � 10�4 per site (Cargill et al. 1999; Halushka et al. 1999;
The International SNP Map Working [TISMW] Group 2001;
Venter et al. 2001; this study). This implies that a randomly
selected chromosome will differ from the human reference
sequence at ∼ 8 of every 10,000 bases. Now, imagine a tech-
nology that allowed one to rapidly and inexpensively deter-
mine the genotype of an individual at every nucleotide site of
interest with an accuracy of 99.9%. Such a technology would
be remarkable, but insufficient. The problem with only 99.9%
accuracy is that this implies 10 errors for every 10,000 bases.
Because the true rate of variation is eight in 10,000, 55.5% of
the identified variants will be errors. This is unacceptably
high. The error rate needs to be much lower.

Microarrays are inherently parallel devices that offer the
promise of determining the genotypes of individuals at every
site of interest with a limited level of effort (Fodor et al. 1991;
Southern et al. 1992; Pease et al. 1994; McGall et al. 1996;
Lipshutz et al. 1999). Variation Detection Arrays (VDAs)
manufactured by Affymetrix have been used to such an end
with success (Chee et al. 1996; Hacia et al. 1996, 1998a,b,
1999, 2000; Hacia and Collins 1999; Halushka et al. 1999;
Wang et al. 1998). Unfortunately, it has also been reported
that between 12% and 45% of the detected variants are false
(Cargill et al. 1999; Halushka et al. 1999; Wang et al. 1998).
This indicates that VDAs are, on average, between 99.99% and
99.93% accurate.

Although microarrays may be, on average, insufficiently
accurate, it is certainly possible that a large fraction of geno-
type calls are, in fact, much more accurate than 99.9% and a
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smaller fraction are much less than 99.9% accurate. The ap-
proach used here is to construct an objective statistical
framework to distinguish genotype calls that can be made
with extraordinary accuracy from those less reliable. The
need to build such a framework for microarrays is not a
new idea (Southern et al. 1992) and the objectives are to
strive for some of the accomplishments that Green and
colleagues (Nickerson et al. 1997; Ewing and Green 1998;
Ewing et al. 1998; Gordon et al. 1998; Rieder et al. 1998) have
made for automated sequencing, namely the assignment
to individual genotype calls of a quality score that is larger
for calls more likely to be accurate. Green and colleagues,
in fact, have done even more; phred provides not only
a quality score that increases with increasing accuracy, but
also a direct estimate of the probability that a base call is
correct.

Researchers performing automated sequencing routinely
rely on these phred scores (Ewing and Green 1998; Ewing et
al. 1998), and in conjunction with certain other neighbor-
hood quality rules (Altshuler et al. 2000; Mullikin et al. 2000),
can achieve an extremely high level of accuracy for SNP dis-
covery (T.I.S.M.W. Group 2001). This work attempts the same
task. An objective statistical framework is developed to assign
to each VDA genotype call a quality score. Certain simple
neighborhood rules are applied, and sites in which extraordi-
narily high confidence can be placed are distinguished from
those less reliable sites. In contrast to automated sequencing

experiments that employ only haploid targets (Altshuler et al.
2000; Mullikin et al. 2000), this statistical method can be ap-
plied to both haploid and diploid targets. We call the system
ABACUS(from Adaptive Background genotype Calling
Scheme, see below) and will show that, in general, greater
than 99.9999% accuracy can be achieved on >80% of the
genotype calls on a VDA.

RESULTS
High-density VDAs were fabricated using standard photoli-
thography and solid-phase DNA synthesis by Affymetrix, Inc.,
as described previously (Fodor et al. 1991; McGall et al. 1996;
Lipshutz et al. 1999). Each of the 70 distinct VDA designs,
designated CWRS-1 through CWRS-70, consisted of ∼ 300,000
features with a feature size of 24 � 20 µm (Fig. 1). A feature
consists of ∼ 106 copies of a 25-bp long oligonucleotide probe
of defined sequence. To query a specific site determined from
the human genome reference sequence, four features are tiled
on the VDA. The four features differ only by the central or
13th base, which consists of each of the four possible nucleo-
tides (Fig. 1). Each human genome site is queried for both the
forward and reverse strands at different locations on the VDA.

After amplification and hybridization of the target DNA
to the oligonucleotide probe features (see Methods for de-
tailed description of protocols employed), each VDA feature is

Figure 1 Eight features (four for the forward strand and four for the reverse complement strand) are associated with every queried site. Each
feature consists of a 25-base oligonucleotide. The 13th base is the query base and all possible genotypes are tested. Each feature is divided into
56 equal pixels, and the pixels are scanned individually. The outermost 26 pixels are “masked,” so that only the 30 interior pixels are used for any
calculation.
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scanned. The scanner measures the fluorescence intensity for
each feature by dividing each feature into 56 equal-sized pix-
els. The 26 pixels located at the border of the features are
masked and their fluorescence intensity values are not used in
any subsequent calculations. The fluorescence intensity at the
remaining 30 pixels constitute the raw data measured by the
detector.

ABACUS: An Automated Statistical System for
Calling VDA Genotypes
ABACUSis an automated statistical system for determining
individual VDA genotypes whether the site is polymorphic
or not. It can be applied in experiments in which the tar-
get DNA sequences are either haploid or diploid. In effect,
the ABACUSsystem allows an investigator using VDAs to
determine the DNA sequence in a sample of interest. ABACUS
has been implemented in ANSI standard C code, and is
available to academic colleagues on request. The funda-
mental assumption underlying the ABACUSalgorithm is that
the observed florescence intensities are normally distributed
within features. We make this assumption relying on the
central limit theorem. Each feature consists of ∼ 1 million
distinct oligonucleotides of identical composition. If an
appreciable fraction of these oligonucleotides are relatively
independent in their chance of binding a labeled target,
the overall florescence intensity of this feature ought to
be normally distributed under some strong version of the
central limit theorem. Of course, this assumption can and
should be tested, and, if necessary, later relaxed. A series of
statistical models are developed under the assumption of
the presence or absence of various genotypes in the target
sample. The likelihood of each statistical model for a given
genotype is calculated independently for both the forward
and reverse strands and is combined for the overall likeli-
hood of the model. A “quality score,” which is the differ-
ence between the log (base 10) likelihood of the best fitting
model and the second best fitting model, is assigned to
each VDA genotype. A site genotype is “called” when one
model fits the data sufficiently better than all other models.
After all the individual VDA genotypes are called, additional
heuristic, reliability rules are applied. On the completion of
this procedure, all sites are assigned a genotype with a corre-
sponding quality score. Individual VDA genotypes deemed
unreliable are designated N. The system is divided into six
stages.

Stage One: Data Integrity Check

No Signal
If in a given sample, any feature within any site (either for-
ward or reverse strand) has a mean intensity within two stan-
dard deviations of zero, the site is said to have failed in that
individual, and this site is ruled N in that individual.

Extremely Weak Signal
If, in a given sample, the highest mean intensity feature on
the forward or reverse strand is 20-fold lower than the average
highest mean intensity feature, averaged over all samples on
that same strand, than this site is said to have failed in this
individual, and this genotype is called N in the individual. In
our experience, when this situation occurs at any site, it often
occurs over a large number of adjacent sites in the same in-

dividual, indicating weak PCR products, improper digestion
of sample DNA before hybridization.

Saturation
Among the four features on either the forward or reverse
strands, if two (for haploid data) or three (for diploid data) of
the features are within two standard deviations of 43,000, the
detector is said to have saturated and this site is called N in the
given individual. Decreasing the amount of labeled target
DNA hybridized to the VDA easily solves saturation.

Aberrant Signal-to-Noise Ratio
The ratio of the mean intensity to the standard deviation of
the intensity for a feature will be called the signal-to-noise
ratio (SN) of that feature. Over the 57 autosomal VDA designs
(∼ 513 million features), >90% of all features had an SN <20
with a median of ∼ 8. The tail of the distribution is extremely
long, including >100,000 features with an SN above 1000.
Sites with one or more features having aberrantly large SN
generate aberrantly large likelihoods because as the signal ap-
proaches detector limits, it becomes truncated by the detector
and appears to have an unusually small variance. As a conse-
quence of these unusually low variances, genotype calls at
these sites tend to be highly unreliable. Therefore, to avoid
statistical aberrations associated with this, any site with an SN
>20 is assigned a variance, so that SN = 20.

Stage Two: Building Models With an Even
Background

Assumptions for All Modeling
Within any given feature, the florescence intensities of all
pixels are assumed to be independent and identically distrib-
uted. The distribution is assumed to be Gaussian (normal);
forward and reverse strands are treated as independent repli-
cates (with different parameters). The final likelihood for a
model is calculated by multiplying the likelihood on the for-
ward strand by the likelihood on the reverse strand. There-
fore, the log (base e) likelihood of a set of pixel florescence
intensities is given by

ln�L� = −
1
2�Nx�ln��̂x

2� + �Vx + Mx
2 − 2�̂xMx + �̂x

2���̂x
2 + ln�2���,

where Nx is the number of pixels observed in feature x (Nx

generally is equal to 30, but this number can vary slightly
with imperfect grid alignment), Vx is the observed variance
for feature x, Mx is the observed mean for feature x, µx is the
estimated mean for feature x under the model in question,
and �2

x is the estimated variance for feature x. The sum is
taken over all features x, where x is either A, C, G, or T, on the
forward and reverse strands.

Null Model
All features on the forward strand are assumed to have iden-
tical means and variances. All features on the reverse strand
are assumed to have identical means and variances, but these
may differ between the two strands; these parameters are set
equal to their maximum likelihood estimators. Maximum
likelihood estimates can be found by differentiating Equation
1, with respect to all parameters and solving simultaneously.
This results in the naive estimators, which are
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�̂f �b� =
Nf �A�Mf �A� + Nf �C�Mf �C� + Nf �G�Mf �G� + Nf �T�Mf �T�

Nf �A� + Nf �C� + Nf �G� + Nf �T�

�̂r�b� =
Nr �A�Mr �A� + Nr �C�Mr �C� + Nr�G�Mr �G� + Nr �T�Mr �T�

Nr �A� + Nr �C� + Nr(G) + Nr �T�

�̂f
2�b� =

Nf �A��Vf �A� + Mf
2�A�� + Nf �C��Vf �C� + Mf

2�C��

+ Nf �G��Vf �G� + Mf
2�G�� + Nf �T��Vf �T� + Mf

2�T��

Nf �A� + Nf �C� + Nf �G� + Nf �T�
− �̂f

2�b�

�̂r
2�b� =

Nr �A��Vr �A� + Mr
2�A�� + Nr �C��Vr �C� + Mr

2�C��

+ Nr �G��Vr �G� + Mr
2�G�� + Nr �T��Vr �T� + Mr

2�T��

Nr �A� + Nr �C� + Nr �G� + Nr �T�
− �̂r

2�b�

where µ̂f(b) and µ̂r(b) are the estimated mean background in-
tensities on the forward and reverse strands, respectively. The
�̂2s are the analogous variances. Let Lf(0) and Lr(0) be the
likelihoods of the null model restricted to the forward or re-
verse strand, respectively. L(0) = Lf(0)Lr(0) is the overall like-
lihood of the null model.

Homozygote Models
Consider the hypothesis that the sample is an A homozygote.
Under this model, features C, G, and T on the forward strand
are assumed to be independent and identically distributed.
The background mean and background variance is estimated
by maximum likelihood to be

�̂f �b� =
Nf �C�Mf �C� + Nf �G�Mf �G� + Nf �T�Mf �T�

Nf �C� + Nf �G� + Nf �T�

�̂f
2�b� =

Nf �C��f �C� + Nf �G��f �G� + Nf �T��f �T�

Nf �C� + Nf �G� + Nf �T�
.

�f �x� = Vf �x� + Mf
2�x� − 2Mf �x��̂f �b� + �̂f �b� + �̂f

2�b�

Feature A on the forward strand is assumed to have a different
mean and variance, and these are estimated by maximum
likelihood to be the observed values. Therefore,

�̂f �A� = Mf �A�,
�̂f
2�A� = Vf �A�.

The reverse strand is treated analogously.
Let Lf(A) and Lr(A) be the likelihoods of the A homozy-

gote model restricted to the forward strand and reverse strand,
respectively. If the estimated mean for A is less than the esti-
mated mean for the background, the likelihood is set equal to
the null model likelihood. Therefore, if µ̂f(A) < µ̂f(b) then
Lf(A) = Lf(0). Similarly, if µ̂r(T) <µ̂r(b) then Lr(A) = Lr(0). L(A) is
the overall likelihood of the A homozygote model,
L(A) = Lf(A)Lr(A).

All other homozygote models are treated analogously.

Heterozygote Models
When examining diploid data, six (A-C, A-G, A-T, C-G, C-T,
G-T) heterozygote models, beyond the four homozygote
models, are also considered. Consider an A-C heterozygote.
Background features G and T on the forward strand are as-
sumed to be independent and identically distributed. The
mean and variance is estimated by maximum likelihood and
given in the supplemental text available on-line at http://
www.genome.org. Features A and C on the forward strand are
assumed to be independent and identically distributed, and
parameter estimates are given in the supplemental text avail-
able on-line at http://www.genome.org.

Stage 3: Compare Models
For haploid data, a total of five models are examined (Null, A,
C, G, T). For diploid data, a total of 11 models are examined
(Null, A, C, G, T, AC, AG, AT, CG, CT, GT).

Quality Scores for Each Model
For each model, three quality scores are calculated. For Model
A, Q

f
(A) = Log10(Lf(A)) � Log10(Lf(max other)), where Lf(max

other) is the maximum over all models other than A (also
notice that these logs are taken base 10, not base e). Therefore,
Qf(A) is the difference between the log likelihood of model A
on the forward strand and the best fitting model on the for-
ward strand, excluding A. If Qf(A) is positive, A is the best
fitting model on the forward strand. We will call Qf(A) the
quality score for model A on the forward strand.
Qr(A) = Log10(Lr(A)) � Log10(Lr(max_other)) is the analogous
quality score on the reverse strand. The overall quality score
for model A is Q(A) = Log10(L(A)) � Log10(L(max_other)).
Therefore, Q(A) is the difference between the likelihood of
model A, overall, and the best fitting model, excluding A,
overall. If Q(A) is positive, A is the best fitting model, overall.
Similar statistics are calculated for all other models.

In addition, two further likelihoods are calculated: Lf-
(Perfect) and Lr(Perfect). These likelihoods correspond to the
likelihood of the best possible fitting model on the forward
and the best possible fitting model on the reverse strand. A
“perfect” fitting model is defined by the predicted mean in-
tensity for all features equaling the observed mean, and the
predicted variance for all features equaling the observed vari-
ance. This “perfect fit” model is simply the unconstrained,
fully parameterized model. All other models are nested within
it. Therefore, Lf(Perfect) is the largest likelihood possible on
the forward strand, and Lr(Perfect) is the largest likelihood
possible on the reverse strand.

There are two set of criteria (quality thresholds) neces-
sary to call a site. One set of quality thresholds corresponds to
a single model fitting the data exceptionally well (nearly per-
fectly). A second, more stringent set of requirements, corre-
sponds to no model fitting nearly perfectly, but one model
fitting the data much better than any other model.

Calling a Near-Perfect Fit
The perfect fitting model has eight parameters per strand. Any
particular genotype model has four parameters per strand,
and each of these models is nested within the perfect fitting
model. Therefore, standard likelihood ratio tests can be
used to compare the fit of any particular model with the
perfect fitting model. Therefore, Df = 2[ln(Lf(perfect)) �

ln(Lf(model))] ought to be �2 distributed with 4 degrees of
freedom (Dr is defined similarly). We will consider a model to
fit nearly perfectly if Df and Dr are sufficiently small. For this
work, sufficiently small is defined as <6.63 (∼ 85% confidence
interval).

When one model fits nearly perfectly, and all other mod-
els fit muchmore poorly, we will call this model a near-perfect
fit. Comparing the fit of one model to another is not straight
forward, as these models are not nested and have the same
number of parameters. If we naively assume that the differ-
ence in the fit between any two non-nested models is �2 dis-
tributed with 1 degree of freedom, then Qf(near-perfect fit
model) >5.2 would imply that there is less than a 10�6 chance
that the difference in fit is attributable to chance. Therefore, if
any model fits nearly perfectly, with Qf(model) >5.2 and
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Qr(model) >5.2, then the genotype associated with this model
is called.

Calling an Imperfect Fit
It is rare for any model to fit nearly perfectly. When no model
fits nearly perfectly, there is no obvious way to relate quality
scores to statistical probabilities. With no a priori predictions
for what a good quality score ought to be, quality scores
necessary to call a model have been determined empirically
by examining the data generated from this project. Two
thresholds for quality scores have been established, a “total
threshold,” Ttotal, and a “strand threshold,” Tstrand. A model
is said to fit significantly better than any other model
when Q(model) >Ttotal, and Qf(model) >Tstrand and Qr(model)
>Tstrand. When one model fits significantly better than all oth-
ers, the genotype associated with this model is called. For the
experiments described in this paper, Ttotal has been chosen to
be 30, and Tstrand has been chosen to be �2 (justification is
described below).

If, for a given sample, no model can be called either a
near-perfect fit, or an imperfect fit, N is assigned to this geno-
type.

Stage 4: Building Models With an Uneven
Background (For Diploid Data Only)
All of the previous modeling (Stages 2 and 3) assumed that all
background features had identical means and variances. This
assumption is false. Moreover, background features with un-
even means can appear very similar to heterozygotes. Table 1
gives the observed florescence intensities of two sites. One of
the sites (CWRS-10) is taken from haploid data (X-linked lo-
cus in a male); the other (CWRS-50) is from a diploid locus
(RET), and is a known (from previous genotyping) heterozy-
gote. Our interpretation of these observations are: (1) There
can be substantial cross-hybridization to background features
and (2) cross-hybridization can create the appearance of het-
erozygotes. The interpretation that this phenomenon is at-
tributable to cross-hybridization makes a strong prediction,
namely that all samples should exhibit roughly the same un-
evenness of background features. This intuition motivates the

design of the uneven background models. The uneven back-
ground models assume that the background features have
means and variances that are constant ratios of each other.
These ratio constants (�s and �s in the notation of the supple-
mental text available at http://www.genome.org) are ob-
tained by averaging over all samples with the same genotype.
We call this an adaptive background because the genotypes
are, of course, not known a priori. We therefore infer the
genotypes and the background in an iterative manner, chang-
ing the background constants as genotype calls change.

Ten (four homozygote, six heterozygote) new models are
derived, with unequal background intensities. Detailed de-
scription can be found in the supplemental text available at
http://www.genome.org.

Calls
For each sample, a genotype will be called if any model sat-
isfies the criteria specified in Stage 3.

Guesses
For samples that are unable to be called, if any model has
Q(model) > 0, and Qf(model) > 0 and Qr(model) > 0, then this
model is said to be “guessed.” Models are guessed when they
fit better than any other model on both the forward and the
reverse strands, but the fit does not reach the significance
threshold necessary to be called.

No Guesses
Samples that are unable to be called or guessed are signified as
“no guesses.”

A Posteriori Modification of Thresholds in the Presence of Two
Different Homozygotes
Calling two different homozygote models (say, A and G) at
the same site in two different samples indicates that there
may be heterozygotes (A-G) among the samples. Any sample
where the features associated with the heterozygote (A and G)
are the two most intense features on the forward strand, and
their complements (T and C) are the two most intense fea-
tures on the reverse, is possibly a heterozygote. To call a non-

Table 1. Uneven Background Features

CWRS-10 VDA design

Forward
Average
intensity

Standard
deviation Reverse

Average
intensity

Standard
deviation

A 1510.5 164.6 T 2220.5 142.6
C 1209.0 99.1 G 1115.0 65.8
G 1263.0 94.9 C 1105.3 107.5
T 1724.8 96.4 A 2360.5 148

CWRS-50 VDA design

Forward
Average
intensity

Standard
deviation Reverse

Average
intensity

Standard
deviation

A 2575.0 225.9 T 4889.5 345.3
C 1548.0 176.2 G 3412.0 509.5
G 2856.0 225.0 C 7411.5 370.6
T 4278.5 460.9 A 5680.0 389.2

Exemplar data from two different sites. CWRS-10 is from an X-linked region (FMR1) and the sample is male. Hence, the sample is haploid and
cannot be a heterozygote. Nevertheless, it appears to be an A-T heterozygote. CWRS-50 is from an autosomal region (RET) and this particular
sample is known to be a G-T heterozygote from previous genotyping (Carrasquillo, in prep.). By the criteria described in sections 1–3 (even
background), the CWRS-10 site would be called a heterozygote, and the CWRS-50 site would be called N.
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heterozygote model at such a site requires additional confi-
dence. In particular, to call a non-heterozygote model at such
a site requires that Q(model) > 2Ttotal. Very loosely, calling a
non-heterozygote model at this site requires the quality to be
twice as good. If no model is called at such a site, the hetero-
zygote model is guessed.

Stage 5: Iterate an Adaptive Background (For Diploid
Data Only)

1. Apply the even background models. Make calls and
guesses.

2. If >75% of the calls are heterozygotes, call all individuals N;
make no guesses.

3. Make a posteriori modification to thresholds, if applicable.
4. Build adaptive backgroundmodels. Make calls and guesses.
5. If any sample is called N for the 10th time, remove it from

the analysis. If any sample has changed its call for the 20th
time, remove it from the analysis.

6. If any call has changed since the last iteration, return to
step 3.

After stopping, if >90% of the samples are called heterozy-
gotes, call all individuals N.

Stage 6: Apply Final Reliability Rules

Primer Failure
If, in a given sample, >50% of all sites between a given pair of
PCR primers are designated N, then this PCR product is pre-
sumed to have failed. All sites covered by this primer pair are
ruled N in this sample. Additionally, if the sites covered be-
tween a given pair of PCR primers are >5% different from the
reference sequence, the experiment is said to have failed, and
all sites covered by this primer pair are ruled N in this sample.

Neighborhood Rules
For a given site in a given sample, for a site to be considered
reliable, at least 50% of the surrounding sites must be called.
In particular, if in the surrounding 20 sites (10 on each side)
there are >10 Ns, then this site is ruled unreliable, and it is
designated N as well.

Elimination of SNP Doublets
Samples that harbor variants from the reference se-
quence (samples with SNPs) are often difficult to call
reliably at the sites immediately surrounding the vari-
ant. In particular, samples homozygous for a site dif-
ferent from the reference often appear to be heterozy-
gotes for the reference base and this SNP at sites near to
the actual SNP position, but not at the SNP. The fol-
lowing procedure is used to eliminate these SNP dou-
blets.

1. Two SNPs within five bases of each other are con-
sidered a doublet. Designate these two SNPs as SNP 1
and SNP 2. Call an individual homozygous for the
reference base, “wild-type.” Call all others “mu-
tant.”

2. If the mutant base at SNP 1 appears in an individual
with the wild-type base at SNP 2, and another indi-
vidual with the mutant base at SNP 2 has the wild-
type base at SNP 1, both SNPs are believed and no
further action is taken.

3. If a mutant base at SNP 1 appears in an individual

with wild-type at SNP 2, but mutants at SNP 2 only appear
in individuals mutant at SNP 1 or called N at SNP 1, SNP 2
is not trusted. This site is called N in all individuals. Reverse
SNP 1 and 2, and a similar logic applies.

4. If mutants at SNP 1 always appear in individuals called
mutant at SNP 2 (or N), and vice versa, the site with the
fewer number of Ns is believed. The other site is called N in
all individuals. If both sites have an equal number of Ns,
both SNPs are considered unreliable and both SNPs are
made N in all individuals.

Sample Reliability
A site must be called in at least 50% of the samples to be
considered reliable. Any site designated N in >50% of the
samples is ruled unreliable, and all samples are designated N
at this site.

Application of the ABACUS Algorithm
In general, the total threshold and strand threshold param-
eters will determine the number of sites called and the num-
ber of errors made in those calls. Choice of these values is
inherently arbitrary and subject to trade-offs (Fig. 2). Increas-
ing either threshold decreases the total number of sites called.
It should also decrease the number of errors in those calls.
Individual researchers can set these values as they desire de-
pending on their individual assessment of the costs and ben-
efits of this trade-off. We chose an ABACUStotal threshold of
30 and a strand threshold of �2 for our data analysis in an
attempt to maximize the number of site calls, while minimiz-
ing the number of discrepancies in two separate replicate ex-
periments (see below). We then applied these ABACUSthresh-
old values to analyze the data from 70 distinct VDA designs
that screened the unique sequence from 32 autosomal and
eight X-linked genomic regions (Supplemental Tables 1 and 2,
available on-line at http://www.genome.org). The amount of
unique sequence surveyed in each genomic region varied, but
averaged 49,638 bp (range: 31,697 to 62,668) and was of vari-
able GC content (range: 33.0% to 57.7%, Supplemental Tables
1 and 2, available at http://www.genome.org; see Methods).
With our parameter selection, we are able to read ∼ 80% of all
sites (402 kb of X-linked sequence in each of 40 individuals,

Figure 2 In both haploid and diploid replicate experiments, the effect of vary-
ing the total threshold. Strand threshold = �2; total threshold is allowed to vary;
for these thresholds; haploid data varies far less than diploids.
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calling 13,006,341 of 15,396,840 sites, 84.5%; 1.6 Mb of au-
tosomal sequence in each of 40 individuals, calling
51,422,913 of 64,097,240 sites, 80.2%). We identified 5285
autosomal and 755 X-linked SNPs. The estimated nucleotide
diversity (Watterson 1975) for autosomal regions is
7.8 � 10�4, whereas that for the X-linked regions is
5.3 � 10�4. These values are largely concordant with previ-
ous estimates (Cargill et al. 1999; Halushka et al. 1999) and
remarkably similar to recent whole-genome estimates
(T.I.S.M.W. Group 2001; Venter et al. 2001).

Repeatability and Accuracy of ABACUS Calls
We employed replicate experiments, consisting of indepen-
dent amplifications of identical samples followed by hybrid-
ization to distinct microarrays of the same design, to deter-
mine the repeatability of ABACUSgenotype calls. Using a total
threshold of 30 and a strand threshold of �2, in the CWRS-
10/10R X-linked replicate experiment in males (haploid), we
call 91.7% and 96.1% in each replicate, and 90.4% of the total
possible sites in both replicates. Among the sites we call in
both experiments, 841,236 of 841,236 sites are called identi-
cally in the haploid replicate experiment (Tables 2 and 3,
below). If repeatability could be equated to accuracy, then this
level of repeatability in haploid genotype calls would corre-
spond to a phred score of at least 54 (assume a binomial error
probability of P. The 95% confidence interval for P is the
solution to (1 � P)841236 = 0.05; P = 3.56 &times 10�6. To re-
late P-values to phred scores, note that phred = �10 log10P).
In the CWRS-14R/R2 diploid autosomal replicate experiment,
we call 83.0% and 80.2% of the site genotypes in each repli-
cate, and 71.4% of the total possible genotypes are called in
both replicates. Of the sites called in both diploid replicates,
813,295 of 813,295 genotypes are called identically, also in-
dicating a phred score of at least 54, if repeatability equaled
accuracy. Among these identically called genotypes were 351
heterozygotes (Table 2). This number of heterozygotes is
somewhat lower than would be seen in an equilibrium, neu-
tral population, but consistent with a growing and slightly
subdivided human population. As is evident from both of

these experiments, the large majority of individual VDA geno-
type calls are extraordinarily repeatable. ABACUScan success-
fully identify genotype calls that are extremely likely to be
repeatable from those calls that are not as reliable.

The effects of varying the total threshold and the strand
threshold are as expected—decreasing either value increases
both the percent of sites called, and the proportion of sites
called discrepantly between replicate experiments (Fig. 2 and
3; Supplemental Fig. 1, available at http://www.genome.org).
The percent of sites called in the haploid replicate experiment
is higher than that in the diploid replicate experiment for all
thresholds. Likewise, the proportion of discrepant genotype
calls in the haploid replicate experiment is less than or equal
to the proportion in the diploid replicate experiment for all
total thresholds. In a similar fashion, increasing the strand
threshold decreases the percent of sites called and the propor-
tion of discrepant sites in both the haploid and diploid rep-
licate experiments. In general, ABACUSanalysis of VDAs in
haploids will usually be able to call a higher percentage of
sites, for the same number of errors, than a comparable dip-
loid experiment. It appears possible, however, to pick param-
eters to make the expected error rates less than any desired
threshold for both types of experiments (Fig. 2).

When a genotype is called discordantly in a replicate
experiment, one knows that at least one of those two calls
must have been in error. The converse is not necessarily true.
A site called identically in both replicates is not necessarily
correct. It may be that ABACUSmakes repeatable systematic
errors. To rule out systematic, repeatable errors, sequencing
and genotyping must be done by some independent method.

The accuracy of haploid genotype calls was determined
through library based 6� sequencing of 17,423 bp in a single
individual from the CWRS-10/10R replicate experiment. All
sites were called identically with ABACUScalls. This strongly
indicates that ABACUScalls on haploids are both highly re-
peatable and highly accurate.

The accuracy of diploid genotype calls was assessed by
independent ABI sequencing and RFLP analysis (see Meth-
ods). Because levels of variation are low (only eight of 10,000

bases likely to vary), any ABACUSer-
ror is nearly certain to be at a site
where ABACUScalls a polymor-
phism, that is, all errors are likely to
be at sites where SNPs are detected.
Therefore, we performed indepen-
dent genotyping at 108 SNPs that
ABACUSdetected from four VDA de-
signs (CWRS-1, CWRS-14, CWRS-
49, and CWRS-50). Homozygous
genotype assays (1515 ) were con-
ducted; all 1515 were identical with
ABACUSgenotype calls. At these
same 108 sites, 423 heterozygote
calls were examined; of these, 420
were confirmed (Table 3). All three
of these apparent ABACUSerrors ex-
hibited the same pattern. They oc-
curred at highly polymorphic sites
(confirmed in other samples, and
with minor allele frequency over
30%). In each case, ABACUScalled a
heterozygote, and independent
genotyping showed a homozygote.
Two out of the three errors occurred

Table 2. Microarray Repeatability in Haploid and Diploid Replicate Experiments

A. Repeatability in a Haploid Replicate Experiment
Total number of haploid sites 930,176
Total number of haploid sites called in Replicate 1 853,285 (91.7%)
Total number of haploid sites called in Replicate 2 893,692 (96.1%)
Total haploid sites called in both replicate experiments 841,236 (90.4%)
Total number of haploid sites called differently 0
Percent of haploid sites called identically 100.0%

B. Repeatability in a Diploid Replicate Experiment
Total number of diploid genotypes 1,138,480
Total number of diploid genotypes called in Replicate 1 944854 (83.0%)
Total number of diploid genotypes called in Replicate 2 913231 (80.2%)
Number of homozygous genotypes called identically 812944 (71.4%)
Number of heterozygous genotypes called identically 351
Total number of diploid genotypes called identically 813,295
Total number of diploid genotypes called differently 0
Percent of diploid genotypes called identically 100.0%

Replicate experiments: A replicate consists of independent amplification and hybridization of iden-
tical samples to two VDAs (for Table 2A, CWRS-10 and CWRS-10R; for Table 2B, CWRS-14R and
CWRS-14R2) of the same design.
(A) Haploids. Thirty-two distinct samples were replicated. Each array probed the genotype at
29,068 sites in the FMR1 region. (B) Diploids. Forty distinct samples were replicated. Each array
probed the genotype at 28,462 sites taken from the GABBR1 and ANK2 regions.
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in a single amplified long PCR fragment in a single individual.
None of the three errors occurred in the replicate experiment.
This indicates to us that all three errors may have resulted
from sample mislabeling, or cross-contamination between
samples. In any case, genotyping accuracy at “segregating
sites” appears to be well in excess of 99%.

As can be expected from such genotyping accuracy, SNP
detection is also highly accurate. We assayed 108 (Table 3) of
the 6040 SNPs using an independent methodology and all
have been confirmed. Of these 108 SNPs, 17 were singleton
heterozygotes, and all of these confirmed as well. An addi-
tional 371 SNPs from from 37 of the 40 genomic regions, have
been confirmed electronically ( T. I. S. M. W. Group 2001).
This indicates a false-positive rate for SNP detection of <2.7%
(95% confidence interval for zero errors in 108 assays is 2.7%,
with a maximum likelihood estimate of 0% errors).

For the thresholds used in this study, ∼ 20% of all sites are
called N (Fig. 4). Moreover, there is enormous correlation
across samples in our ability to call
genotypes. To a first approximation
we either call all samples, or we call
no samples (see below). As a result,
one expects to miss ∼ 20% of all
SNPs, that is, the SNP false-negative
rate should be roughly 20%. To as-
sess this prediction, CWRS-49 and
CWRS-50 were designed to cover
portions of the RET locus for which
we had previously discovered 24
SNPs. As expected, ABACUScalled N
in all individuals at five of these
sites, and therefore failed to detect
20.8% of the SNPs (at lower thresh-
olds, 23 out of 24 SNPs were de-
tected). All the remaining 19 SNPs
were discovered, indicating that the
SNP false-negative rate is roughly
equal to the proportion of Ns in the
sample. Finally, we examined
whether the false-negative rate is

different for heterozygote versus homozygote geno-
types. At the 19 RET sites we could have made 328
homozygous genotype calls. We called N for 21 of
these, calling the other 307 correctly. At these same 19
RET sites, we could have called 183 heterozygotes.
Eight of these genotypes were called N, and the remain-
ing 175 were correctly called heterozygotes. This indi-
cates that at sites with known polymorphism, if we are
able to make any call at the site, we call ∼ 5% of the
genotypes N regardless of whether the genotype is a
heterozygote or homozygote, and the remaining 95%
of the sites are correctly called. Of course, it should be
noted that 24 sites is probably too few to draw any
strong inference about false-negative behavior.

Characterizing Unreliable Genotype Calls
Approximately 80% of all genotypes can be called with
extremely high confidence. Of course, one would like
to understand why 20% of the genotype calls are of
lower quality. To help visualize the pattern of failure on
individual VDAs, we developed software that creates a
graphical representation of each VDA (Fig. 5, below).
Some types of failure, particularly PCR failure (Fig. 5b),
are readily apparent from these schematics. Other

causes of failure are less easily interpreted.
This project was designed to be high-throughput and

limited experimental failure was deemed tolerable. Approxi-
mately 7% of the loss was caused by factors under the direct
control of the experimentalist (Fig. 4). Of this 7%, 3%–5%
were lost due because of “primer failure.” A primer pair was
declared to have failed whenever <50% of the sites between
the pair could be called (see ABACUSstage 6). There are many
possible causes of primer failure, including PCR failure, pool-
ing errors of PCR products, insufficient or excess digestion of
amplified DNA, grid alignment errors on the VDA, or VDA
manufacturing failure. In all of these cases, however, greater
replication or lower thresholds for experimental failure could
allow the recovery of genotype calls at these sites. Addition-
ally, the 1% of sites lost because of insufficient signal may be
recovered simply by increasing DNA concentrations. Simi-
larly, the 1%–3% loss caused by saturation should be correct-
able by lowering DNA concentrations. During the course of

Table 3. ABACUS SNP Detection and Genotyping Accuracy

A. Accuracy of autosomal SNPs detection
Verified Total Possible

Singleton SNPs 17 17
Non-singleton SNPs 91 91
Total SNPs 108 108

B. Number of autosomal SNPs electronically verified
Number of SNPs electronically verified 371

C. Accuracy of autosomal genotype calls
Number of verified homozygous genotype calls 1515
Number of incorrect homozygous genotype calls 0
Percent correct homozygote calls 100.00%
Number of verified heterozygous genotype calls 423
Number of incorrect heterozygous genotype calls 3
Percent correct heterozygote calls 99.30%

D. Accuracy of haploid genotype calls
Number of bases sequenced (6X coverage) 17,423
Number of bases different from microarray chip calls 0
Percent of bases identical 100.00%

Figure 3 Strand threshold varies in diploids. Total threshold fixed at 10, 20,
or 30.
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the experiment, which consisted of 70 distinct VDA designs,
at CWRS-47, VDA manufacturing dramatically improved.
Mean florescence intensities increased by approximately a
factor of two across the VDA. Unfortunately, the amount of
DNA applied to the VDAs was not changed to compensate. As
a result, the number of saturated features was far higher on
later VDAs than on earlier ones. X-linked loci were assayed
with CWRS-57 through CWRS-70, and all reflect the im-
proved manufacturing.

In any case, replication in instances of experimental fail-
ure in conjunction with accurate quantification of the
amount of target DNA applied to the VDAs could increase the
total percentage of genotype calls. Our results, however, in-
dicate that, in general, it is more difficult to call diploid geno-
types than it is to call haploid genotypes. First, as evident in
Figure 7 (see below), mean quality scores for haploid VDA
genotype calls are higher than diploid VDA genotype calls.
Second, during the course of this experiment, we call ∼ 4%
more haploid genotypes. This difference arises because dip-
loid genotype calls are less likely to reach the total threshold
and more often, two different models fit best on the forward
and reverse strands (Fig. 4). Nevertheless, the vast majority of
the genotypes for which we fail to make reliable calls, share
one remarkable sequence specific characteristic in common.

Effect of G-Rich Probes
Figure 6 plots the mean intensity of the reference feature as a
function of the number of As, Cs, Gs, or Ts in that probe. One
remarkable trend stands out. Florescence intensity declines as
a function of the number of purines, in general, and with the
number of Gs in particular. This is true for both autosomal
(Fig. 6) and X-linked (Supplemental Fig. 2, available at http://
www.genome.org) VDAs. Furthermore, the decreased mean
intensity associated with the number of Gs is strongest when
Gs occur at or near the center base and the effect declines
uniformly in both directions (both 5� and 3�) as the Gs move
away from the center (data not shown). The cause of this

observation is still unknown, but the effects are clear. De-
creased mean intensity is directly associated with an inability
to make high reliability calls in both haploid and diploid VDA
experiments. Supplemental Figure 3 (available at http://
www.genome.org) plots the proportion of haploid and dip-
loid sites at which we can make high reliability calls as a
function of the maximum number of Gs on either the forward
or reverse strand. Because mean intensities are so low, we
cannot make high reliability calls at sites with G rich probes.

DISCUSSION
Previous work has indicated that, on average, microarray-
based variation detection and genotyping achieves between a
99.93% and 99.99% accuracy (Wang et al. 1998; Cargill et al.
1999; Halushka et al. 1999). Unfortunately, because the total
rate of variation in humans is quite low, this level of accuracy
results in 12%–45% of all detected variation being error. Al-
though 99.9% accuracy may not be sufficient, the goal of this
work is to determine whether or not there was a subset of
genotype calls that were far more reliable than 99.9%, and if
so, to develop a set of tools to allow researchers to focus their
attention only on those calls for which they have extraordi-
nary confidence.

To this end, we developed ABACUS, an objective statisti-
cal framework for assigning to each genotype a quality score.
We show that by focusing one’s attention only on sites with
high quality scores and in good neighborhoods, one can iden-
tify ∼ 80% of the haploid and diploid genotype calls that have
an extraordinary likelihood of being correct. In replicate ex-
periments, one can call >800,000 genotypes identically, with
no discrepancies. This indicates that 80% of both haploid and
diploid genotypes can be read with a repeatability consistent
with a phred score >54.

Although repeatability certainly suggests accuracy (or at
the very least, lack of repeatability proves inaccuracy), we also
assessed accuracy in two independent manners. For haploid
data, a 6� shotgun resequencing on a single individual was
done, obtaining 17,423 base calls that were identical to
ABACUScalls. To assess accuracy at segregating sites in dip-
loids (nonsegregating sites identical to the reference are ex-
traordinarily likely to be correct, as overall polymorphism
rates are so low), 1938 genotypes were obtained at 108 segre-
gating sites. Of these, 1935 were identical to ABACUScalls, but
three were different. This indicates that genotyping accuracy
at segregating sites >99.8% (and of course this ignores the
nonsegregating sites also likely to be correctly called). To put
this statistic in context, 99% accuracy at known segregating
sites is claimed by several technologies (Hirschhorn et al.
2000). These results indicate that microarrays can be used for
both detection and genotyping of variation simultaneously,
and the accuracy of the genotyping approaches or exceeds most
other widely available standalone genotyping technologies.

Of course, this level of accuracy comes at a cost. Twenty
percent of surveyed diploid sites and 16% of surveyed haploid
sites are not readable at this quality level. The failure comes
from several sources. Roughly 7% (over both haploids and
diploids) of the loss comes from sources a researcher can con-
trol, namely PCR failure and sub-optimal target DNA concen-
trations being applied to the VDAs. Replication in instances of
experiment failure in conjunction with accurate quantifica-
tion of the amount of target DNA applied to the VDAs could
increase the total percentage of genotype calls.

The remaining 13% in diploids and 9% in haploids are
lower quality genotype calls. In general, it is harder to call

Figure 4 All sites were characterized as either called or N. All Sites
designated N were partitioned into one of seven categories. (1)
Primer: Primer failure indicating that <50% of the sites between a pair
of PCR primers were called; (2) Low Signal: Mean florescence intensity
extremely low; (3) High Saturation: Mean florescence intensity near
detector limits; (4) Threshold: No model obtained quality score
greater than the total threshold; (5) Two Models: Different models fit
best on the forward and reverse strands so that no model obtained
strand thresholds on both strands; (6) Neighborhood: <50% of the
20 surrounding sites could be called; and (7) Sample: <50% of the
samples could be called at a particular site.
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diploid genotypes. This difference is probably inherent to the
biology. Loosely, heterozygotes have half as much DNA of
each type, and there are more than twice as many possibilities
(four haploid models vs. 10 diploid models). Simply put, there
are more possibilities and less information. Doing somewhat
worse in diploids may be unavoidable.

Two further caveats need to be mentioned. Large-scale
VDA-based genotyping is still relatively new. Large replicated
data sets with independent genotyping data are not readily
available. ABACUSwas developed (trained in some sense) us-
ing the data generated by this project. Further large-scale test-
ing and independent evaluation should occur. Second, ABA-
CUSuses information from multiple samples simultaneously.
For this project, 40 samples were available. ABACUS’s behavior
with very small samples has not been characterized. Sub-
sampling our data in groups of 10 yields quantitatively similar
results (∼ 80% of all genotypes are called at our thresholds, and
no discrepancies arise in the replicate experiment), but fur-
ther testing should occur.

Of course, our purpose was principally to demonstrate
that high reliability calls could be made and distinguished
from lower quality calls. To do this, we developed quantita-
tive measures, quality scores, to associate with each genotype
call. The definition of high reliability that we used was quality
scores above a certain threshold (total threshold of 30, strand
threshold of �2), but these thresholds can be set by indi-
vidual investigators to meet their individual needs. Irrespec-
tive of the total threshold an investigator may choose to em-
ploy, the critical feature of the ABACUSalgorithm is that it
assigns these quality scores to each VDA genotype call. There-
fore, researchers might employ this critical piece of informa-
tion in different experiments in a variety of fashions.

In particular, we can imagine the following use of
ABACUS. Consider an extremely large (thousands of samples)
case-control association study of a complex disease. Suppose
previous studies have found linkage to a megabase region.
The unique sequence portion of this genomic region will fit
on 17 VDA designs. One can imagine first assaying, say, 50
individuals (perhaps 25 affected, 25 normal) with all 17 VDA
designs. Analyze this initial data set with ABACUSset at a low
quality threshold, say, Ttotal = 10, Tstrand = �5, calling nearly
all the sites, discovering virtually all polymorphic sites in this
sample. Of course, there will also be ∼ 100 low-quality “false”
polymorphisms on each VDA. One will have the genotype
and an associated quality score at nearly all segregating sites
in the 50-sample set. Test for association with each site in the
reduced set. Now, genotype all (thousands) of the samples,
but prioritize the genotyping by the strength of the associa-
tion in pilot portion (50) as well as by the quality of the
genotype call. First genotype high-quality, high-association
sites, and work down from there. In any event, ABACUScom-
bined with Affymetrix VDAs appears to be a technology that
can facilitate high-throughput variation detection and geno-
typing of relatively large genomic regions.

METHODS

Selection of Genomic Regions
Our experiment consisted of surveying 32 autosomal and
nine X-linked genomic regions (Supplemental Tables 1 and 2,
available at http://www.genome.org). The genomic regions
surveyed consist of contigs no smaller than 100 kb in size
accessible in the nr, NT, or HTGS divisions of GenBank. Each
genomic region contained a complete (or nearly complete)
genomic structure of a gene, most of which have been impli-
cated to have a role in the function or development of the
human brain. Genomic regions were checked for paralogy by
using BLASTagainst the nr, NT, and HTGS databases (Altschul
et al. 1997). Target genomic regions that appeared to have
paralogus copies (>95% identical) were excluded from analy-
sis. Autosomal genomic regions were chosen from a wide va-
riety of genomic locations—27 of the 32 autosomal genomic
regions surveyed were chosen from distinct chromosome
arms. The X-linked genomic regions surveyed were widely
spaced, with three regions from the p arm and six from the q
arm.

Identification of Unique Sequences within
Genomic Regions
Microarrays are expected to perform optimally when the
tiled probes consist of unique sequences. To identify the
unique sequences within a selected genomic region, we first
identified and masked common repetitive sequences with
Repeatmasker (A. Smit and P. Green, unpubl.). Repetitive

Figure 7 ABACUSquality scores for genotype calls. More than 64.5
million diploid genotype calls and >16.1 million haploid genotype
calls were made.

Figure 6 Florescence intensity for autosomal (diploid) loci. VDA
features are tiled with 25mers. The number of As, Cs, Gs, and Ts were
counted for the reference 25mer on both the forward and reverse
strand. The florescence at each pixel within the feature was measured
(>3.9 billion pixels in total). Error bars represent two standard errors,
under the assumption that separate features are independent but
pixels within a feature are not.
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sequences within a contig were identified usingMiropeats at
its default threshold (Parsons 1995). The cDNA exon location
in the genomic sequence was then determined with Sim4
(Florea et al. 1998). Genomic regions were visualized and the
remaining unique sequences identified with viewGene 1.0b
(C. Kashuk, unpubl.), a Java-based tool that allows a graphic
visualization of a genomic region while incorporating the re-
sults from Repeatmasker , Miropeats and Sim4 . Within
each genomic region, we then selected among the remaining
stretches of unique sequence to obtain ∼ 50 kb of unique se-
quence. We excluded unique sequences 100 bp or less and
ultimately selected 29.5 kb of unique sequence for each VDA
design. To avoid breaking up long stretches of genomic re-
gions, in some cases, we added back short (<100 bp) stretches
of previously masked sequence. The total number of unique
VDA designs was 70 and they were numbered sequentially
from CWRS-1 through CWRS-70. Some VDA designs con-
tained tiled sequence from more than one genomic region.
The replicate X-linked VDA design was identified as CWRS-10
and CWRS-10R. The replicate autosomal experiments were
identified as CWRS-14, CWRS-14R, and CWRS-14R2.

Sample Identification
DNA sample employed for the survey of the autosomal ge-
nomic regions consisted of DNA samples 1–40 from the Na-
tional Institutes of Health (NIH) Polymorphism Discovery Re-
source at the Coriell Institute for Medical Research (Collins et
al. 1998). DNA samples employed for the survey of the X-
linked genomic regions consisted of those donated by males.
These samples were: 6–7, 12, 15–16, 18–19, 21–22, 24–25, 29,
31, 35, 37, 40–42, 44–46, 50, 51, 54–57, 59–63, 66, 68, 70,
73–75, 77, and 81. The 32 samples surveyed in the CWRS-10
and CWRS-10R VDA designs from FMR1, were male samples
chosen from both the NIH Polymorphism Discovery Resource
(3, 6–7, 12, 15–16, 18–19, 21–22, 24–25, 29) and 20 samples
from an NIH Diversity Panel at Coriell (D.J. Mathews, C.
Kashuk, G. Brightwell, E.E. Eichler, and A. Chakravarti, un-
publ.).

PCR Amplification and Pooling Samples
To minimize the number of assays for each VDA design, long
PCR was used to amplify genomic regions containing one or
more unique sequence blocks tiled onto the variant detector
array. Long PCR primers were 30 to 32 base pairs long and
were selected by using Amplify 1.2 (Engels 1993) to ensure
that they bound uniquely within a 29-kb region and had a
primer stability value between 70 and 80. Primers were also
chosen to ensure that their GC content was between 45%–
60% with the last nucleotide being a C or a T.

Amplification of genomic DNA was accomplished in 30-
µL PCRs carried out in thin-walled polypropylene tubes or
plates using TaKaRa LA Taq (TaKaRa Biomedicals). The manu-
facturer’s general reaction mixture was used, with the excep-
tion that the primers were kept separate from the Taq poly-
merase until the samples were spun down and place into the
MJ Tetrad thermal cycler. In addition, reactions either were
standard or contained 5% DMSO to aid in the amplification
of GC-rich regions. The cycling conditions for all reactions
were: (1) 94°C for 2 minutes; (2) 94°C for 10 seconds; (3) 68°C
for 1 min/kb fragment size; (4) repeat step 2 29 times; (5) final
extensions—time at step 3 plus 5 min. For amplifying auto-
somal regions, 100 ng of genomic DNA was used, whereas for
X-linked regions, 150 ng was used. Most fragments were be-
tween 6–7 kb long and the yield of a PCR reaction was 10–50
ng/µL, as determined by visually comparing 4 µL sample of
the reaction product on a 1% agarose gel with a low mass
ladder concentration standard.

To obtain optimal performance across the microarray,
we pooled samples to ensure that an equal number of targets
existed for each probe. The quantity (ng) of DNA for each

differently sized long PCR fragment was first calculated as
6 � (fragment size/100). The final volume to pool from the
reaction mixture was them simply calculated as the quantity
of DNA � the concentration of the PCR reaction � 1.25.

Determination of the Accuracy of ABACUS
Genotype Calls in Replicate Experiments
To verify the haploid site calls from the CWRS-10/10R repli-
cate experiment, the identical primers were used to amplify
fragments from a single individual (#8). The resulting frag-
ments were then individually physically sheared (hydros-
heared) and subcloned with end repair into a PUC library. The
resulting clones were single-pass sequenced using M13 prim-
ers until the entire genomic region had at least 6� coverage.
Cross_match was used to assemble the generated sequences
to the reference sequence and to each other (Green; Smith
and Waterman 1981).

Verification of diploid genotype site calls from the
CWRS-14R/R2 replicate experiment and from the CWRS-1
VDA design was carried out with either of two strategies. First,
segregating sites recognized by a restriction enzyme were
identified and short PCR primers were chosen to amplify a
fragment 200–500 bp long fragments that included the puta-
tive segregating site. The amplified DNA was digested and run
on a 1% agarose gel to score the genotype. The second strat-
egy employed 4–8� sequencing of a diploid short PCR prod-
uct, combined with polyphred (Nickerson et al. 1997; Rieder
et al. 1998) to identify heterozygotes. The minimum phred
score was set to 10 and the identified genotypes at segregating
sites had to be polyphred rank three or higher to be consid-
ered confirmed.

Hybridization of Amplified Target DNA to VDAs
Hybridization of amplified target DNA to VDAs was per-
formed by the HTS group at Affymetrix, Inc. During the
course of this project, the concentration of genomic DNA
hybridized to the VDAs was variable (Supplemental Table 3,
available at http://www.genome.org). The amplified genomic
samples were first subjected to DNaseI digestion using the
established Affymetrix HTS Departmental Operating Proce-
dure protocols. The fragmentation master mix consisted of
One Phor All Buffer (Pharmacia Biotech Catalog #27–0901–
02), 0.2U/µg DNA of DNaseI and Acetylated-BSA (Life Tech-
nologies Inc. Catalog #1556–020). Sufficient genomic DNA
and digestion mixture were mixed to a total volume of 35 µL
and digested for 15 min at 37°C. Samples were then incubated
at 99°C for 15 min to inactivate the DNaseI. Samples were
subsequently visualized on a polyacrylamide gel to verify frag-
mentation.

DNA samples were subsequently labeled by adding 2.5
µL from a master mix consisting of 1mM Biotin-N6-ddATP
(NEN Life Sciences Catalog #NEL508) and 15U/µL rTdT en-
zyme (GIBCO BRL Catalog #10533–032). Samples were incu-
bated at 37°C for 90 min followed by inactivation for 15 min
at 99°C. Samples were then cooled on ice and stored at �20°C
until hybridization.

Pre-hybridization, hybridization, washing, and scanning
of polymorphism probe arrays were carried out in accordance
with the Affymetrix HTS DOP. The pre-hybridization was car-
ried out for at least 5 min and consisted of 3M TMACL, 1%
Triton X-100, and 10 mM Tris pH 7.8. The hybridization so-
lutions consisted of 3M TMACL, 100 µg/mL HS DNA, 500
µg/mL BSA, 10 mM Tris pH 7.8, 0.01% Tween 20, and 200 pM
control oligo, and were hybridized for 16 h at 44°C, rotated at
60 rpm. On the completion of hybridization, the sample was
removed from the VDA. The VDA then underwent two 10-
min washes at 25°C in a buffer of 6� SSPE, 0.01% Tween 20.
The VDAs were stained for 15 min in a solution consisting of
5 µg/mL SAPE, 6� SSPE, 0.01% Tween 20, and 2 mg/mL BSA.
One additional wash cycle was followed by antibody staining
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for the all VDA designs up through CWRS-22. VDA designs
starting with CWRS-23 were not antibody-stained and were
only washed (Supplemental Table 3, available at http://www.
genome.org). All VDAs were scanned at 570 nM, with a pixel
size of 3 µ/pixel averaged over two scans.
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