Skip to main content
. 2011 Mar 21;12(3):2036–2054. doi: 10.3390/ijms12032036

Table 1.

Recent literature on light emitting conjugated polymers based devices.

Year First author Paper title References no.
2011 Tarver, J. Organic electronic devices with water-dispersible conducting polymers Comprehensive Nanoscience and Technology, Chapter 4.14, 413–446. [68]
2011 Antonio, F. π-Conjugated polymers for organic electronics and photovoltaic cell applications Chem. Mater. 23, 733–758. [69]
2010 Schumacher, S. Dynamics of photo excitation and stimulated optical emission in conjugated polymers: A multi scale quantum-chemistry and Maxwell-Bloch-equations approach Phys. Rev. B 81, 245407–11. [70]
2010 Ebinazar, B.N. Organic light emitting complementary inverters Appl. Phys. Lett. 96, 043304–3. [71]
2010 Carlos, S. Organic semiconductors: A little energy goes a long way Nature Mater. 9, 884–885. [72]
2010 Cuihong, L. Three-dimensional conjugated macromolecules as light-emitting materials Polymer 51, 4273–4294. [73]
2010 Adam, J.M. Power from plastic Curr. Opin. Solid State Mater. Sci. 14, 123–130. [74]
2010 Shufen, C. Recent developments in top-emitting organic light-emitting diodes Adv. Mater. 22, 5227–5239. [75]
2010 Taeshik, E. Solution-processed highly efficient blue phosphorescent polymer light-emitting diodes enabled by a new electron transport material Adv. Mater. 22, 4744–4748. [76]
2010 Tao, R. Blue phosphorescence materials for organic light-emitting diodes Prog. Chem. 22, 2215–2227. [77]
2010 Jenny, C. Organic photonics for communications Nature. Photon. 4, 438–446. [78]
2010 Neil, W. Conjugated polymers: Phases go their separate ways Nature. Chem. June, 748–748. [79]
2010 Shahul, H. Polymer light emitting diodes —A review on Materials and techniques Rev. Adv. Mater. Sci. 26, 30–42. [80]
2009 Stefano, T. Lighting technology: Time to change the bulb Nature 459, 312–314. [81]
2009 Namdas, E.B. Low threshold in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers Adv. Mater. 21, 799–802. [82]
2009 Hui, J. Conjugated polyelectrolytes: Synthesis, photophysics, and applications Angew. Chem. Int. Ed. 48, 4300–4316. [83]
2009 Rachel, A.S. Block copolymers for organic optoelectronics Macromolecules 42, 9205–9216. [84]
2008 Daniele, B. High-performance organic field-effect transistors Adv. Mater. 21, 1473–1486. [85]
2008 Qi, D.L. Polymer electronic memories: Materials, devices and mechanisms Prog. Polym. Sci. 33, 917–978. [86]
2008 Kalinowski, J. Optical materials for organic light-emitting devices Opt. Mater. 30, 792–799. [87]
2008 Johannes, K.F. Poly(arylene vinylene)s High Perform. Polym. 1, 89–137. [88]
2008 Inamul, H.R. Recent progress in the development of polymers for white light-emitting polymer devices Monatsh. Chem. 139, 725–737. [89]
2008 Abouelaoualim, D. Numerical study of electrical characteristics of conjugated polymer light-emitting diodes Semiconduct. Phys. Quantum Electron. Optoelectr. 11, 151–153. [90]
2008 Yang, X. Saturation, relaxation, and dissociation of excited triplet excitons in conjugated polymers Adv. Mater. 20, 1–4. [91]
2008 Murano, S. Highly Efficient White PIN OLEDs for Lighting Applications LED J. 40–41. [92]
2008 Sony, a.b. a. b. Sony XEL-1:The world’s first OLED TV www.OLED-Info.com. [93]
2007 Samuel, I.D.W. Organic semiconductor lasers Chem. Rev. 107, 1272–1295. [94]
2006 Friend, R. Polymers show they’re metal Nature 441, 37, 1–1. [95]
2006 Amarasingh, D. Broadband solid state optical amplifier based on a semiconducting polymer Appl. Phys. Lett. 89, 2011–2019. [96]
2006 Roger, J.M. Electrochromic organic and polymeric materials for display applications Displays 27, 2–18. [97]
2005 Danilo, D. Electrochemiluminescence from organic emitters Chem. Mater. 17, 1933–1945. [98]
2005 Service, R.F. Organic LEDs look forward to a bright, white future Science 310, 1762–1763. [99]
2005 David, G.L. Laser-assisted patterning of conjugated polymer light emitting diodes Org. Electr. 6, 221–228. [100]
2005 Stuart, S. Case study: Cambridge Display Technology Ltd. University of Cambridge Centre for Technology Management, pp. 1–19. [101]
2004 Andrade, B.W.D. White organic light emitting devices for solid state lighting Adv. Mater. 16, l585–l595. [102]
2004 Kulkarni, A.P. Electron transport materials for organic light-emitting diodes Chem. Mater. 16, 4556–4573. [103]
2004 Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic Nature 428, 911–918. [104]
2004 Josemon, J. Progress towards stable blue light-emitting polymer Curr. Appl. Phys. 4, 339–342. [105]
2004 Ifor, D.W.S. Laser physics: Fantastic plastic Nature 429, 709–711. [106]
2004 Ifor, D.W.S. Towards polymer lasers and amplifiers ultrafast photonics Ultrafast Phot. Taylor & Francis, 291–304. [107]
2004 Hiroyuki, S. Organic light-emitting materials and devices for optical communication technology J. Photochem. Photobiol. 166, 155–161. [108]
2004 John, K.B. Developments in organic displays Mater. Today 7, 42–46. [109]
2004 Asawapirom, U. Materials for polymer electronics applications—Semiconducting polymer thin films and nanoparticles Macromol. Symp. 212, 83–91. [110]
2002 Hong, K.S. Light-emitting characteristics of conjugated polymers Adv. Polym. Sci. 158, 193–243. [111]
2002 David, B. Semiconducting polymer LEDs Mater. Today 5, 3032–3039. [112]
2002 Hung, L.S. Recent progress of molecular organic electroluminescent materials and devices Mater. Sci. Eng. R 39, 143–222. [113]
2002 Köhler, A. Fluorescence and phosphorescence in organic materials Adv. Eng. Mater. 4, 453–459. [114]
2002 Brabec, C.J. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting devices Adv. Funct. Mater. 12, 709–712. [115]
2002 Vander, H.J.W. Electronic and optical excitations in crystalline conjugated polymers Phys. Rev. B 66, 035206:1–035206:7. [116]
2001 Heeger, A.J. Nobel Lecture—Semiconducting and metallic polymers—The fourth generation of polymeric materials Rev. Modern Phys. 73, 681–700. [117]
2001 McDiarmid, A.G. Nobel lecture—“Synthetic metals”—a novel role for organic polymers Rev. Modern Phys. 73, 701–712. [118]
2001 Shirakawa, H. Nobel lecture: The discovery of polyacetylene film—The dawning of an era of conducting polymers Rev. Modern Phys. 73, 713–718. [119]
2001 Philip, B. A happier marriage Nature, Nature News, 010201–3. [120]
2001 Scherf, U. Conjugated polymers: Lasing and stimulated emission Curr. Opin. Solid State Mater. Sci. 5, 143–154. [121]
2001 Friend, R.H. Conjugated polymers. New materials for optoelectronic devices Pure Appl. Chem. 73, 425–430. [122]
2001 Lee, C.H. Photoluminescence and electroluminescence of vacuum-deposited poly(p-phenylene) thin film Synth. Met. 117, 75–79. [123]
2001 Liming, D. Effect of forster energy transfer and hole transport layer on performance of polymer light-emitting diodes Macromolecules 34, 9183–9188. [124]
2000 Philip, B. Let there be more light Nature, Nature News, 000217–11. [125]
2000 Kranzelbinder, G. Organic solid-state lasers Rep. Prog. Phys. 63, 729–762. [126]
2000 Ullrich, M. The electroluminescence of organic materials J. Mater. Chem. 10, 1471–1507. [127]
2000 Tien, Y.L. Electroluminescent polymeric materials Curr. Sci. 78, 1352–1357. [128]
2000 Marai, F. Photoluminescence and electroluminescence investigations in PEPPV and its derivatives Synth. Met. 114, 255–259. [129]
2000 Markus, G. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes Nature 405, 661–665. [130]
2000 Sun, R. High PL quantum efficiency of poly(phenylene vinylene) systems through exciton confinement Synth. Met. 111–112, 595–602. [131]
2000 Bernius, M.T. Progress with light-emitting polymers Adv. Mater. 12, 1737–1750. [132]