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Abstract
Epigenetic mechanisms are involved in programming gene expression throughout development. In
addition, they are key contributors to the processes by which early-life experience fine-tunes the
expression levels of key neuronal genes, governing learning and memory throughout life. Here we
describe the long-lasting, bi-directional effects of early-life experience on learning and memory.
We discuss how enriched postnatal experience enduringly augments spatial learning, and how
chronic early-life stress results in persistent and progressive deficits in the structure and function
of hippocampal neurons. The existing and emerging roles of epigenetic mechanisms in these
fundamental neuroplasticity phenomena are illustrated.
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1. The clinical problem: association of early-life experience with learning
and memory

Numerous clinical reports demonstrate a strong association between early-life experience
and subsequent cognitive functions. Chronic childhood stress (such as extreme poverty, loss
of parent, social deprivation or abuse) correlates with learning and memory impairments
later in life (Kaplan et al., 2001; Nelson et al., 2007; Wilson et al., 2007). As examples,
lower socioeconomic level early in life correlates with cognitive function in adulthood, and
post-institutionalized orphans have abnormal neuronal function in limbic areas including the
hippocampus, as shown by functional MRI studies (Chugani et al., 2001), and by worse
cognitive performance when compared to never-institutionalized children (Nelson et al.,
2007). Improving the experience of these institutionalized infants by placing them in
families significantly improves learning and memory long-term. Remarkably, the timing of
the placement into foster care is crucial, and placement before the age of two years is
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associated with improved outcome (Bos, Zeanah, Smyke, Fox, & Nelson, 2010). These data
suggest that critical developmental periods exist for the processes by which early-life
experience shapes cognitive function throughout life.

The impact of early-life experience, and especially of chronic stress, on the integrity of the
hippocampus, a region subserving certain learning and memory processes (Andersen,
Moser, Moser & Trommald, 1996; Eichenbaum, Yonelinas, & Ranganath, 2007; Morris et
al., 2003; Squire, Wixted, & Clark, 2007), is supported also by clinical studies suggesting
that hippocampal volumes in adults that have experienced early-life abuse are smaller
(Bremner, et al., 1997). Whereas this view is not universally endorsed (Lenze, Xiong, &
Sheline, 2008; Lyons, Yang, Sawyer-Glover, Moseley, & Schatzberg, 2001), this association
and similar findings in other human studies (Buss et al., 2007) suggest that chronic early-life
stress is associated with impairments in hippocampal structure and function in adulthood. In
addition these correlational studies demonstrate the complexity of human research:
elucidating the potential causal relationship between early-life stress and later life cognitive
outcomes is difficult, because of uncontrollable variables such as genetics and subtle
environmental influences that may not be measurable. Such studies lead to the realization
that use of animal models benefits our understanding of the causal relationship between
early-experiences and life-long learning and memory. These enable prospective longitudinal
studies as well as control of genetic background (Nestler & Hyman, 2010). In addition,
parameters of interest can be manipulated and subsequent experiences can be controlled
throughout the entire period of investigation.

Notably, uncovering the biological mechanisms involved in the long-term consequences of
enhanced early-life experience is of paramount importance, because these mechanisms may
be employed for therapeutic interventions and improved outcome. This has happened, for
example, when infant position was found to govern sudden infant death, and care of infants
was changed (Ponsonby, Dwyer, Gibbons, Cochrane, & Wang, 1993). In addition,
discovering if chronic early-life stress directly impacts cognitive function is extremely
important because over 50% of the world’s children are exposed to chronic stress (UNICEF,
2005), and such stress cannot currently be prevented. Therefore, establishing causality and
defining the molecular and cellular mechanisms for potential long-lasting effects of early-
life experience and stress on learning and memory are prerequisites to preventive and
therapeutic approaches in the future.

2. Animal models enable determination of causality and elucidation of the
mechanisms by which early-life experience, including chronic stress, might
govern learning and memory throughout life

For the past six decades, scientists have employed models in primates and rodents to
manipulate environmental and genetic variables for the study of early-life experience on
later-life cognitive functions (for review, see Korosi & Baram, 2009; Levine, 2000). In these
animal models, early-life experience was modulated in a bi-directional manner (Figure 1).
Acute-intermittent stress, such as daily maternal separation, or chronic stress imposed via
alteration of maternal behavior, were designed to mimic human conditions of poverty,
illness or neglect/ abuse (Avishai-Eliner, Brunson, Sandman, & Baram, 2002; Brunson,
Chen, Avishai-Eliner, & Baram, 2003; Fenoglio, Brunson, & Baram, 2006a; Heim, Plotsky,
& Nemeroff, 2004; Levine, 2000). In contrast, enhanced early-life experience was generated
via a naturalistic selection of high-caring dams (Hofer, 1994), or via procedures, such as
brief daily handling of the pups, that augment maternal care and thus maternal-derived
sensory input (Brunson, Avishai-Eliner, Hatalski, & Baram, 2001; Fenoglio, Chen, &
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Baram, 2006b; Korosi & Baram, 2009; Korosi et al., 2010; Meaney, Aitken, van Berkel,
Bhatnagar, & Sapolsky, 1988).

A majority of studies employing these structured alterations of early-life experience have
focused on ‘emotional’ outcomes- the vulnerability or resilience of the adult ‘graduates’ of
these early-life manipulations to depressive-like or anxiety-like behaviors. However,
existing and emerging evidence indicates that early-life experience and stress also contribute
significantly to learning and memory throughout life, as suspected from the clinical
correlational studies of infants and children. In this paper, we review data that support a
causal relationship of enhanced early-life experience (derived from augmented quality of
maternal care) and learning and memory function during adulthood. We also discuss the
causal relationship of chronic stress during the neonatal / infancy period and cognitive
decline commencing in middle age. In both cases we describe the molecular and cellular
processes that are involved, and discuss the role of epigenetics in the persistently altered
expression of key genes that contribute to these phenotypes.

3. Cellular and molecular changes resulting from enhanced early-life
experience and from chronic early-life stress: a common theme

A key determinant of early-postnatal existence involves the interaction of the immature
individual with his / her parent(s). Both clinical and experimental studies have confirmed the
fundamental role of the presence and sensory input from a mother on the essence of the
neonatal and infancy experience. Considered along a continuum, frequent and consistent
nurturing care suppresses stress in the immature rat, monkey and human (Dent, Smith, &
Levine, 1999; Gunnar, Larson, Hertsgaard, Harris, & Brodersen, 1992; Harlow & Suomi,
1971), whereas absence of the mother or abnormal quality or quantity of maternal care is a
major provoker of the newborn / infant “stress system” (Figure 1). Based on this body of
information, many manipulations of early-life experience have utilized modulation of
mother-infant interactions. In addition, the principal ‘read-outs’ of the effects of these
modulations on the infant brain have included acute and persistent alterations in the
expression and function of genes that are involved in regulation of the stress response
(Avishai-Eliner, Eghbal-Ahmadi, Tabachnik, Brunson, & Baram, 2001a; Fenoglio et al.,
2005; Korosi et al., 2010; Plotsky & Meaney, 1993; Weaver et al., 2004).

As shown in Figure 2, the response to stress is governed by a number of neurotransmitters,
neuromodulators and steroids (Joels & Baram, 2009;McEwen, 1999;Ulrich-Lai & Herman,
2009). In essence, external (or internal) signals that are interpreted as indicating potential or
existing threat result in release of the neuropeptide corticotropin releasing hormone (CRH)
from cells within the hypothalamus (Vale, Spiess, Rivier, & Rivier, 1981), as well as within
the hippocampus (Chen, Bender, Frotscher, & Baram, 2001a;Chen et al., 2004b;Chen,
Fenoglio, Dube, Grigoriadis, & Baram, 2006;Chen et al., 2010), and the amygdala
(Roozendaal, Brunson, Holloway, McGaugh, & Baram, 2002). Hypothalamic CRH reaches
the pituitary gland releasing corticotropin, and the latter promotes secretion of
glucocorticoids. Glucocorticoids prepare the body for stress but, importantly, cross the blood
brain barrier and interact with cognate receptors throughout the brain including in principal
cells of the hippocampal formation (McEwen, 1999;Reul & de Kloet, 1985). Neurons within
the hippocampal formation are activated by salient stresses, as measured by immediate
early-gene expression and a number of electrophysiological parameters (Alfarez, Joels, &
Krugers, 2003;Kim & Diamond, 2002;Pavlides, Watanabe & McEwen, 1993;Chen,
Fenoglio, Dube, Grigoriadis, & Baram, 2006) reviewed by (Joels & Baram, 2009). In
contrast, pleasurable or non-stressful experiences often cause minimal and rapidly-decaying
release of stress hormones with transient activation of distinct cellular and molecular
cascades (Feder, Nestler, & Charney, 2009;Fenoglio et al., 2006b;Sweatt, 2009). Whereas
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these processes were first uncovered in the adult organism, they function also in the neonatal
period (Brunson et al., 2003;Dallman, 2000;Gunnar & Quevedo, 2007). Specifically, stress
and other experiences activate hypothalamic (Chen, Hatalski, Brunson & Baram, 2001b) and
hippocampal (Hatalski, Brunson, Tantayanubutr, Chen, & Baram, 2000) neurons. CRH is
released from the hypothalamus to induce release of peripheral hormones (Yi & Baram,
1994), and CRH and glucocorticoid receptor (GR) signaling are functional in the periphery
and within the hippocampus (Avishai-Eliner, Brunson, Sandman, & Baram, 2002;Lupien,
McEwen, Gunnar, & Heim, 2009;Rosenfeld, van Eekelen, Levine, & de Kloet, 1993;Yi,
Masters & Baram, 1993).

The ‘tone’ of the system, i.e., the magnitude of the neuronal and hormonal response to a
given stressor, is governed, at least in part, by levels of expression of key ligands and
receptors (Heim et al., 2009; Holsboer & Ising, 2008). CRH levels in hypothalamus and in
the hippocampus are typically correlated with magnitude of release during stress (Chen et
al., 2004b; Kovacs & Sawchenko, 1996). GR levels in hippocampus are generally correlated
with efficient shut-off of the stress response, via negative feedback, as well as with
resilience to depression and other stress-related disorders (Holsboer, 2001; McEwen, 1999;
Schmidt et al., 2005). Thus, augmented early-life experience has been found to be associated
with enduring attenuation of stress response, as well as augmented learning and memory
(Fenoglio et al., 2005; Meaney et al., 1991). At the molecular level, reduction of the
expression of CRH in the hypothalamus and increased expression of GR in hippocampus
have been documented (Plotsky & Meaney, 1993). In contrast, as will be described below,
chronic early stress has recently been found to upregulate expression of CRH in
hippocampus (Ivy et al., 2010). Taken together, these data suggest that, among the many
enduring changes in the expression of key neuronal genes (Roth, Lubin, Funk, & Sweatt,
2009), persistent alteration in the expression levels of genes governing the stress-response,
specifically GR and CRH, might contribute crucially to enduring phenotypic alteration of
learning and memory that are induced by early-life experience and stress. The mechanism
by which these changes are initiated and the bases of their persistence involve epigenetic
processes (Bale et al., 2010; Borrelli, Nestler, Allis, & Sassone-Corsi, 2008).

4. Early-life experience regulates CRH expression in the hypothalamus via
epigenetic mechanisms

Enriched early-life experience during the first week(s) of life leads to a phenotype of
improved hippocampus-dependent learning and memory (assessed using the Morris water
maze and the novel object recognition tests) that last throughout adulthood (Fenoglio et al.,
2005; Korosi & Baram, 2009; Meaney, 2001; Figure 3 left panel). What might the cellular
and molecular basis of this enduring effect be? When the early postnatal experience is
enriched by augmented sensory input from the mother, hypothalamic CRH expression is
repressed and glucocorticoid receptor expression in hippocampal area CA1 is augmented,
and both of these changes appear to be life-long. Time course analyses demonstrated that
CRH repression (Figure 3 right panel), and the resulting chronic reduction in stress-induced
release of hypothalamic CRH and of plasma glucocorticoid levels preceded changes in GR
expression (Avishai-Eliner et al., 2001a). In addition, blocking the binding of CRH to its
receptor in non-enriched pups led to improved spatial learning in these non-enriched animals
as adults (Fenoglio, et al., 2005). Low plasma glucocorticoid levels are the major inducer of
GR expression in hippocampus (Herman & Spencer, 1998), so the above data together
suggest that the enduring changes in gene expression set in motion by enriched early-life
experience might commence at the level of regulation of the Crh gene within the
hypothalamus (Korosi et al., 2010; Weaver et al., 2004; Figure 3). If so, then how might the
Crh gene be regulated persistently, and by what putative epigenetic processes?
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The Crh gene is composed of two exons and an 800bp intron (Figure 4). The entire protein-
coding region is contained in the second exon. The promoter region of the Crh gene contains
several putative cis-regulatory elements (Figure 4 top panel) including a cAMP response
element (CRE), AP-1 sequence and glucocorticoid response element (GRE), and these
contribute to tissue-specific (Seasholtz, Thompson & Douglass, 1988;Vamvakopoulos, et
al., 1990), circadian (Watts, Tanimura, & Sanchez-Watts, 2004) and stress-provoked
(Hatalski & Baram, 1997;Shepard, Liu, Sassone-Corsi, & Aguilera, 2005) expression of this
gene. There are a number of CpG sequences in both the promoter region and in the first
intron (Elliott, Ezra-Nevo, Regev, Neufeld-Cohen, & Chen, 2010;McGill et al.,
2006;Mueller & Bale, 2008;Figure 4 bottom panel). Indeed, the Crh gene is regulated also
by methyl CpG-binding protein 2 (MeCP2; Chahrour et al., 2008;McGill et al., 2006) a
transcriptional repressor that binds methylated CpG dinucleotides and recruits corepressors
and chromatin remodeling proteins (Nan et al., 1998).

In addition, the Crh gene intron contains a functional restrictive silencing element-1/neuron
restrictive silencing element (RE-1/NRSE) sequence, that binds restrictive element silencing
transcription factor/neuron restrictive silencing factor (REST/NRSF; Seth & Majzoub,
2001). Whereas NRSF was originally described in non-neuronal cells, where it restricts
neuronal gene expression, the repressor is now known to be expressed in neurons
(Calderone, et al., 2003; Palm, Belluardo, Metsis, & Timmusk, 1998) and to regulate
neuronal gene expression (Andres et al., 1999; Gillies, Haddley, Vasiliou, Bubb, & Quinn,
2009; Korosi et al., 2010; Seth & Majzoub, 2001; McClelland et al., 2011, in revision).
NRSF functions by recruiting chromatin-modifying cofactors (Naruse, Aoki, Kojima, &
Mori, 1999; Roopra, Huang, & Dingledine, 2001; Roopra et al., 2000; Zheng, Zhao, &
Mehler, 2009).

The specific epigenetic mechanisms by which early-life experience attenuates CRH
expression acutely and long-term are not fully elucidated. At the end of the enriched-
experience epoch (postnatal day 9), NRSF levels have been found to be augmented in
hypothalamic tissue, and the repressor was bound to the Crh gene chromatin, as found using
chromatin immunoprecipitation (Korosi et al., 2010). Both of these findings support a role
for NRSF in an epigenetic down-regulation of CRH expression that initiates augmented
spatial learning for life (Fenoglio et al., 2005; Korosi et al., 2010; Figure 3). In this study,
methylation of CpG dinucleotides of the Crh gene promoter was modestly yet significantly
lower in rats immediately following enriched early-life experience (P9) than in
controls(Figure 4). Notably, reduced methylation is generally associated with enhanced
transcription, whereas Crh gene expression was reduced in this group that performed better
in learning and memory tests later in life. Thus, whereas altered methylation of the Crh gene
after early-life (Mueller & Bale, 2008) or adult manipulations is clearly operant, its role in
the effects of early-life enriched experience on lifelong memory function remains to be fully
studied. Additional remaining questions include the nature of the ‘pathways’ from the
maternal-derived sensory input to the hypothalamus (Fenoglio et al., 2006b; Korosi &
Baram, 2009), and the nature of the signals that converge on the CRH-expressing
hypothalamic neuron and provoke it to initiate epigenetic mechanisms that suppress the Crh
gene. It has already been established that enriched early-life experience results in reduced
numbers of excitatory synapses and excitatory input to CRH-expressing hypothalamic
neurons, without altered GABAergic neurotransmission (Korosi, et al., 2010), and this
phenomenon might be the signal that sets in motion the epigenetic machinery within the cell
(Korosi et al., 2010).
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5. Enduring alterations of learning and memory after chronic early-life
stress

As mentioned above, epidemiological and experimental evidence suggests that adverse
early-life experience, and particularly chronic psychological stress, may predispose to
cognitive dysfunction (Ammerman, Kolko, Kirisci, Blackson, & Dawes, 1999; Huot,
Plotsky, Lenox, & McNamara, 2002; Kaplan et al., 2001; Meaney et al., 1988; Poeggel et
al., 2003; van Oers, de Kloet, & Levine, 1999) that appears much later in life. This implies
that early-life stress can have effects that impact neuronal function significantly and
enduringly throughout adulthood and aging.

The hippocampus is critical for a variety of memory processes (Hollup, Kjelstrup, Hoff,
Moser & Moser, 2001) and is unusually vulnerable to stress (Bremner et al., 1997; Kim &
Diamond, 2002; McEwen, 1999; Sapolsky, 2002). The bases for this vulnerability include
high expression of glucocorticoid receptors, for example in CA1 pyramidal cells (Herman,
Patel, Akil, & Watson, 1989; de Kloet, Karst, & Joels, 2008), direct and powerful afferent
input from stress-activated brain regions (see Segal, Richter-Levin, & Maggio, 2010; Ulrich-
Lai & Herman, 2009; Joels & Baram, 2009 for review), and stress-induced release of
endogenous neuromodulators within the hippocampus including CRH (Chen et al., 2004b;
Chen et al., 2006; Chen et al., 2010). This susceptibility of hippocampal function to stress
likely plays an adaptive role, by enhancing synaptic plasticity (Blank, Nijholt, Eckart, &
Spiess, 2002) and learning and memory during acute stress that lasts for seconds to minutes
(Joels & Baram, 2009). However, it also renders the hippocampus vulnerable to potentially
deleterious effects of severe or chronic stress (McEwen, 1999; Brunson et al., 2003).
Chronic stress (or long-term elevation of plasma stress hormones) in adult and aging rats,
affects hippocampus-dependent cognitive function (Alfarez et al., 2003; Bodnoff et al.,
1995; Dachir, Kadar, Robinzon, & Levy, 1993; Kerr, Campbell, Applegate, Brodish, &
Landfield, 1991; Kim & Diamond, 2002; Landfield, McGaugh, & Lynch, 1978; Luine,
Villegas, Martinez, & McEwen, 1994), but these disturbances are generally transient
(Pavlides, Nivon, & McEwen, 2002). In contrast, as mentioned above, clinical studies have
suggested that when occurring early in life, chronic stress might impact learning and
memory in hippocampus in an enduring and potentially progressive manner (Wilson et al.,
2007).

To examine if a causal relationship exists between chronic early-life stress and enduring and
progressive deficits in learning and memory, and to better understand the mechanisms by
which such stress might impact cognitive function long-term, a wide variety of experimental
manipulations during development have been designed. These stresses have included acute /
intermittent separation of dams from the pups (de Kloet, Oitzl, & Joels, 1999; Huot et al.,
2002; Oomen et al., 2009; Oomen et al., 2010; Schmidt, Oitzl, Levine, & de Kloet, 2002;
van Oers et al., 1999), a single prolonged separation of dams from the pups (Avishai-Eliner,
Yi, Newth, & Baram, 1995; Dent, Smith, & Levine, 2000; Levine, 2000), and a chronic
alteration of maternal behavior, resulting in stress to the pups (Brunson et al., 2005; Gilles,
Schultz, & Baram, 1996; Ivy et al., 2010; Roth & Sullivan, 2005). The timing of the stress
has also been an important variable, with some groups aiming to recreate prenatal stress, and
others focusing on the immediate neonatal period, or slightly later. In view of this diversity
of approaches and of endpoints, it is remarkable that the results have generally been in
accord: early-life stress has adverse effects on spatial learning and these results endure, or
emerge later in life (Brunson et al., 2005; Huot et al., 2002). Aiming for a naturalistic rodent
model of chronic early-life stress, a paradigm involving maintaining the dam with the pups
within an impoverished cage environment was designed, and this manipulation led to
chronic stress in both dams and pups (Avishai-Eliner, Gilles, Eghbal-Ahmadi, Bar-El, &
Baram, 2001b; Brunson et al., 2005; Ivy, Brunson, Sandman, & Baram, 2008; Rice,
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Sandman, Lenjavi, & Baram, 2008). In essence, chronic stress was generated during
postnatal days 2-9, a period when hippocampal development is comparable to that found late
in human gestation and the early postnatal period (Avishai-Eliner et al., 2002). For the stress
group, cage environment and maternal behavior were altered by placing pups and dams in
cages with limited nesting / bedding material on postnatal day 2. Cages were fitted with soft
plastic mesh bottom, bedding was essentially removed, and nesting material consisted of one
paper towel that was used by the dam to construct a rudimentary nest area. The abnormal
cage environment prevented the dam from constructing satisfactory nests. This resulted in
maternal stress, promoting fragmented and erratic care to the pups (Ivy et al., 2008). The
disrupted maternal care led to chronic stress in the pups, as measured both by plasma
glucocorticoid levels and by the presence of hypertrophied adrenal glands (Avishai-Eliner et
al., 2001b; Gilles et al., 1996). This model, where stress was constant and persistent, has
been adapted to the mouse (Rice et al., 2008; Schmidt et al., 2002) and has been adopted and
modified by several groups around the world (Moriceau, Roth, & Sullivan, 2010; Moriceau,
Shionoya, Jakubs, & Sullivan, 2009; Roth & Sullivan, 2005; Schmidt, Wang,& Meijer,
2010).

At the end of the stress period, dams and pups were moved to normal-bedded cages.
Maternal behavior normalized within hours, and by the time they reached adulthood, the
neuroendocrine parameters of the stress system returned to baseline in the early-life stress
graduates, and were indistinguishable from those of conventionally raised rats (Brunson et
al., 2005). However, despite apparent dissipation of the physiological correlates of stress, the
early-life chronic stress led to enduring and profound changes of the structure and function
of hippocampal neurons that are likely generated via epigenetic modulation of key stress
hormone genes.

Functionally, young-adult graduates of chronic early-life stress performed reasonably well in
the Morris water maze (MWM) test of spatial learning and memory. Long-term potentiation
(LTP) in response to high frequency stimulation was normal in both areas CA1 and CA3,
though subtle changes in the properties of CA3 pyramidal cells were apparent (Brunson et
al., 2005). However, by 7–10 months, performance in the MWM as well as in the novel
object recognition test declined in comparison to age-matched controls (Figure 5 left panel).
Performance in the MWM might be confounded in rats that had experienced stress early-in
life, because the MWM includes adverse elements (forced swim), and it could be argued that
the ability of the early-stressed group to ‘cope’ with this additional stress was modulated by
the early-life experience. Therefore, an independent memory test that interrogates the
hippocampal-limbic circuit and is relatively devoid of intrinsic ‘stress’ was also employed.
Performance in the novel object recognition test was also impaired in early-stress rats and
this was accompanied by profound attenuation of LTP in both CA3 and CA1 (Figure 5 right
panel). The structural correlates of these spatial and recognition memory defects included
impoverishment (atrophy) of apical dendritic trees of CA1 and CA3 pyramidal neurons, with
commensurate loss of dendritic spines and synapses (Brunson et al., 2005; Ivy et al., 2010;
Figure 6 left panel) in the stratum radiatum, the site of commissural/ associational synapses.
Thus, a single week of chronic stress early in the postnatal period led to enduring and
potentially progressive disturbances in synaptic plasticity and in memory processes, at least
in part via loss of dendrites, dendritic spines and excitatory synapses (Chen et al., 2010; Ivy
et al., 2010).

6. Putative mechanisms of the enduring and progressive consequences of
chronic early-life stress on hippocampus- mediated learning and memory

The chain of events that bridges a single neonatal week of chronic stress with enduring and
progressive disturbances of hippocampal structure and function are not yet fully understood.
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Because, as described above, stress involves the release and subsequent expression of
specific mediators, including neurotransmitters, neuropeptide and steroid hormones (Joels &
Baram, 2009; McEwen, 1999; Ulrich-Lai & Herman, 2009), it has been a general
assumption that these stress mediators were involved in the processes by which stress
impacts learning and memory. Indeed, much work has identified the actions of
glucocorticoid receptor activation in the consequences of early stress on cognitive function
(Alfarez et al., 2009). However, a key enigma remains: how does a transient elevation of
stress hormones result in enduring or progressive disturbance in learning and memory? In
the paragraphs below, we describe recent studies that support the idea that chronic early-life
stress results in epigenetic ‘programming’ of stress-related genes, including hippocampal
CRH expression, at higher levels. The enduring elevation of CRH expression and release
impairs dendritic spines, with eventual dying back of dendrites. Loss of dendritic spines and
the synapses that they carry might thus underlie the loss of synaptic plasticity and memory
function in ‘graduates’ of early-life stress (Figure 5, Figure 6 left panel).

Ivy (2010) found a major increase in the protein levels of CRH in hippocampal pyramidal
cells of middle-aged rats stressed early in life (Figure 6 right panel), and similar
augmentation was apparent at the mRNA levels (Fenoglio et al., 2006a). In addition, the
group was able to block the consequences of chronic early-life stress by interfering with the
interaction of CRH with its receptor, CRHR1 within the brain (Ivy et al., 2010).
Hippocampal CRH is released during stress throughout life (Chen et al., 2001a; Chen et al.,
2004b), and interacts with CRHR1 to cause rapid retraction of dendritic spines (Chen, Dube,
Rice, & Baram, 2008; Chen et al., 2010). Exposure of hippocampal organotypic cultures to
stress levels of CRH for a week not only reduced spine number, but also led to dying back of
dendrites (Chen et al., 2004a). Thus, exposure of the developing hippocampus to stress-
levels of CRH during the week of early-life stress, and / or release of pathological levels of
the peptide throughout the months that follow might contribute to the loss of structural
integrity of hippocampal neurons that characterizes adult rats after chronic early-life stress.
This loss of dendrites, spines and synapsesseems to underlie the disturbances of learning and
memory in the same rats (Chen et al., 2008; Chen et al., 2010; Ivy et al., 2010).

This scenario raises the obvious question regarding the nature of the mechanism that
increase the ‘set-point’ of hippocampal CRH expression throughout the life of early-stressed
rats. Based on a large body of work (Bale et al., 2010; Borrelli et al., 2008; Franklin et al.,
2010; Haggarty et al., 2010; McGill et al., 2006; Mueller & Bale, 2008; Sweatt, 2009),
epigenetic mechanisms are excellent candidates for this enduring, augmented expression of
the Crh gene in hippocampus. For example, regulation of DNA methylation (Levenson &
Sweatt, 2006) and of histone acetylation and methylation (Gupta et al., 2010) has been found
to play key roles in fundamental learning and memory processes subserved by the
hippocampal network. Obviously, disruption of such processes by stress would impair
cognitive performance. However, whereas there is clear evidence for the involvement of
epigenetic regulation in processes of learning and memory in the mature hippocampus (Abel
& Zukin, 2008; Fischer, Sananbenesi, Mungenast, & Tsai, 2010; Miller, Campbell, &
Sweatt, 2008; Na & Monteggia, 2010; Stefanko, Barrett, Ly, Reolon, & Wood, 2009;
Sweatt, 2009), the involvement of such mechanisms in the upregulation of the Crh gene is
under active study (Figure 4).

7. Why CRH?
This review focused on the role of transcriptional, and likely epigenetic regulation of the
CRH gene in hypothalamus and hippocampus, and the consequences of these changes in
gene expression on learning and memory. Two questions that arise are (1) are these changes
selective to CRH? and (2) why regulation of CRH rather than other stress-related genes?
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The answers to both these questions are speculative at this point. As mentioned above, early-
environment-induced resilience to stress is associated not only with reduced CRH
expression in hypothalamus, but also in augmented glucocorticoid receptor expression in
hippocampus (Plotsky & Meaney, 1993; Avishai-Eliner et al., 2001a). Temporally, the
reduction in CRH expression precedes, and might initiate (Fenoglio et al., 2005), the
changes in GR. Unlike the resilience to drug abuse, where large-scale changes in gene
expression have been delineated (Feder, Nestler, & Charney, 2009), the extent of epigenetic
changes of families of genes that might govern the observed enhancement of hippocampal
function after enriched early-life environment remain to be fully studied. Weaver et al.
identified over 900 genes with altered expression in hippocampus of adult rats that have
experienced augmented maternal care early in life (Weaver, Meaney, & Szyf, 2006).
Interestingly, the group found reversal of these alterations of gene expression upon treatment
with trichostatin or with a source of methyl group (Weaver et al., 2005; Weaver et al., 2006).
Whereas the transcriptome arrays were carried out only in adulthood, these data support the
idea that epigenetic regulation of the expression of numerous genes takes place after
enriched experience early in life that promotes learning and memory long-term.

As mentioned above, levels of stress hormone (and receptor) gene expression are both
influenced by stress, and govern the release and / or signaling of stress mediators in
hippocampus and throughout the brain. Interestingly, enduring changes in the expression of
receptors to systemic stress hormones (GR and MR) have not been observed after early-life
stress that promotes deterioration in learning and memory later in life. This observation is
intuitively logical, because this type of adaptation would be expected to result in major
changes in the body’s response to stress in general, including disruption of the negative
feedback by which the hippocampus restrains the hormonal response to stress (Ulrich-Lai &
Herman, 2009). In contrast, CRH belongs to a class of modulators, neuropeptides, that play
less prominent roles in the peripheral hormonal response (Joels & Baram, 2009). Similar to
other peptides, CRH has a peripheral role in mediating the body’s response to stress and, in
parallel is released in hippocampus to modulate hippocampal function during stress.
Peptides with similar dual roles include ghrelin (Diano et al., 2006) and somatostatin
(Bloom, 1986). These peptides, including CRH, are released in specific brain regions and
modulate the function of a limited number of neurons within selective populations and
networks. In the temporal domain, peptides bridge neurotransmitter function (seconds), and
hormonal effects (up to hours). Thus, selective epigenetic regulation of hippocampal CRH
expression enriches the repertoire of hippocampal plasticity (Joels & Baram, 2009), enabling
augmented fine-tuning of hippocampal function in the context of graded stress situations.

8. Summary
Early-life experience influences learning and memory processes throughout life in a
bidirectional manner. The mechanisms for such enduring neuroplasticity include stable
alteration in the expression of key neuronal genes, including those that regulate the salience
and stressfulness of experience. Enriched postnatal experience enduringly augments learning
and memory, at least in part via persistent suppression of CRH expression. In contrast,
chronic early-life stress results in long-lasting and progressive deficits in the structure and
function of hippocampal neurons, potentially via epigenetic programming of the expression
‘set-point’ of the same gene in hippocampus at a higher level. Many questions remain about
the initiation and nature of the epigenetic mechanisms that are involved in programming the
enduring effects of early-life experience on learning and memory throughout life.
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Figure 1. Bidirectional effects of early-life experience on cognitive function throughout life
Chronic stress in the early postnatal period is associated with impaired cognition during
middle-age in people. Animal models demonstrate that this type of stress causes loss of
spines and eventual dendritic dying-back (atrophy), attenuated long-term potentiation and
progressive deficits in spatial memory. In contrast, enriched early-life experience, and
especially augmented sensory input from the mother, results in improved spatial learning
compared to controls. In both cases, the mechanisms for the bidirectional plasticity involved
persistently altered expression of genes involved in regulation of the ‘stress-system’.
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Figure 2. A schematic of the sequence of cells and molecules activated during stress, and their
effects on the brain
Stress signals release corticotropin releasing hormone (CRH) in amygdala and
hypothalamus (see text). Activation of CRH receptors in the pituitary gland as a result of
hypothalamic CRH release initiates the peripheral response to stress, including ACTH and
glucocorticoid secretion. Glucocorticoids penetrate the blood brain barrier and act on wide-
spread brain receptors, including in hippocampus. Activation of CRH receptors in
hippocampus by physiological levels of CRH primes LTP. However, activation of the
receptors by CRH levels found during severe stress provokes rapid loss of dendritic spines
and contributes to defects in spatial memory.
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Figure 3. Augmented spatial learning after enriched early-life experience correlates with early
and enduring repression of CRH expression in hypothalamus
Top panel: Mean latency to reaching the hidden platform in the 3-day Morris water maze
(MWM) test variant. Two month old male rats that had experienced enriched maternal care
on postnatal days 2–9 learned to find a hidden platform faster than littermate controls during
the first day of the MWM, and this advantage persisted throughout the test. This finding
suggests that their spatial learning and memory were augmented (modified from Fenoglio et
al., 2005, with permission). Bottom panels: Neurons expressing CRH in the hypothalamic
paraventricular nucleus were visualized using immunocytochemistry. P9: already at the end
of the one week-period of enriched experience, the intensity of the CRH signal was lower in
‘enriched’ rat hypothalamus. Adult: This reduction of CRH expression (verified also at the
mRNA level) persisted to adult life (modified from Korosi et al., 2010, with permission).
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Figure 4. Architecture and epigenetic changes in the Crh gene
A. Top panel: The Crh gene consists of two exons and a single intron. The promoter region
has a number of regulatory sites including a cyclic AMP response element (CRE) that
interacts with the CRE binding protein (CREB) and related co-factors such as CREB
binding protein (CBP). A second site, functional in mature but not neonatal hypothalamus,
consists of a glucocorticoid receptor (GR) response element (GRE). The intron includes a
sequence (NRSE) that functionally interacts with the repressor REST1/NRSF. Bottom panel:
Methylation of DNA dinucleotides (CpG) within the promoter region of the Crh gene is
modulated by experience, including pre-and postnatal stress. CpG sites with significant
effect of the early-life manipulation are denoted by asterisks. B. Changes in the methylation
of CpG sites within the Crh gene promoter in hypothalami of postnatal day 9 rats that have
received enriched experience for the preceding week. A modest yet significant reduction of
methylation of the promoter DNA was found (two-way ANOVA; effect of group F(1,96) =
16.58, p < .0001)Notably, it was associated with reduced expression of the gene.
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Figure 5. Reduced spatial learning and memory skills and attenuated long term potentiation in
middle aged rats that had experienced chronic early-life stress
Left panel: comparison of training and reversal performance of control middle-aged male
rats to a cohort experiencing chronic stress for a week early in life. Latency of the stressed
rats to finding a hidden platform using spatial cues is impaired. Right panel: Long-term
potentiation in response to high-frequency stimulation is attenuated in early-stressed (CES)
rats compared with controls. (Modified from Ivy et al., 2010, with permission)
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Figure 6. Dendritic atrophy and enduring upregulation of CRH expression in hippocampus of
middle-aged rats experiencing chronic early-life stress
Left Panel: Atrophy of the apical dendritic trees of CA1 pyramidal cells accompanied loss of
spatial memory and attenuated LTP in 12 month old rats that experienced one week of
chronic stress during postnatal days 2–9. The image depicts representative neurons filled
with biocytin (From Brunson et al., 2005, with permission). Right panel: Increased number
of immunocytochemistry-detectable CRH-expressing interneurons in hippocampi of middle-
aged rats that experienced early-life stress (highlighted by arrows). All sections were run
together, and cells were quantified in the pyramidal cells layers of areas CA3 and CA1
(from Ivy et al., 2010, with permission).
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