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Abstract

Background—Mitochondria contribute to oxidative stress, a phenomenon implicated in ovarian
carcinogenesis. We hypothesized that inherited variants in mitochondrial-related genes influence
epithelial ovarian cancer (EOC) susceptibility.

Address correspondence to: Thomas A. Sellers, PhD, Director, Moffitt Research Institute, Executive Vice President/Associate Center
Director, Cancer Prevention & Control Division, 12902 Magnolia Drive, MRC-CANCONT, Tampa, FL 33612-9416, P:
813-745-1315, F: 813-745-6525, Thomas.Sellers@Moffitt.org.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Permuth-Wey et al. Page 2

Methods—Through a multi-center study of 1,815 Caucasian EOC cases and 1,900 controls, we
investigated associations between EOC risk and 128 single nucleotide polymorphisms (SNPSs)
from 22 genes/regions within the mitochondrial genome (mtDNA) and 2,839 nuclear-encoded
SNPs localized to 138 genes involved in mitochondrial biogenesis (BIO, n=35), steroid hormone
metabolism (HOR, n=13), and oxidative phosphorylation (OXP, n=90) pathways. Unconditional
logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI)
between genotype and case status. Overall significance of each gene and pathway was evaluated
using Fisher’s method to combine SNP-level evidence. At the SNP-level, we investigated whether
lifetime ovulation, hormone replacement therapy (HRT), and cigarette smoking were confounders
or modifiers of associations.

Results—Inter-individual variation involving BIO was most strongly associated with EOC risk
(empirical P=0.050), especially for NRF1, MTERF, PPARGCIA, ESRRA, and CAMKZD.
Several SNP-level associations strengthened after adjustment for non-genetic factors, particularly
for MTERF. Statistical interactions with cigarette smoking and HRT use were observed with
MTERFand CAMKZD SNPs, respectively. Overall variation within mtDNA, HOR, and OXP was
not statistically significant (empirical £>0.10).

Conclusion—We provide novel evidence to suggest that variants in mitochondrial biogenesis
genes may influence EOC susceptibility.

Impact—A deeper understanding of the complex mechanisms implicated in mitochondrial
biogenesis and oxidative stress may aid in developing strategies to reduce morbidity and mortality
from EOC.
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INTRODUCTION

Epithelial ovarian cancer (EOC) is the ninth most commonly diagnosed female cancer and
the most lethal gynecologic malignancy in the United States (1). Although the etiology
remains largely unknown, there are two leading hypotheses. The incessant ovulation
hypothesis (2) states that repeated ovulations over-stimulate the ovarian surface epithelium,
causing inflammation and increased cellular proliferation during epithelial repair, leading to
DNA replication errors and malignant transformation. The gonadotropin hypothesis (3)
posits that gonadotropins are responsible for this process. Supporting these hypotheses,
epidemiologic studies have shown that factors which interrupt ovulation and/or lower
gonadotropin levels, including pregnancy, oral contraceptive use, and lactation, are inversely
associated with risk (4). However, factors unrelated to hormones, reproduction, or ovulation
may also influence risk, suggesting alternate mechanisms may also contribute to the genesis
of EOC (4).

Emerging experimental and epidemiologic evidence suggests EOC development and
progression may be caused by oxidative stress (5-9), a phenomenon arising due to
overproduction of reactive oxygen species (ROS) in mitochondria (10). Mitochondria are
semiautonomous membrane-bound organelles that participate in free radical production,
apoptosis, and energy metabolism (11). Aside from the nucleus, the mitochondrion is the
only cellular organelle that contains its own genome (mtDNA) and genetic machinery.
MtDNA is a maternally-inherited, 16.6 kilobase double-stranded, closed circular molecule,
that encodes 37 genes (13 polypeptides, 22 transfer RNAs, and 2 ribosomal RNAs) mainly
involved in oxidative phosphorylation (OXP), a process whereby molecular oxygen is
oxidized to water, creating adenosine triphosphate (ATP) and the by-product, ROS (11).
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Approximately 1500 proteins encoded by nuclear DNA (nDNA) generate new mitochondria
(known as mitochondrial biogenesis) and maintain mitochondrial structure and function by
regulating processes such as OXP, apoptosis, and mtDNA replication, transcription, and
translation (11). Importantly, interplay between the genomes can influence disease
processes, and studies implicate nDNA-encoded genes involved in mitochondrial biogenesis
as regulators of nuclear-mitochondrial interactions (5, 11, 12).

While much attention has been focused on somatic mtDNA mutations (11, 13), less research
has been directed to the influence of germline variants on mitochondrial dysfunction and
cancer development. Single nucleotide polymorphisms (SNPs) in mtDNA and/or nDNA
may enhance cancer risk through subtle changes in encoded proteins, altered OXP activity,
and excess ROS production over time (Figure 1) (10, 13). In particular, variation involving
mtDNA (13) and the following three categories or ‘pathways’ of nDNA may alter cancer
risk by promoting oxidative stress. Mitochondrial biogenesis (BIO) proteins represent
transcription factors and co-activators that regulate mtDNA and nDNA involvement in
OXP; because defective mitochondrial biogenesis may promote slower mitochondrial
turnover and altered OXP activity, control of this process is integral for maintenance of
energy production and prevention of ROS accumulation (12, 14, 15). Similar to their
mtDNA-encoded counterparts, nDNA-encoded (OXP) proteins, when impaired, may alter
OXP activity and contribute to diseases including hereditary cancer syndromes (16). Steroid
hormone metabolism (HOR) proteins, primarily receptors localized to mitochondria,
modulate mitochondrial gene expression and OXP activity (17, 18). SNPs in these pathways
may also influence risk by interacting with one another or with non-genetic factors known to
contribute to ROS accumulation (Figure 1).

Few studies have examined potential associations between inherited mitochondrial SNPs
and/or haplotypes and cancer risk (19-25). Only one study (25) investigated nDNA in
addition to mtDNA, and only one small study in China (22) involved ovarian cancer. Thus,
there is a need for large-scale studies that comprehensively evaluate inherited mitochondrial
variation and EOC risk and incorporate epidemiologic risk factors into the analysis.

METHODS
Study Design and Population

The study protocol was approved by the institutional review board at each center, and all
study participants provided written informed consent. Data derive from four case-control
studies of EOC: the Mayo Clinic Ovarian Cancer Study (MAY) (Rochester, MN), Duke
University’s North Carolina Ovarian Cancer Study (NCO) (Durham, NC), the University of
Toronto Familial Ovarian Tumor Study (TOR) (Ontario, Canada), and H. Lee Moffitt
Cancer Center and Research Institute’s Tampa Bay Ovarian Cancer Study (TBO) (Tampa,
FL). Study characteristics are summarized in Table 1. All studies recruited incident,
pathologically confirmed primary EOC cases, either borderline or invasive, aged 20 and
above. Three studies used population-based rapid ascertainment for the cases (NCO, TOR,
TBO), and one study was clinic-based (MAY). All controls had at least one ovary intact at
the reference date and were frequency-matched to cases on age-group and race.

Demographic data and information on known and suspected EOC risk factors was collected
from participants using study-specific questionnaires. Data collected included race/ethnicity,
age at diagnosis/interview, menstrual and reproductive history, exogenous hormone use,
medical and surgical history, adult height and weight, smoking history, and family history of
ovarian and breast cancer in first-degree relatives. To increase etiologic homogeneity, we
excluded cases with non-epithelial or borderline tumors, non-whites, known BRCAI and
BRCAZ mutation carriers, Jewish women (because of the likelihood of carrying a BRCA
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mutation), and women with a prior history of ovarian, breast, endometrial, or early-onset
colorectal cancer (because of the likelihood of having a mismatch repair defect).

Biospecimen Collection and Processing

Blood served as the source of genomic DNA and was collected at each study site at the
conclusion of the interview (NCO, TBO, and TOR) or in the course of medical care (MAY).
Genomic DNA was isolated from whole blood using PureGene DNA isolation reagents
(Gentra Systems, Minneapolis, MN), re-suspended in TE buffer, and stored at 4°C. Samples
were bar-coded with a unique subject identification number to ensure accurate and reliable
sample processing and storage.

Genotyping Method and Quality Control

All samples were genotyped using the Illumina Infinium 610K Array at the Mayo Clinic
Genotyping Shared Resource Facility (Rochester, MN) by laboratory personnel blinded to
case-control status. Each 96-well plate contained 375 ng DNA of random mixtures of case
and control samples, two blind duplicates, and two replicates of a CEPH family trio (mother,
father, child) from the Coriell Institute. A quality assurance (QA) panel of 96 SNPs was run
on the Illumina Bead Express platform to test sample performance and ensure concordance
of replicate samples.

Illumina’s Genome Studio™ software was used to perform automated genotype clustering
and calling of the potential 550,000 beadtypes. SNPs were excluded from further analysis if
a) the call rate was <95%, b) they were monomorphic upon manual clustering, or c) there
were unresolved replicate errors. Among 81 pairs of replicate samples, the overall
concordance rate was 99.93%.The overall genotype call rate was 99.7%.

We attempted to genotype unique samples from 4,150 eligible subjects. Of these, 394 were
excluded because genotypes were generated at fewer than 95% of SNPs (i.e. sample call rate
<95%); 81.4% of these exclusions (n=321) were attributed to poor quality DNA from the
TOR site. Other reasons for exclusion included sample failure under the QA panel (n=15),
ambiguous gender (n=7), unresolved identical genotypes (n=8), self-report as non-Caucasian
(n=2), and those predicted by STRUCTURE (26) analysis to have less than 80% European
ancestry (n=9). This resulted in a final sample size of 3,715 subjects (1,815 cases and 1,900
controls).

Identification of candidate genes and SNPs

MtDNA content on the 610K array was determined by comparing an annotation file
supplied by Illumina with the MitoMap database (27). Of 138 mtDNA SNPs from 22 genes
and 8 regulatory regions included on the 610K array, 128 (92%) had call rates greater than
95%, but only 24 SNPs had MAF greater than or equal to 5% (Table 2). Information
regarding nDNA proteins was derived from published literature and several databases,
including MitoProteome (28), the Human Mitochondrial Protein Database (29), and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database. A total of 3064
SNPs in 142 nDNA genes of interest (35 BIO, 14 HOR, and 93 OXP) are on the 610K array
and of these, 2839 SNPs (93%) from 138 genes had call rates greater than 95% (Table 2). To
evaluate evidence for SNP-level associations at NDNA markers that were not directly
genotyped, imputation was carried out using MACH version 1.0.16 using phased data from
HapMap release 22 (genome build 36) on individuals with European ancestry (CEU). We
imputed 4,445 SNPs that were not genotyped as part of the 610K array that reside within the
138 nDNA-encoded genes.
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Statistical Methods

Descriptive statistics were generated using means and standard deviations for continuous
variables and frequencies and percents for categorical variables. Distributions of covariates
among cases and controls were compared within each study site using t-tests and X tests for
continuous and categorical variables, respectively. Genotype frequencies of nDNA SNPs
among controls were tested for HWE using X? goodness-of-fit tests. Statistical analysis was
performed using SAS Version 9.1 (SAS Inc., Cary, NC) and PLINK software (30).

Association testing was performed for SNPs, haplotypes, genes, and pathways. To examine
associations between each SNP and EOC risk, unconditional logistic regression was used to
estimate odds ratios (OR) and 95% confidence intervals (CI) between carriage of the minor
versus major allele of maternally-inherited mtDNA SNPs and case status, and between
genotypes and case status for nDNA SNPs. Log-additive, dominant, and recessive genetic
models were fit for each nDNA SNP; the major allele was considered to be the reference
allele during modeling. All models were adjusted for the design variables of age
(continuous) and study site (indicator variables for NCO, TBO, and TOR). Due to the
potential for population stratification, models were also adjusted for a quantitative variable
for the first principal component representing European ancestry (26). Wald X? tests were
used to obtain P values for dominant and recessive SNP effects, and the Cochran Armitage
trend test was used to estimate P for trend for log-additive effects. The best-fitting model
was represented by the one with the smallest Pvalue. All Pvalues were two-sided, and a
nominal < 0.05 was considered the threshold of significance for SNP-level tests.

We permuted case-control status 100,000 times to generate point-wise empirical p-values
(EMP1) using PLINK. The EMP1 represents the proportion of permutations in which the
minimum simulated Pvalue was less than the observed Pvalue. To predict the potential
functional significance of risk-associated and strongly correlated (r2>0.80) SNPs, we used
the SNPinfo(31) and FastSNP (32) web-based tools.

To evaluate whether established or suspected EOC risk factors (lifetime ovulation,
hormones, cigarette smoking) postulated to contribute to oxidative stress may confound the
most promising SNP-EOC risk associations, we conducted analyses among subjects with
complete data for variables of interest (N=2662; 1217 cases, 1445 controls, representing
72% of 3715 total subjects). Similar to other studies that estimated lifetime ovulation (33), a
composite variable for lifetime ovulatory cycles (LOC) was estimated by considering self-
reported ovulatory and anovulatory periods using the following modified formula:

LOC=[[index age—age at first menstrual period]—[ (number of months pregnant+number of months of oral contraceptive use)/12 mont

where 13 cycles/year is assumed based on an average cycle length of 28 days. For post-
menopausal women, index age was defined as age at menopause. For pre- or peri-
menopausal women, age at interview/ diagnosis served as the index age. The LOC
composite variable was subsequently categorized based on tertiles of the distribution among
controls. Other factors that may influence LOC, such as breastfeeding, missed or irregular
periods, or spontaneous or elective abortions, were not considered because pertinent data
were not ascertained by or available from all participating sites. For each SNP investigated,
the model included age (continuous), study site (indicator variable), LOC category (low,
medium, high), duration of unopposed estrogen or combined estrogen-progestin hormone
replacement therapy (HRT) use (continuous), and pack-years of cigarettes smoked
(continuous).

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2012 June 01.
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To explore SNP-environment interactions, modifying effects of the following non-genetic
variables were considered: LOC category (high and medium tertile vs. lowest tertile), HRT
use (ever versus never), smoking history (ever versus never), and menopausal status (peri/
pre versus post). Multiplicative interactions were evaluated by fitting logistic regression
models with the corresponding SNP under a dominant effect, non-genetic variable, and
interaction term. Pvalues for testing the interaction effects were obtained using Wald X2
tests. For interactions with £< 0.05, stratified analyses were conducted.

For each gene having multiple SNPs associated with risk, we estimated pair-wise linkage
disequilibrium (LD) using Haploview v4.1 (34). For regions with high LD (/2> 0.80), we
tested for associations between haplotypes and case-control status using the Haplo.stats
program and R software v2.10.0 according to methods proposed by Schaid et al. (35).
Estimates of ORs, 95% Cls, and P-values were obtained, with adjustment for age and study
site under the specified genetic model. Rarer haplotypes (frequencies <10%) were combined
into a single category to minimize sparse cell counts. LD plots displaying the SNP
correlation structure in selected regions are displayed in Supplementary Figure 1.

To complement single SNP analysis, we used Fisher’s method (FM) (36) to combine
association evidence from a group of SNPs within a gene for gene-level analysis. This
method has been shown to have high statistical power in detecting associations (37). Briefly,

m

. . . . . F=-2%"Inp; .
the test statistic combines multiple results in the following form, ~' ~,where g is
the SNP-level p-value (adjusted for age and study site) for the 1 SNP within each gene. To
enhance power to detect associations, only common SNPs (MAF = 5%) were included in
this analysis. Due to the correlation structure of SNP data, the statistical significance for
each gene was assessed using 10,000 permutations with case/control labels permuted. The
same statistical test was performed for the pathway-level analysis; association tests for each
of the 4 pathways (mtDNA, BIO, OXP, HOR) were conducted. In a similar fashion, the
statistical significance for each pathway was assessed using 10,000 permutations. Similar to
methods employed by Goode et al. (38), the results were interpreted hierarchically at the
pathway, gene and SNP levels. Pathway- and gene-level results were not corrected for
multiple testing due to the exploratory nature of this analysis.

Subject characteristics

The distributions of selected characteristics of the 1815 EOC cases and 1900 controls are
summarized by study site and case-control status in Table 3. Despite frequency-matching on
age-group, cases were older (60.0 + 11.6 years) than controls (56.8 £ 12.0 years)
(P<0.0001). As compared to controls, cases tended to have lower education levels
(P<0.0001), a higher number of LOC (£<0.0001), were less likely to have used oral
contraceptives (OC) (P=0.002), had longer duration of HRT use (£<0.0001), and a higher
number of pack-years of cigarettes smoked (A<0.0001).

Association Testing Results

Results from association testing for mtDNA and the 3 nDNA pathways are presented in a
tiered approach, beginning with evaluation at the pathway-level, followed by gene- and
SNP-level results. At the pathway and gene levels, we focused on results significant at
empirical A<0.10. At the SNP level, we focused on results significant at A<0.05 and
EMPI1<0.05, and comment on /n silico findings and imputated genotype results where
appropriate. Adjustment for the first principal component representing European ancestry
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did not change parameter estimates and Cls appreciably, so results from simple models are
presented. We report on haplotype effects with global A<0.05.

Mitochondrial DNA (mtDNA)—Pathway analysis revealed that inherited variation in
mtDNA (17 genes/regulatory regions, 24 SNPs analyzed) was not significantly associated
with EOC risk (empirical £~=0.510), therefore, gene- and SNP- level results are interpreted
with caution. At the gene-level, only M7-CO1 (COXZ; cytochrome c oxidase 1) was
associated with risk (empirical ~=0.006) (Supplementary Table 1). At the SNP-level, a
synonymous SNP in M7-CO1, T6777C (OR: 0.68, 95%Cl: 0.51-0.92, £=0.006) appeared to
decrease risk (Table 4), consistent with haplotype analysis (OR: 0.81, 95%ClI: 0.70-0.94,
P=0.006) (Supplementary Figure 1A). Association results for all evaluated mtDNA genes
and SNPs are in Supplementary Tables 1 and 2, respectively.

Mitochondrial biogenesis (BIO)—Of the three nDNA pathways studied, only the 25
genes (1051 SNPs) involved in BIO had a pathway-wide association with EOC risk
(empirical P=0.050). At the gene-level, NRFI (nuclear respiratory factor 1) had the
strongest result (empirical P=0.041). Four other genes also demonstrated gene-wide
associations, including MTERF (mitochondrial transcription termination factor),
PPARGCIA (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha),
ESRRA (estrogen-related receptor alpha), and CAMKZ2D (calcium/calmodulin-dependent
protein kinase D), with empirical ~values of 0.044, 0.060, 0.066, and 0.067, respectively
(Supplementary Table 1).

Association results for BIO SNPs significantly associated with EOC risk are displayed in
Table 4. For NRF1, the strongest association with EOC risk was observed under a recessive
model with rs10245560 (OR (95% CI) =0.80 (0.68-0.95), £=0.010) (Supplementary Figure
1B). MTERF includes several sets of correlated risk-associated SNPs (Supplementary
Figure 1C), with ORs ranging from 0.89-2.90. Of all BIO genes, PPARGCIA contains the
most risk-associated SNPs, the majority of which flank the 5’ or 3° UTR, including several
correlated SNP-pairs (Supplementary Figure 1D). ESRRA contains rs11600990, a SNP
associated with decreased risk under a dominant model (OR (95% CI) =0.83 (0.72-0.97),
P=0.016)) that was predicted by SNPinfo to reside in a putative transcription factor binding
site (TFBS). Finally, we identified several intronic SNPs in CAMKZD, including rs2040742,
a predicted intronic enhancer by FastSNP associated with decreased risk (Supplementary
Figure 1E). After adjustment for lifetime ovulation, HRT use, and pack-years smoked,
similar magnitudes of association were observed for the majority of BIO SNPs depicted in
Table 4, although associations seemed to strengthen for several SNPs in MTERF,
PPARGCIA, and CAMKZD.

Imputed genotypes reinforced SNP-level associations for several BIO genes. For example,
rs10954252 and rs9929 are imputed SNPs within NRFI and CAMKZD, respectively, that
were most strongly associated with EOC risk (OR (95% CI)= 1.14 (1.04-1.25), P=0.006) for
rs10954252 and (OR (95% CI1=1.36 (1.12-1.66), P=0.002) for rs9929)) (data not shown).
Imputation also revealed previously undetected signals for MAPKI (mitogen activated
protein kinase 1) and 7FB1M (transcription factor B1, mitochondrial), with the strongest
signal identified for TFBIMrs721101 (OR (95% CI=0.86 (0.77-0.96), £=0.006) (data not
shown).

Steroid hormone metabolism (HOR)—Inter-individual variation within HOR pathway
(9 genes, 532 SNPs analyzed) was not significantly associated with EOC risk (empirical
P=0.35), so gene- and SNP-level results are interpreted cautiously. ESRZ2 (estrogen receptor
2) is the only HOR gene that was associated with EOC risk (empirical AP=0.026)
(Supplementary Table 1). Four intronic £SR2 SNPs were individually associated with EOC
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risk (Table 4), and a haplotype block including rs1256062, rs1256061, and rs12435857 was
associated with a slightly increased risk under an additive model (OR=1.22, 95% ClI: 1.01-
1.49, global P=0.029) (Supplementary Figure 1F). Imputation reinforced evidence of
associations within £SR2, and identified 17 new signals for NR3C1/GR (glucocorticoid
receptor) (data not shown).

Oxidative phosphorylation (OXP)—Overall, the OXP pathway (73 genes, 1043 SNPs)
was not statistically significantly associated with EOC risk (empirical P=0.68)
(Supplementary Table 1). Individually, seven OXP genes demonstrated statistically
significant gene-level empirical ~-values, and 7TUFM (Tu translation elongation factor) had
the strongest gene-level result (empirical £=0.014, Supplementary Table 1). At the SNP
level, TUFMrs9972768 resides in a putative TFBS and is associated with an 11% increased
risk with each copy of the minor allele (Table 4).

SNP-environment interaction analysis

Due to the global significance of the BIO pathway, exploratory models were fitted to test
interactions between the 39 risk-associated BIO SNPs (Table 4) and a set of a priori
determined non-genetic variables linked to oxidative stress: lifetime ovulation, HRT use,
cigarette smoking, and menopausal status. This analysis was limited to a dominant genetic
effect, for a total of 156 tests (39 SNPs x 4 non-genetic factors). There were 8 interactions
significant at A<0.05, which is the same as expected based on chance alone, and they
involved SNPs from MTERF, PPARGCIA, and CAMKZD. Most noteworthy, stratified
analyses showed MTERFrs10488506 was a risk factor among ever smokers (OR (95% CI)
=1.44 (1.09-1.91), P=0.011) but not never smokers (OR (95% CI) =0.98 (0.77-1.24),
P=0.87). PPARGC1A rs1509241 was a risk factor among pre/peri-menopausal women (OR
(95% ClI) =0.71 (0.56-0.90), £=0.004) but not post-menopausal women (OR (95% CI)
=0.99 (0.83-1.19), P=0.95). HRT use appeared to modify the association between
CAMKZDrs13107662 and EOC risk, with an inverse association observed among ever
users (OR (95% CI) =0.72 (0.58-0.89), ~=0.003) but no association among never users (OR
(95% CI) =0.98 (0.82-1.16), A=0.80).

DISCUSSION

Multiple lines of evidence, including animal, /7 vivo, and epidemiologic studies, point to a
role for oxidative stress in the etiology and/or progression of EOC (5-9). This report
explored the hypothesis that inherited variants in mitochondrial-related genes may influence
EOC risk, possibly by contributing to oxidative stress, using a large, homogeneous study
population of 1,815 incident pathologically-confirmed Caucasian EOC cases and 1,900
controls. The analysis focused on 128 mtDNA-encoded SNPs from 22 genes and 8
regulatory regions and 2839 nDNA-encoded SNPs from 138 genes having functions related
to mitochondrial biogenesis, HOR, and oxidative phosphorylation. We considered various
genetic models, haplotypes, gene and pathway-level analyses, in7 silico findings, and
evaluation of potential confounders and effect modifiers. Recognizing the large number of
statistical comparisons, the data suggest that inherited variants in key genes involved in
mitochondrial biogenesis may represent contributors to EOC susceptibility and therefore
merit efforts to replicate in additional study populations.

BIO is important due to the DNA damage endured by these organelles over a lifetime which
can affect aging, neuromuscular diseases, ovarian insufficiency, and risk of cancer (39-42).
This process is influenced by environmental stimuli (i.e. temperature, nutrients, hormones,
exercise) that change the energetic and physiological conditions of the cell and in turn
increase intracellular calcium concentrations which stimulate kinases to activate
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mitochondrial gene transcription (14). Since BIO is repressed in cancer cells (40) and re-
activation of BIO can induce apoptosis in cancer cells (39), knowledge gained regarding
genetic factors that influence BIO in EOC may have implications for biomarker
development and therapeutics.

At the transcriptional level, two classes of nNDNA-encoded regulatory proteins direct
nuclear-mitochondrial interactions and promote BI1O, and our study highlighted genes from
each class (14, 15, 41). MTERF regulates OXP by acting as an mtDNA transcript
terminator, initiator, and controller of mtDNA replication (43). We observed what appeared
to be independent association signals from different MTERF gene regions, many of which
strengthened after accounting for confounding by and/or interaction with HRT use and
smoking history. To our knowledge, this is the first report that has linked MTERFto cancer
development. In response to oxidative stress, NRFI activates transcription of antioxidant
and detoxification genes (44). Our findings of NRFI gene- and SNP-level associations (and
a high proportion of associated NMRF2 SNPs) appear promising in light of accumulating data
regarding the role for nuclear respiratory factors, especially NRF2, in chemoprevention and
therapeutics (45). PPARGCI1A modulates the function of most mitochondrial proteins (12)
and serves as a coactivator for ESRRA, an inducer of BIO and regulator of OXP and
oxidative stress defenses (12, 46). In ovarian tumors, a PPARGC1A-ESRRA pathway
regulates expression of VEGF (vascular endothelial growth factor), a positive regulator of
angiogenesis (47). Over-expression of PPARGCI1A and ESRRA has been associated with
poor EOC prognosis, suggesting these genes may be useful therapeutic targets (48, 49).
CAMK?ZD is a serine/threonine kinase involved in calcium signaling (15); these kinases are
dysregulated in many malignancies and participate in cell growth, apoptosis, and
angiogenesis (50).

Given that the HOR, OXP, and mtDNA pathways were not associated with EOC risk in our
study, caution should be taken when interpreting gene- and SNP-level results. Consistent
with our finding of gene- and SNP-level associations between £SR2and EOC risk, studies
support a role for £SR2in mitochondrial dysfunction, oxidative stress, and ovarian
carcinogenesis (18, 51). Based on data suggesting cross-talk between £ESR2and ESRRA
(52), the possibility remains that stimulation of mitochondrial proteins by steroid hormones
may cause altered BIO and function, leading to hormone-related cancers. All nNDNA-
encoded subunits of the OXP pathway were encompassed on the 610K array; collectively
this pathway may not have been associated with EOC risk because expression of these
enzymes is most critical in tissues or organs with high energy demands (i.e. muscle, brain,
heart). However, given the role for OXP enzymes in ovaries and female reproductive
function, additional research may be warranted in this area (53). Most mtDNA variants are
rare (MAF< 1%), possibly due to negative selection of germline changes during evolution
(54), limiting power to detect SNP-level and higher associations. Although our coverage of
mtDNA genes and SNPs is greater than other studies (19, 23, 25), the array did not
encompass one polypeptide (AT7Pase 8) and 14 of 22 tRNAs. Further research is necessary
to clarify the role of mtDNA-encoded genes in EOC.

The current study did not evaluate other types of nDNA-encoded SNPs that may impact
oxidative stress, such as those that influence antioxidant defenses (7.e. MPO, GSTM1), DNA
repair (i.e. MGMT, XRCCJ), carcinogen metabolism (i.e., CYPIA1, GST), and
inflammation (i.e. 7TNF-a, /L-6), because they have been previously examined (55, 56).
Mitochondrial variants involved in intrinsic apoptosis (7.e. caspases, APAF1) may also alter
EOC risk and should be explored. Another limitation pertains to our sub-analysis in which
we evaluated whether lifetime ovulation, HRT, and cigarette smoking may confound or
modify observed SNP-EOC risk associations. Because we generated crude estimates of
lifetime ovulation that did not consider anovulatory periods due to breastfeeding, menstrual
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irregularities, or incomplete pregnancies, this measurement lacks precision, and observed
associations may be attenuated. Furthermore, we lacked data on HRT formulation and could
not consider effects of unopposed estrogen therapy separately from combined estrogen-
progestin HRT. Although sub-analyses were based on only 72% of our study sample, their
profile did not appear to systematically differ from the entire study population (data not
shown), and comparison of parameter estimates for individual SNPs using simple and full
models generally showed magnitudes of association similar in direction and strength (Table
4).

In summary, this study reports on the largest number of inherited mitochondrial
polymorphisms, genes, and pathways to date for associations with EOC risk, and is the first
to suggest that SNPs in BIO genes may represent novel EOC susceptibility loci. Based on
internal consistency and biologic plausibility, functional validation of the most promising
SNPs identified and characterized as part of this research is warranted. Furthermore, due to
the heterogeneous nature of EOC (4), examination of histology-specific effects in larger
sample sizes is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Schema illustrating how mitochondrial SNPs and other factors may contribute to oxidative
stress and ovarian carcinogenesis. Polymorphisms in mtDNA and/or several categories of
nDNA may interact with one another or with other non-genetic endogenous and exogenous
exposures to contribute to slight changes in encoded proteins over time, leading to altered
OXP activity and oxidative stress. An accumulation of ROS may promote DNA damage and
genetic instability, increased concentrations of calcium, and altered expression of genes
involved in cellular proliferation and apoptosis, including oncogenes and tumor suppressor
genes. This process may ultimately promote ovarian cancer development.
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Table 2

List of investigated mtDNA and nDNA genes and number of genotyped SNPs analyzed by pathway
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Pathway Gene abbreviations #SNPs | #SNPs | #SNPs
on passing with
610K QC MAF =
array 0.05 a
mtDNA (N=22 genes + 8 regions)
Polypeptides (n=12) MT-ATP6, MT-COIl, MT-COIl, MT-COIIll, MT-CYTB, MT- 91 85 10
ND1, MT-NDZ2, MT-ND3, MT-ND4, MT-NDA4L, MT-ND5, MT-
ND6
tRNAs (n=8) MT-TR, MT-TN, MT-TD, MT-TC, MT-TQ, MT-TG, MT-TL2, 10 10 2
MT-TT
rRNAs (n=2) MT-RNR1, MT-RNR2 14 13 5
Displacement (D)-Loop region MT-DLOOP, MT-CSB-1, MT-HVZ, MT-HV3, MT-TFX 19 16 5
Miscellaneous MT-ATT, MT-NCL, MT-NC7 4 4 2
Subtotal 138 128 b 24
nDNA (N=142 genes)
Mitochondrial Biogenesis (BIO) ATF2, CI00RF2, CAMKZA, CAMKZB, CAMKZD, CAMKZG, 1194 1135 1051
(n=35) CAMK4, CREBI, ESRRA, HCFC1, MAPK1, MTERF, MT01,
MYEF2, NFE2L2, NR1IH3, NRF1, PPARA, PPARG,
PPARGCIA, PPARGCIB, PPRCI1, PRKAA1, PRKAAZ,
PRKABI, PRKCA, SP1, SSBP1, TFAM, TFBIM, TFBZM,
THRA, THRB, TRNT1, YY1
Steroid Hormone Metabolism AR, ESR1, ESR2, HSD17B1, HSD17B3, HSD17B4, HSD17B8, 635 584 532
(HOR) (n=14) NR3CI1, PGR, POMC, RARA, RARB, RARG, SRD5A2
Oxidative Phosphorylation (OXP) ATP5A1, ATP5C1, ATP5D, ATP5F1, ATP5G1, ATP5G2, 1235 1120 1043
(n=93) ATP5G3, ATP5H, ATP5J, ATP5L, ATP50, ATPAF1, COX10,
COX11, COX15, COX17, COX4l1, COX4l2, COX5A, COX5B,
COX6A1, COX6BI1, COX6BZ2, COX6C, COX7A1, COX7AZ,
COXT7AZL, COX7B, COX7B2, COX7C, COX8A, COXSC,
GAPDH, GFM1, LRPPRC, NDUFA1, NDUFA10, NDUFA11,
NDUFA12, NDUFA12L, NDUFA3, NDUFA4, NDUFAS5,
NDUFA6, NDUFA7, NDUFAS8, NDUFA9, NDUFABLI,
NDUFAF1, NDUFB1, NDUFB10, NDUFB11, NDUFB2,
NDUFB3, NDUFB4, NDUFB5, NDUFB6, NDUFB7, NDUFBS,
NDUFBY, NDUFC1, NDUFC2, NDUFS1, NDUFSZ2, NDUFS3,
NDUFS4, NDUFS5, NDUFS6, NDUFS8, NDUFV1, NDUFV2,
NDUFV3, NOX1, POLG, PPA2, SCO1, SDHA, SDHB, SDHC,
SDHD, SLC25A14, SLC25A4, TSFM, TUFM, UCP1, UCP3,
UCRC, UQCRB, UQCRCI, UQCRC2Z, UQCRFSI1, UQCRH
Subtotal 3064 2839 € 2626
TOTAL 3202 2967 2650

Abbreviations: QC=quality control; MAF=minor allele frequency among controls

aNumber of successfully genotyped SNPs having MAF = 0.05; data from these common SNPs were utilized in gene-level and pathway-level

analyses.

b128 mtDNA SNPs from all evaluated polypeptides, tRNAs, and rRNAs passed QC (only MT7-TFX SNPs in the D-Loop region did not pass QC)

02839 nDNA SNPs from a total of 138 nDNA genes (35 BIO, 90 OXP, 13 HOR) passed QC; of these 2839 SNPs, 133 (4.7%) deviated from Hardy
Weinberg Equilibrium (HWE) among controls (PH1/£<0.05); 142 were expected by chance.
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