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Abstract
The thiamine pyrophosphate (TPP) riboswitch employs modular domains for binding TPP to form
a platform for gene expression regulation. Specifically, TPP binding triggers a conformational
switch in the RNA from a transcriptionally active “on” state to an inactive “off” state that
concomitantly causes the formation of a terminator hairpin and halting of transcription. Here,
clustering analysis of energy landscapes at different nucleotide lengths suggests a novel
computational tool for analysis of the mechanics of transcription elongation in the presence or
absence of the ligand. Namely, we suggest that the riboswitch’s kinetics are tightly governed by a
length-dependent switch, whereby the energy landscape has two clusters available during
transcription elongation, and where TPP’s binding shifts the preference to one form. Significantly,
the biologically active and inactive structures determined experimentally matched well the
structures predominant in each computational set. These clustering/structural analyses combined
with modular computational design suggest design principles that exploit the above features to
analyze as well as create new functions and structures of RNA systems.
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Introduction
Riboswitches regulate gene expression by exploiting the effects of selective binding of small
molecules on secondary and tertiary structural changes.1,2 In prokaryotes, these modular
RNA elements are normally found in the 5′ untranslated regions (5′ UTR) of genes and
affect expression levels through various mechanisms: formation or destruction of
transcription terminator hairpins,3–5 sequestration of ribosome binding-sites,6 or emergence
of alternative cleavage sites.7–9
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The thiamine pyrophosphate (TPP) riboswitch is a prominent example. This riboswitch can
adapt two structures, depending on whether it is bound or unbound to TPP.10,11 TPP can
bind only when the secondary structure that links the aptamer domain to the expression
platform, termed thi-box, forms, as shown in Figure 1a. However, it is currently not known
how this riboswitch achieves such specific structural changes without the aid of proteins.
Ligand binding triggers a conformational switch in the entire RNA from a transcriptionally
active “on” state to an inactive “off” state that causes the formation of a terminator hairpin.
Due to a high activation barrier between these states, we suggest that this “conformational
switch” is actually regulated by a thermodynamic/kinetic mechanism whereby the presence
or absence of the ligand favors one particular folding pathway and shifts the folded state
from one structural conformational to the other. That is, if the ligand is absent, the anti-
terminator conformation is favored and transcription of the downstream gene is turned on
(Figure 1b); when TPP is present, that cascade of events is hampered due to the terminator
hairpin configuration. Previous studies on the function of FMN and TPP terminator hairpin
riboswitches in Bacillus subtilis11 suggested a model for small molecule binding to nascent
RNA riboswitches, whereby a decision between two alternative structures is likely to be
made during transcription. Fluorescent experiments of the full-length thiM TPP riboswitch
led to the conclusion that little to no structural changes occur upon TPP binding,12 while
shorter riboswitch intermediates displayed competing alternative folds.

In this work, we examine this structural-equilibrium regulation in the TPP riboswitch as well
as related systems using various computational tools. Our investigations show that the
predominant structure in the nascent RNA is conformationally sensitive to the binding of
TPP, which is present in the RNA up to a specific length (170 nt), after which the more
stable structure is the anti-terminator structure. This mechanism points to a “switching
threshold” for the riboswitch folding pathway, where one functional state is favored over the
other at a critical length of the RNA. Our structural and thermodynamic analyses during
transcription elongation help interpret how the presence or absence of the ligand regulates
this conformation-dependent gene expression process and thus suggest an application of the
tools offered here to RNA design.

Results
In the first subsection, we describe simulation results of the transcription folding process by
structural and clustering analysis. These analyses help interpret key structural changes
occurring when TPP binds and transcription terminates. For structural analysis, intermediate
sequences are folded into their native secondary structures by free energy minimization. For
thermodynamic analysis, we sample alternative secondary structures and plot the distance
between the minimum free energy structure and all other structures against the free energy
of folding to illustrate the folding pathways, which we call the energy landscape plot. Using
a clustering algorithm, we partition the entire set of structures into their respective clusters
and analyze the most dominant secondary structural features in the clusters (see details in
Methods). These results are summarized in Table 1.

Switches of TPP riboswitch at 170 nt (State 1) and at 175 nt (State 2)
Structural predictions for the TPP riboswitch from 50 nt to the full-length 190 nt sequence
were performed in 5 nt increments using secondary structure prediction tools such as
mfold 43, as described in Methods. The thi-box domain 5′ start site begins at +77 nt relative
to the transcription start site and ends at +122 nt.13 At each length, we “folded” the
subsequence into its minimum free energy structure for comparison. As Figure 2 shows,
from 125 until 170 nt the RNA riboswitch forms a structure that would permit ligand-
binding, since the thi-box is fully formed. Based on the availability and energetic
favorability of this ligand-binding domain, we propose a model where complete
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transcription of the TPP binding region (+121), remains intact up until 170 nt. During this
length interval, the riboswitch can sense or detect the presence of intracellular ligand.
Preorganization of the ligand-binding-domain has been confirmed through force-based
spectroscopy14 and crystallographic evidence.2

If the ligand is present at sufficiently high concentrations for binding, the ligand-bound
configuration of the RNA (Figure 1a) is stabilized, and thus formation of alternative
structures is prevented. Support for this theory comes from the high specificity and strength
of binding between the thi-box domain and ligand4 as well as a similar model for an FMN-
sensitive riboswitch.11

At a particular transcriptional length, the non-ligand bound state can become energetically
favored, and a concomitant misfolding of the thi-box results. Past 175 nt, the favored RNA
structure has different topology (Figure 2) and corresponds to that which forms the anti-
terminator hairpin. This configuration may arise in TPP-poor environments due to the lack
of stability provided by ligand-binding.

Clustering of energy landscape of TPP riboswitches: 2 groups or 1 group
We evaluate the feasibility of the above model by performing a series of energy landscape
plots at varying transcriptional lengths. We generate the energy landscape plots for the TPP
riboswitch from 50 to 190 nt in 5 or 1 nucleotide increments. Using clustering techniques
(see Methods), we found that the entire space of the sequence displays two distinct clusters
in the energy plot (Figure 3). As shown in Figure 3a, the RNA forms two dominant clusters
at the two end sections of the elongation process (120–124 nt and 181–190 nt), and these
represent the two riboswitch conformations. The energy plot of 145 nt shows one cluster
(Figure 3b), the majority of which folds into a helical structure with an open thi-box (see
Figure 3b representative structure). On the other hand, the energy landscape at 190 nt shows
two distinct clusters with two different structures (Figure 3c), corresponding to the
transcriptionally active and inactive structures. The structures in the smaller-distance cluster
closely resemble the transcriptionally inactive structure, where the thi-box domain has
formed along with the downstream transcription terminator hairpin. Conversely, the
structures in the larger-distance cluster resemble the riboswitch in the anti-terminator form
which permits transcription to proceed. Thus, the presence or absence of TPP shifts the
balance from one configuration over another.

The average structures in each cluster agree well with their respective RNA secondary
structures found in-vitro in the TPP-bound and TPP-free state.10 Each cluster is structurally
homogeneous (88% and 84% respectively), but the difference between the two clusters is
large (base pair distance between cluster centers: 48.3). A significant energetic barrier is
evident by a low density area of structures between the two peaks (Figure 3c energy
landscape plot). This suggests that only two global topologies are permissible for the folded
riboswitch, each of which is represented by a cluster on the landscape.

Cluster analysis of mutants
To test this hypothesis further, we analyzed a set of mutants constructed by the Nudler
group11 with noted varying effects on the efficiency of transcription termination in vitro. A
series of consecutive mutations inserted into the putative anti-terminator region of mutant
sequence 118 (G118C, T119A, G120C, and G121C) increases termination efficiency up to
~100% (Table 1).

Thermodynamic analysis of mutant 118 showed a continuous energy funnel with no energy
barrier, but high structural similarity (81.1%) when treated as a single cluster. This contrasts
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the wild-type sequence that displays two clusters (Figure 3c). As predicted, the terminator
hairpin was present in all structures sampled in the set (Figure 4a).

Mutant sequence 30 (C30G, C31G, A32T, C33G), was designed to allow extensive base-
pairing between the thi-box (+77–122) and mutated upstream bases, thus disrupting the TPP
binding domain. The energy landscape of mutant 30 displays two clusters with little
separation, both representing the terminator hairpin state; as predicted, none of the structures
displayed the open thi-box domain (Figure 4b).

The 80 (C80A, C81A, C82A) and the 97 (G97C, G98C, T99A) mutants have point
mutations of the thi-box domain that disable the riboswitch’s ability to bind to a ligand.
Clustering confirms the presence of two structural clusters, extensively overlapping (Figure
4c, d), yet with high intra-cluster structural similarity (76%, 82% respectively). Similarly,
the effect of TPP on transcription termination was completely abolished in the 97 mutant.
The 97 mutant displays a two-cluster landscape predominantly composed (91.9%) of the
low-energy family of anti-terminator structures (Figure 4d).

Crystallographic studies show that binding between the thi-box and TPP is dependent on an
induced fit mechanism between highly conserved residues, divalent cations, and the moieties
of TPP.15–17 These interactions were disrupted in the 80 and 97 mutations, whose
substitutions had deleterious effects on the ability of TPP to favor one of the configurations
(in vitro, both mutants showed a +2% termination efficiency increase in the presence of
TPP; wild-type showed +71%). However, 2D folding analyses for these mutants display
two-cluster energy landscapes which suggest preservation of function to some degree. Thus,
this mutation has a deleterious effect on binding but not on folding.

Clustered landscapes are present in diverse riboswitch systems
We further applied our method to a number of riboswitch systems that utilize other ligands
and alternative mechanisms of genetic control (see Table 1). The thiM (TPP)4 and ypaA
(FMN)18 mRNA 5′ UTR sequences are translation terminator riboswitches that function by
base-pairing of the Shine-Dalgarno (SD) sequence. Both sequences were found to display
clustered energy landscape properties similar to those of the tenA riboswitch (see Figure 5a,
b). However, the ypaA riboswitch is unique in that the higher-energy cluster (Set 2)
corresponds to the FMN-bound structure, opposite of what was found for the wild-type tenA
TPP riboswitch. This suggests that the lowest energy state is the non-bound form.
Microarray analysis indicates that the ypaA sequence shows no change in the quantitative
level of transcripts when B. subtilis strains are grown in the presence or absence of
riboflavin, alluding to the function of ypaA as a translation inhibitor.19 In addition, the
coenzyme B12-sensing btuB leader sequence in Escherchia coli shows a two-state energy
landscape (see Figure 5c). This riboswitch utilizes a variety of tertiary interactions and
pseudoknots to perform silencing of downstream genes in the presence of a ligand.20 These
studies thus suggest that the energy landscape properties developed here are generalizable to
different classes of riboswitches.

The gcvT and VCI-II elements are dual, tandem-aptamer RNA riboswitches that display
cooperative binding of glycine and genetic control through transcription termination.21,22

Each aptamer domain can bind one separate molecule of glycine. Noteworthy is the fact that
the presence of glycine decreases the level of gcvT termination, representing a case where
the ligand is required to activate gene transcription. Computational analysis of both glycine
riboswitches, however, reveals no clustering in the energy landscape (data not shown). This
may be attributable to the unique function of the riboswitch as a subtle sensor that
significantly modifies its structure with only moderate changes in ligand concentration.23

Thus, more global changes in secondary structure may not be required to affect riboswitch
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function. It is this cooperative nature of ligand-binding that may account for this difference
in energy landscape properties.

Discussion
The total number of conformations that a linear macromolecule like RNA can adopt is
astronomical. RNA’s ability to navigate this huge folding space quickly has been
continuously subject to selective pressure. Many factors in the folding process, including
thermally-driven chain fluctuations, ion-mediated electrostatics, base-pairing and stacking,
and other non-canonical interactions guide the folding process.24 The advantage of the
energy landscape approach presented here for analyzing the structural properties of
functional RNAs is a simplified representation that approximates the feasible secondary
structures at the low energy portion of the energy funnel. Funnel energy landscapes have
proven invaluable in protein folding studies.25–27 The minimum free energy (mfe) approach,
while theoretically most stable, represents a single point on the energy landscape and is
subject to small changes in energy parameters and kinetic barriers to folding.28 A growing
RNA molecule may not fold immediately into the most stable structure but explore multiple
folding routes or fluctuate between nearby “suboptimal” structures. Additionally, significant
kinetic traps have been found to hold long RNAs in suboptimal folds.29

Thus, it remains unknown whether RNA folding is a direct pathway to the native fold,
singularly controlled by the more stabilizing interactions of the native fold, or a process
complicated by a series of frustrated intermediate states, in which the RNA inhabits
suboptimal structures. The former notion suggests that the folding landscape is a smoothly
sloping energy funnel with a unique, minimum free energy structure. The latter theory
supports an exhaustive search between all possible sub-interactions, in which the energy
landscape is decorated with local minima that may trap the macromolecule. Our
investigations suggest that the folding landscape of certain classes of riboswitches is length-
dependent: during the process of transcription certain lengths utilize a smooth transition
energy funnel to the mfe, while at other lengths, the energy landscape forms a frustrated
equilibrium between two major topologies. This suggests that a complex interplay between
kinetics and thermodynamics is required for the structure to attain the proper conformation.
For all the riboswitches tested, we suggest that ligand-binding occurs on top of a preformed
macromolecular backbone and that this step determines the future outcome of gene
regulation. This has been confirmed recently in thermodynamic simulations of the S-
Adenosylmethione riboswitch aptamer domain, in which a helical platform for SAM binding
is pre-formed.30 Ligand-binding then stabilizes the rate-limiting step to folding.

Similarly, protein folding is hypothesized to be co-translational, which means that smaller,
compactly folded intermediates and completed native-like structures are attached to the
ribosome during the process of translation.31 This hypothesis is strongly supported by
experimental results, such as enzymatic activities immediately after the protein’s release
from the ribosome.31–33 The long history of research into protein folding has shown that the
free energy surface is also frustrated,34 decorated with many minima asides from the native
state, separated by varying energy barriers. Like in vivo protein folding, naturally occurring
RNAs have been found to fold co-transcriptionally. Experimental studies done by the Pan
and Sosnick groups have shown that RNA co-transcriptional folding in the cell is facilitated
by pausing-induced non-native structures.35,36 Our computational approach identified such
possible switches along the transcription elongation through a structural and thermodynamic
analysis of the B. subtilis tenA TPP binding riboswitch. Though various folding algorithms
analyzing RNAs during transcription have been developed – using genetic algorithms,29,37

Monte carlo simulations,38–40 and stochastic methods,41 – this is the first attempt to study
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minimum free energy folding as a function of nucleotide length, to the best of our
knowledge.

Two major classes have emerged from crystal structures studies of riboswitches, functioning
through differing allosteric mechanisms.2 Type 1 riboswitches, characterized by the TPP
riboswitch, display global conformational changes upon ligand-binding. Type 2
riboswitches, exemplified by the purine and S-Adenosylmethionine riboswitches, function
through subtle tertiary interactions stemming from changes in the binding pocket.2 In
agreement with our results of the TPP riboswitch, those riboswitches that display global
conformational clustering may indeed fall into the Type 1 classification. In contrast, it may
be possible that the gcvT and VCI-II glycine riboswitches, characterized by their cooperative
nature of ligand-binding, may act as Type 2 riboswitches and as a result do not display the
same energy landscape properties in our analysis.

Interestingly, we also found that the experimentally-reported efficiency of functional gene
regulation is somewhat correlated to the density of the ligand-bound structure set in our
corresponding computed energy landscapes. Because the experimental values reflect
nonuniform conditions in each experiment (see Supplementary Table), exact comparisons to
our energy-landscape derived values are not prudent, but overall we note a general
correspondence for most cases examined. This general correspondence suggests a structure-
function connection of our energy landscape views to transcription activity.

Riboswitches can be exploited to design new functional RNAs for biotechnology or
biomedical applications, for example, using rational modular design to engineer assemblies
of riboswitches and other aptamer modules. Such design efforts can be made more
productive by selecting RNAs with desired structural and thermodynamic properties, as
examined in this work. Recently, Wieland et. al. designed a TPP riboswitch-hammerhead
ribozyme fusion that controls ribosome-binding through the presence or absence of TPP.42

This process required exhaustive search of approximately 4,000 sequences for activity. We
anticipate that a computational framework, such as the one we presented, could streamline
the search for functional transcripts. Applications of such computational tools to novel RNA
design are currently underway.

Materials and Methods
Simulation of transcription elongation

Various programs43,44 have been used to predict the “optimal” secondary structure of a short
RNA sequences by minimizing the free energy of folding45 from a standard set of energetic
parameters.46,47 These methods are based on the principles of hierarchal folding of RNA so
that secondary structural elements form a scaffold upon which tertiary interactions are then
achieved.48–50 It is also assumed that, at equilibrium, the molecule will thermodynamically
favor its lowest energy state. Such RNA prediction of secondary structures have been shown
to be around 70% accurate on average for short RNAs of less than 200 nucleotides,46 despite
the approximations of thermodynamic parameters. Additionally, the kinetics of folding,
tertiary interactions, and pseudoknot formation are not fully taken into account. Thus, the
structures predicted by free energy minimization provide a valuable but incomplete view of
structures. For recent approaches to RNA folding see 51.

In both mfold and Vienna RNAfold, the minimum free energy (mfe) and suboptimal
structures of a single RNA sequence are predicted by the algorithm of Zuker and Stiegler.52

Essentially, the overall free energy is approximated by sum of the loop and base pair
energies.53 These energy parameters are estimated based on melting temperature studies of
synthetically constructed oligoribonucleotides at arbitrary temperatures.46
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In our applications, we simulate the elongation of the TPP-binding riboswitch from the 5′
UTR of the tenA gene from B. subtilis at 1–5 nt incremental steps up to the transcription
start site (191 nt) to investigate the structural and thermodynamic switches along the
transcription elongation pathway. For structural analysis, sub-sequences were folded into
their native (“optimal”) secondary structures using mfold 43 by free energy minimization.

Clustering analysis of energy landscape
For thermodynamic analysis, we sample 1,000 possible (“sub-optimal”) secondary structures
using the RNAsubopt module of the Vienna RNA package.54 Sampling was performed at 55
Celsius from the Boltzmann-weighted distribution of secondary structures because we found
that the sampling at elevated temperatures produces greater diversity and was more
representative of in vitro experimental results. Our simulation shows that temperatures
below 55°C generate structures that are mostly similar to the optimal secondary structures,
while higher temperatures generate unfolded structures. Obtaining the partition function for
folding at elevated temperatures requires extrapolation of free energy parameters from their
reference at 37° C. However, this has been shown to accurately predict folding landscape
properties and more importantly effectively enhance the range of conformational states
sampled.55 Free energies of sampled structures were recalculated at 37° C using RNAeval to
be physiologically relevant.

We compute the base pair distance matrix between all sampled structures using
RNAdistance.56 The base pair distance measures the number of base pairings that require
breaking or forming in order to convert one structure into another. A plot of the distance
between the minimum free energy structure and all other structures (i.e., the first column of
the distance matrix) against the free energy of folding produces an illustrative representation
of the folding pathways, which we call the energy landscape plot. Such a plot indicates the
range of possible RNA secondary structures for a given sequence with relationship to the
mfe (minimum free energy) represented as the lowest point on the energy axis.

To assign individual secondary structures of the energy landscape to clusters of structures
with similar topological characteristics, we use the k-means algorithm (with k=2) for
partition clustering in the R statistical software package.57 The algorithm aims to partition
the points into k groups such that the sum of squares between the assigned cluster centers
and each point is minimized.58 For cluster validation, the average silhouette width was used,
quantifying a measure of the clustering (for full description see: 58). We define a threshold
value of ≥0.4 as a well-clustered result (note that the highest silhouette coefficient with k =
3, 4 and 5 for the B. Subtilis TPP riboswitch is 0.35, while the value with k=2 is 0.62).

We partition the entire set of structures into their respective clusters. We then developed an
automated procedure to analyze the most dominant secondary structural features in the
clusters. In abstract form, a given RNA secondary structure can be represented as a set of
balanced parentheses and points associated with each nucleotide to indicate base pairing
patterns. For example, the string: (((((.....))))) represents the secondary structure of a simple
5 base pair helix. In each cluster, we compute the frequency of finding one of the string
characters at each position in the string. The most dominant characters (i.e., signature
corresponding to the greatest number of structures) were assembled together into a string of
characters. If no single element was present in the majority of the structures, an underscore
character was assigned. The complete string of characters approximates the dominant
structural elements in the cluster, which we term the average structure of the cluster. As an
example, a set of structures was generated for the helix presented above (see Table 2).

To determine the accuracy of our method, we calculate the number of structural elements
that matched well our average structure to structures derived experimentally or through
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sequence alignment analysis (see Table 3). The aptamer domains of many riboswitches are
known to be highly-conserved across species3,6 and thus we limited this comparison to the
aptamer region only. In each riboswitch data set analyzed, we found high structural
similarity, indicating the validity of our computational approach.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Two alternative structures of thiamine pyrophosphate (TPP) riboswitch in Bacillus subtilis
(B. subtilis). (a) Full-length riboswitch when TPP present. Thi-box and terminator are
formed (lowest energy structure predicted by mfold). (b) TPP riboswitch when TPP is
absent. Anti-terminator is paired with terminator (lowest energy structure with the constraint
that prohibits base pairing in terminator stem-loop in (a)).

Quarta et al. Page 11

J Mol Biol. Author manuscript; available in PMC 2011 June 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
TPP riboswitch folding pathway snapshots from 120 nt to 190nt (full length) with the 5nt
incremental step. Note four large-scale structural changes (120 to 125 nt, 145 to 150 nt, 170
to 175 nt, and 180 to 185 nt).
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Figure 3.
Energy landscape analysis of TPP riboswitch from 120 nt to 190 nt (full length) with 1–5
incremental step. (a) Clustering results of TPP riboswitch energy landscape along the length
of the sequence. Note that two clusters are present after 180 nt. Two representatives of
energy landscapes and structures display (b) one cluster at 145nt or (c) two distinct clusters
at 190 nt. The Set 1 (left) and Set 2 (right) structures approximate the average structures
represented by set 1 (red) and set 2 (black) on the energy landscape, respectively.
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Figure 4.
Energy landscape and representative structures of mutant riboswitches 118 (a), mutant 30
(b), mutant 80 (c), mutant 97 (d). Note that the two structures shown for mutant 118 do not
represent different sets of structures but are only two sample points along the energy
landscape. For mutants 30, 80, and 97 Set 1 (left) and Set 2 (right) structures approximate
the average structures represented by set 1 (red) and set 2 (black) on the energy landscape,
respectively.
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Figure 5.
Energy landscape plot and structures of the ypaA (a), ribD (b), and btuB (c) riboswitches.
The Set 1 (left) and Set 2 (right) structures approximate the average structures represented
by set 1 (red) and set 2 (black) on the energy landscape, respectively.
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Table 1

Riboswitches and energy landscape clustering. Clusters in each energy landscape are determined using the k-
means algorithm (see Methods). Proportions of structures are based off of the set containing the
transcriptionally inactive, ligand-binding structures.

Riboswitch Name (reference) Ligand
Number of Clusters in

Structure Set
Proportion of structures in

termination set

tenA, B. subtilis11 Thiamine Pyrophosphate (TPP, Vit. B1) 2 85%

118 mutant TPP 1 ~100%

30 mutant TPP 2 39.8%

80 mutant TPP 2 87%

97 mutant TPP 2 8.1%

ribD, B. subtilis11 Flavin Mononucleotide (FMN) 2 85%

ypaA, B.subtilis18,19 FMN 2 77%

gcvT, B. subtilis22 Glycine 1 ~100%

VCI-II, V. cholera 22 Glycine 1 51%

btuB, E. coli20 Coenzyme B12 (AdoCbl) 2 92.3%

thiM, E. coli4 TPP 2 35.1%
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Table 2

Base pair distance between a minimum free energy structure and suboptimal structure. The average structure
is composed of the most common structural elements at each position in the set of structures. The second
structure requires unzipping of a short-helix (4 moves), followed by matching the distal 5′ and 3′ ends (5
moves) to reproduce the minimum free energy structure. In the last entry, at position 5, the average structure is
marked with an underscore since no character is present in >50% of the set.

Structure Set Base Pair Distance

(((((.....))))) Minimum free energy structure

((((......)))). 9

((((.......)))) 1

(((.(.......).))) 1

(.(((.....))).) 1

(((.........))) 2

((((_.....))))) Average structure
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Table 3

Percent of matching base pairs between the ligand-binding domains of the computationally predicted average
structure (see Methods) and experimentally derived structure. Asterisks (*) denote experimental structures
published using mfold.43

Riboswitch Name (Sequence) Percent matching structural elements

tenA, B. subtilis thi-box 11* 99%

ypaA, B. subtilis RFN element18 65%

ribD, B. subtilis RFN element18 62%

gcvT, B.subtilis22 64%

VCI-II, V. cholera22 81%

btuB, E. coli B12 box59 62%

thiM, E. coli thi-box4 83%
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