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Homeodomain, forkhead domain, and paired domain-containing transcription factors play a major role in development, tissue-
specific gene expression, and tissue homeostasis in organs where they are expressed. Recently, their roles in stem cell and cancer
biology are emerging. In the thyroid, NKX2-1, FOXE1, and PAX8 transcription factors are responsible for thyroid organogenesis
and expression of thyroid-specific genes critical for thyroid hormone synthesis. In contrast to their known roles in gene regulation,
thyroid development and homeostasis, their involvement in stem cell, and/or cancer biology are still elusive. In order to further
understand the nature of thyroid cancer, it is critical to determine their roles in thyroid cancer.

1. Introduction

Tissue-specific transcription factors play a pivotal role in
regulating expression of tissue-specific genes, thereby con-
trolling the function, homeostasis, and differentiation of
tissue where they are expressed. Their altered expression
due to gene mutation, deletion, amplification, and/or epi-
genetic modification, and/or posttranslational modification
can change the cell fate and perturb metabolism and differ-
entiation status, leading to various clinical conditions. Since
both cell proliferation and differentiation are involved in the
process of normal and cancer development, it is not surpris-
ing that genes critical for development play an important
role in oncogenesis. Transcription factors, containing the
homeobox [1, 2], forkhead domain (FOX) [3], and paired
domain (PAX) [4], that are among those expressed tissue-
specifically that play a critical role in tissue homeostasis and
development, can also have roles in carcinogenesis. Thyroid
is an organ in which the homeodomain, forkhead domain,
and paired domain-containing transcription factors all play
major roles in tissue-specific gene expression and thyroid
development. The current view on the roles of thyroid-
specific transcription factors in thyroid cancer will be sum-
marized below.

2. Thyroid-Specific Transcription Factors

The three distinct thyroid-specific transcription factors are
critical for the function of thyroid: NKX2-1 (also called
TTF1, TITF1, T/EBP, or NKX2.1) [5, 6], FOXE1 (also called
TTF2 or TITF2) [7], and PAX8 [8] (Table 1). They are mem-
bers of the homeodomain, forkhead box, and paired box
family of transcription factors, respectively, and regulate
genes encoding thyroglobulin, thyroid peroxidase, thyrotro-
pin receptor, and sodium/iodide symporter, proteins critical
for thyroid hormone synthesis [5–7, 9–14]. They are also
essential for thyroid development [15–17]; Nkx2-1-null mice
are born without the thyroid (agenesis) [16], while Pax8-null
mice are severely hypothyroidism with rudimental thyroid
remnant [17]. Foxe1-null mice have either agenesis or thy-
roid ectopy [15]. These transcription factors are responsible
for the athyreosis, hypothyroidism, and/or ectopic thyroid,
which provide crucial clues to their roles in thyroid dysgen-
esis in humans [18]. In addition to thyroid, NKX2-1 is
expressed in lung primordium and ventral forebrain [16],
PAX8 in developing kidney [8], and FOXE1 in the floor of
the foregut and the craniopharyngeal ectoderm including
Rathke’s pouch during development [15]. At later stages,
FOXE1 is expressed in the secondary palate, definitive



2 Journal of Thyroid Research

Table 1: Thyroid-specific transcription factors and thyroid cancers.

Thyroid
phenotype in
null mice

Gene
requirement

Expression in
thyroid cancer

Common
variants/Gene
mutations for
thyroid cancer
predisposition

Other specifics

NKX2-1 Athyreosis
Proliferation and
survival of
thyroid follicular
cells and C cells

Level correlates
with the degree of
differentiation

14q13.3: PTC, FTC
Gene mutation increases
thyroid cell proliferation

A339V: PTC
Lineage-specific
oncogene amplified in
lung cancer

PAX8

Athyreosis,
rudimental
thyroid
remains

Proliferation and
survival of
thyroid follicular
cells

Correlation
between expression
level and
differentiation not
clear

PAX8/PPARγ
fusion protein:
FTC

Expression found in
cancers of other tissues
such as kidney,
Müllerian system, and
ovary

FOXE1
Athyreosis or
ectopia

Migration of
thyroid
primordium

Level correlates
with the degree of
differentiation

rs965513 on
9q22.33: PTC,
FTC,
radiation-induced
PTC

LOH at D9S180 on
9q22.3: frequently found
in skin SCC

rs1867277
(−283G > A): PTC

16 Ala variant:
associated with SCC

PTC: papillary thyroid carcinoma, FTC: follicular thyroid carcinoma, SCC: squamous cell carcinoma, and LOH: loss of heterozygosity.

choanae, whiskers, and hair follicles [19]. Some structures
derived from these areas are also defective in respective null
mice. Thus, Nkx2-1-null mice also have severely hypoplastic
lung, defective hypothalamus, and pituitary agenesis [16].
Foxe1-null mice have cleft palate [15]. Similar to the defects
found in the Nkx2-1-null mice and sometimes more man-
ifested in humans, various mutations in the NKX2-1 gene
result in the Brain-Thyroid-Lung syndrome, which is char-
acterized by benign hereditary chorea, congenital hypo-
thyroidism, and respiratory diseases [20–22]. Mutations in
the FOXE1 gene are responsible for syndromic congeni-
tal hypothyroidism dysgenesis, cleft plate, and spiky hair
[22–24].

2.1. NKX2-1

2.1.1. NKX2-1 and Cancer. Due to the nature of tissue-
specific expression, NKX2-1 is expressed in human thyroid
and lung cancers [25–28]. In particular, NKX2-1 is highly
expressed in human lung adenocarcinomas and small cell
carcinomas (∼60–90%) [25, 26, 29]. NKX2-1 has been
widely used as a marker for the diagnosis of primary and
metastatic lung cancer [30] and as a prognostic indicator for
survival [26, 31, 32]. In fact, NKX2-1 is a lineage-specific
oncogene amplified in lung cancers and the survival of a
subset of adenocarcinoma cells depends on the sustained
expression of NKX2-1 [33–35]. However, no mutations in
the NKX2-1 gene are described in any adenocarcinomas
examined in these studies. Patients with adenocarcinomas
that lack NKX2-1 expression or have NKX2-1 expression
accompanied by NKX2-1 gene amplification tend to have

a significantly worse prognosis than patients with NKX2-1
expression and no NKX2-1 gene amplification [32].

In contrast to the expression in lung, NKX2-1 is ex-
pressed at lower levels in malignant thyroid as compared to
normal thyroid [36]. The level of expression is significantly
correlated with the progressive dedifferentiation and increase
of malignancy of thyroid tumors [27]. Thus, the expression
is generally found in the order of follicular thyroid adenoma
> follicular thyroid carcinoma > papillary thyroid carcinoma
> medullary thyroid carcinoma > anaplastic thyroid carci-
noma [27, 37–39]. These studies use immunohistochemical
analysis of primary thyroid tissues, and low or no expression
of NKX2-1 is found in anaplastic thyroid carcinomas. Using
RT-PCR, NKX2-1 expression is reported in some anaplastic
thyroid carcinoma-derived cell lines [40, 41]. The latter
studies present different results for the expression of NKX2-
1 within the same cell line, suggesting the controversial
nature of NKX2-1 expression. In order to explain the loss
of NKX2-1 expression in most of undifferentiated thyroid
carcinomas and cell lines, epigenetic silencing of the NKX2-
1 gene through DNA hypermethylation and histone H3
modification has been suggested [40]. Further studies are
required to obtain clear understanding of the relationships
in between expression of NKX2-1, differentiation status of
tissues and primary carcinomas versus cell lines, and the
mechanisms underlying the loss of NKX2-1 expression in
malignancy.

A genome-wide association study (GWAS) revealed the
predisposition of common variants on 9q22.33 and 14q13.3
to both papillary and follicular thyroid cancers. The gene
nearest to the 9q22.33 is FOXE1, and among the genes
located at the 14q13.3 locus is NKX2-1 [42], suggesting
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potential roles for these two thyroid-specific transcription
factors in thyroid cancers. A germline mutation of NKX2-1
gene leads to a mutant NKX2-1 protein (A339V) that has
impaired transactivation of thyroid-specific genes such as
thyroglobulin, thyrotropin receptor, and PAX8, while the ex-
pression is associated with the increased cell proliferation,
thyrotropin-independent growth, and enhanced activation
of survival signaling molecules such as Stat3 and Akt as com-
pared to wild-type protein [43]. A population study dem-
onstrated that the NKX2-1 A339V mutant contributes to
predisposition of maltinodular goiter and/or papillary thy-
roid carcinomas and to the pathogenesis of papillary thyroid
carcinomas [43].

2.1.2. Nkx2-1 Thyroid-Specific Conditional Knockout Mouse as
a Model to Study Thyroid Carcinogenesis. Nkx2-1(fl/fl);TPO-
Cre thyroid-specific conditional knockout mouse provides
an animal model to study the role of NKX2-1 in adult thy-
roid, which circumvents the problem of immediate neo-
natal lethality of Nkx2-1-null mouse [44]. In the Nkx2-
1(fl/fl);TPO-Cre mouse, the recombination of Nkx2-1 floxed
gene occurs at the rate of∼50%, resulting in Nkx2-1 thyroid-
specific conditional hypomorphic mouse [45]. These mice
exhibit either atrophic/degenerative thyroids with frequent
presence of adenomas and extremely high TSH levels, or
thyroids with reduced numbers of extremely dilated follicles
having more number of follicular cells than usual within a
follicle. The atrophic/degenerative thyroid mostly consists
of atrophic/degenerative follicles, in which many follicu-
lar cells frequently have lost NKX2-1 expression, suggest-
ing that the loss of NKX2-1 may be the cause of atrophic/
degenerative follicular cells [45]. These findings further
suggest that NKX2-1 is required for the maintenance of or-
dered architecture and function of the differentiated thyroid
[45].

In chemical carcinogenesis bioassays using the genotoxic
mutagen N-bis(2-hydroxypropyl)-nitrosamine (DHPN) fol-
lowed by sulfadimethoxine (SDM) as a promoter, the Nkx2-
1(fl/fl);TPO-Cre mice developed significantly higher inci-
dence of adenomas as compared with wild-type or Nkx2-1-
heterozygous mice [46]. In contrast, with the non-genotoxic
carcinogen amitrole (3-amino-1,2,4-triazole), all three geno-
type groups of mice developed adenomas at similar inci-
dence. Surprisingly, no gene mutation was identified in any
adenoma-developed thyroids. The increased incidence of
adenomas in the Nkx2-1(fl/fl);TPO-Cre mice after genotoxic
carcinogen exposure may be partially explained by more than
a twofold higher cell proliferation rate found in these mouse
thyroids as compared to those of wild-type or Nkx2-1-
heterozygous mice. These results may be analogous to human
exposure to genotoxic mutagens or radiation, which could
cause somatic mutation of NKX2-1 gene → inactivation of
NKX2-1 gene → degeneration of thyroid follicular cells →
increased cell proliferation → augmentation of the dam-
age occurred in DNA, and/or chromosomes by genotoxic
mutagens or radiation exposure, ultimately leading to cancer
[46].

2.2. FOXE1 and Cancer. The human FOEX1 gene is located
on chromosome 9q22.3 [47]. The loss of heterozygosity of
marker D9S180 from this chromosomal area is frequently
observed in squamous cell carcinomas of skin, suggesting the
presence of tumor suppressor gene in this genomic region
[48]. The common variant rs965513 on 9q22.33 contributes
to an increased risk of papillary and follicular thyroid cancer
[42]. Further, a high incidence of FOXE1 gene promoter
methylation is found in cutaneous squamous cell carinomas
(SCC) [49], pancreatic cancers [50], and breast cancers [51].
FOXE1 protein has a polyalanine tract starting at the 13th
amino acid residue from the end of the forkhead domain,
which stretches from 12 to 17 residues with the 14 alanine
stretch at the highest frequency [47]. The less common
variant (allele 16) is associated with SCC, suggesting that the
more common variant (allele 14) may be protective against
developing SCC [52].

Similar to NKX2-1, FOXE1 expression is found in vari-
ous thyroid cancers [38, 53]. The level of expression corre-
lates with their differentiation status as seen with NKX2-1,
and anaplastic thyroid carcinoma has very little expression
of FOXE1 [38, 53]. The candidate gene association study
revealed that the variant rs1867277 (−283G > A) located in
the FOXE1 5′ UTR is associated with papillary thyroid cancer
susceptibility through recruitment of USF1/USF2 transcrip-
tion factors to the−283A allele, which affects gene expression
[54]. FOXE1 is required for thyroid cell precursors to migrate
into the underlying mesenchyme from the thyroid bud [15,
55]. Although the exact mechanism for the enhanced tran-
scription of FOXE1 gene leading to increased susceptibility
to papillary thyroid cancer remains unknown, the enhanced
expression of FOXE1 in thyroid carcinomas could be related
to a motile advantage of malignant thyroid cells [54].

Radiation exposure causes papillary thyroid cancer as
revealed by various studies after the Chernobyl accident
[56]. Genome-wide association studies (GWAS) employing
Belarusian patients and control subjects demonstrated that
the variant rs965513 on 9q22.33 is significantly associated
with the radiation-induced papillary thyroid cancer [57].
This variant was identified together with NKX2-1, as those
having the strongest rink to papillary and follicular thyroid
cancers [42]. Although Foxe1 thyroid conditional null mice
are currently not available, they would be a useful model to
understand the role of FOXE1 in the pathogenesis of thyroid
cancer.

2.3. PAX8

2.3.1. PAX8 and Cancer. PAX8 is a crucial transcription fac-
tor for organogenesis of the thyroid, kidney, and Müllerian
system [8, 58]. PAX8 is expressed in normal as well as
neoplastic renal tissues, and in Wilms’ tumors [58, 59]. PAX8
is a useful marker for Müllerian carcinomas [60] and ovarian
cancer [61, 62] and can be used to distinguish ovarian serous
tumors from malignant mesothelioma [61–64] or from other
metastatic tumors such as breast and colon [63, 64].

PAX8 is expressed in various thyroid cancers; how-
ever, the pattern of expression is somewhat controversial;
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Figure 1: Possible involvement of NKX2-1 and/or PAX8 in the maintenance and/or activity of stem cells of the thyroid. Transformation
of NKX2-1 and/or PAX8-expressing stem cells leads to thyroid cancer. Transformed NKX2-1 and/or PAX8-expressing stem cells self-renew
and proliferate to produce cancer. Upon becoming tumorigenic, most of transformed cells may lose NKX2-1 and/or PAX8 expression. FTC:
follicular thyroid carcinoma, PTC: papillary thyroid carcinoma, and MTC: medullary thyroid carcinoma.

one study showed that the nuclear PAX8 staining is correlated
with the thyroid differentiation phenotype as seen with
NKX2-1 and FOXE1 [27], while others demonstrated that
PAX8 is a useful marker for the diagnosis of anaplastic
carcinomas [38]. More studies are required to determine the
expression pattern and the role of PAX8 in thyroid cancers,
including the use of Pax8 thyroid-conditional null mice.

2.3.2. PAX8/PPARγ Fusion Oncogene in Thyroid Cancer. The
chromosomal translocation of the 2q13-qter region to 3p25
results in an in-frame fusion protein (PPFP) between most
of the coding sequence of PAX8 and the entire trans-
lated reading-frame of the nuclear receptor-family member
peroxisome proliferator-activated receptor gamma (PPARγ)
([65] reviewed in [66, 67]). The PPFP has several different
PAX8 breakpoints while the PPARγ breakpoint seems to be
constant [65, 67, 68]. This fusion protein is more prevalently
expressed in follicular thyroid carcinomas (36%, reviewed
in [69]); however, follicular adenomas (11%), follicular
variant of papillary carcinoma (16%), and Hürthle cell
carcinoma (2%) also express PPFP [68–70]. PPFP has been
proposed to be an early follicular thyroid carcinoma-specific
oncogene [65, 71]. Several in vitro studies demonstrated
that PPFP has oncogenic activity such as increased cell cycle
transition, reduced apoptosis, and enhanced growth [71],
which is partly due to PPFP’s dominant negative activity
to suppress wild-type transcriptional activities of PPARγ
[65, 71, 72], the suggested tumor suppressor [73, 74]. PPFP
can also work as a dominant negative inhibitor of wild-type

PPARγ in vivo [75]. Further studies are required to establish
the mechanisms for the PPFP-mediated tumorigenesis.

3. Thyroid-Specific Transcription Factors,
Cancer, and Stem Cells

Normal embryogenesis is believed to share many of the same
pathways as neoplasia, such as Wnt/β-catenin, Hedgehog,
and Notch pathways. These signaling pathways are also
involved in the maintenance and/or activity of stem cells,
while their dysregulation plays a role in tumorigenesis
(reviewed in [76–80]). It is increasingly recognized that
homeobox proteins including PAX proteins play a critical
role in stem cell maintenance [4, 81]. PAX3 or PAX7 is
essential for generating the cell pool of muscle progenitors
from which satellite cells derive [82]. Overexpression of
PAX3 and 7 is frequently found in pediatric soft-tissue malig-
nant tumor rhabdomyosarcomas [83, 84]. PAX6 is essential
for maintenance of the multipotency of retinal progenitor
cells [85]. On the other hand, HOX genes are expressed in
hematopoietic cells in a stage- and lineage-specific manner,
and are implicated in leukemogenesis [81]; for instance,
HOXA10 is a critical regulator for haematopoietic stem
cells, and erythroid and megakaryocyte development [86],
while HOXA9 is required for normal hematopoietic stem cell
function [87]. The involvements of other homeobox genes in
the maintenance of stem cells are described in various tissues
including brain [88] and kidney [89]. In the prostate, NKX3-
1, another member of the NKX gene family, is required for
stem cell maintenance [90]. The targeted deletion of Pten,
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a tumor suppressor gene in castration-resistant NKX3-1-
expressing cells, results in rapid carcinoma formation after
androgen-mediated regeneration [90].

The three transcription factors, NKX2-1, FOXE1, and
PAX8, are critical for normal embryogenesis and appear to
play a role in tumorigenesis in various tissues where they
are expressed, including the thyroid. By analogy to other
homeodomain/PAX proteins, it is likely that NKX2-1 and
PAX8 may be involved in the maintenance and/or activity
of stem cells in the thyroid, dysregulation of which may
lead to thyroid cancer (Figure 1). Currently, it is not clear
whether FOX transcription factors are involved in stem cell
maintenance/activity [3]. Knockout mouse studies demon-
strated that in the absence of NKX2-1, primordium cells
to both thyroid follicular and C cells disintegrate during
thyroid organogenesis [16, 91], while PAX8 is required for
the survival of follicular cells [17]. It would be interesting to
determine whether NKX2-1 and/or PAX8-expressing stem/
progenitor cells exist that can rapidly form cancers upon
targeted disruption of a tumor suppressor gene in cell pools,
similar to that seen with NKX3-1. In this regard, NKX2-1 in
lung cancers may be more analogous to this scenario since
NKX2-1 is a lineage-specific oncogene and is required for
survival of a subset of adenocarcinoma cells [33–35].

4. Conclusions

It appears that most transcription factors, if not all, that are
critical for developmental process are involved in the main-
tenance and/or activity of stem cells, whose dysregulation
results in cancers. Currently, it is entirely unknown whether
and/or how the thyroid-specific transcription factors NKX2-
1, FOXE1, and PAX8 are related to stem/progenitor cells
of the thyroid that may lead to cancer when dysregulated.
Identification/characterization of thyroid stem/progenitor
cells, their relation to the expression of NKX2-1, FOXE1,
and/or PAX8, and more detailed characterization of various
thyroid cancers and/or cancer cells, particularly in relation
to the expression of these transcription factors, are urgently
required in order to better understand the roles of NKX2-1,
FOXE1, and PAX8 in thyroid cancer.
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